MatteoFasulo commited on
Commit
18789dc
·
verified ·
1 Parent(s): 29be8b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -22
README.md CHANGED
@@ -17,6 +17,8 @@ pipeline_tag: text-classification
17
  model-index:
18
  - name: mdeberta-v3-base-subjectivity-arabic
19
  results: []
 
 
20
  ---
21
 
22
  # mdeberta-v3-base-subjectivity-arabic
@@ -83,37 +85,43 @@ The following hyperparameters were used during training:
83
  You can use the model directly with the `transformers` library for text classification:
84
 
85
  ```python
86
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
87
- import torch
88
-
89
- model_name = "MatteoFasulo/mdeberta-v3-base-subjectivity-arabic"
90
- tokenizer = AutoTokenizer.from_pretrained(model_name)
91
- model = AutoModelForSequenceClassification.from_pretrained(model_name)
92
-
93
- text = "This is a very subjective opinion."
94
- inputs = tokenizer(text, return_tensors="pt")
95
-
96
- with torch.no_grad():
97
- logits = model(**inputs).logits
98
-
99
- predicted_class_id = logits.argmax().item()
100
- print(model.config.id2label[predicted_class_id])
 
 
 
 
 
101
  ```
102
 
103
  ## Code
104
  The official code and materials for this project are available on GitHub: [https://github.com/MatteoFasulo/clef2025-checkthat](https://github.com/MatteoFasulo/clef2025-checkthat).
105
 
106
  ## Citation
107
- If you find our work helpful or inspiring, please feel free to cite it.
 
108
 
109
  ```bibtex
110
- @misc{antoun2024camembert20smarterfrench,
111
- title={CamemBERT 2.0: A Smarter French Language Model Aged to Perfection},
112
- author={Wissam Antoun and Francis Kulumba and Rian Touchent and Éric de la Clergerie and Benoît Sagot and Djamé Seddah},
113
- year={2024},
114
- eprint={2411.08868},
115
  archivePrefix={arXiv},
116
  primaryClass={cs.CL},
117
- url={https://arxiv.org/abs/2411.08868},
118
  }
119
  ```
 
17
  model-index:
18
  - name: mdeberta-v3-base-subjectivity-arabic
19
  results: []
20
+ datasets:
21
+ - MatteoFasulo/clef2025_checkthat_task1_subjectivity
22
  ---
23
 
24
  # mdeberta-v3-base-subjectivity-arabic
 
85
  You can use the model directly with the `transformers` library for text classification:
86
 
87
  ```python
88
+ from transformers import pipeline
89
+
90
+ # Load the text classification pipeline
91
+ classifier = pipeline(
92
+ "text-classification",
93
+ model="MatteoFasulo/mdeberta-v3-base-subjectivity-arabic",
94
+ tokenizer="microsoft/mdeberta-v3-base",
95
+ )
96
+
97
+ # Example usage for an objective sentence
98
+ text1 = "وهكذا بدأت النساء يعين أهمية دورهن في عدم الصمت أمام هذه الاقتحامات ورفضها بإعلاء صيحات الله أكبر."
99
+ result1 = classifier(text1)
100
+ print(f"Text: '{text1}' Classification: {result1}")
101
+ # Expected output: [{'label': 'OBJ', 'score': ...}]
102
+
103
+ # Example usage for a subjective sentence
104
+ text2 = "ستشمل الشحنة الأولية نصف الجرعات، يليها النصف الثاني بعد ثلاثة أسابيع."
105
+ result2 = classifier(text2)
106
+ print(f"Text: '{text2}' Classification: {result2}")
107
+ # Expected output: [{'label': 'SUBJ', 'score': ...}]
108
  ```
109
 
110
  ## Code
111
  The official code and materials for this project are available on GitHub: [https://github.com/MatteoFasulo/clef2025-checkthat](https://github.com/MatteoFasulo/clef2025-checkthat).
112
 
113
  ## Citation
114
+
115
+ If you find our work helpful or inspiring, please feel free to cite it:
116
 
117
  ```bibtex
118
+ @misc{fasulo2025aiwizardscheckthat2025,
119
+ title={AI Wizards at CheckThat! 2025: Enhancing Transformer-Based Embeddings with Sentiment for Subjectivity Detection in News Articles},
120
+ author={Matteo Fasulo and Luca Babboni and Luca Tedeschini},
121
+ year={2025},
122
+ eprint={2507.11764},
123
  archivePrefix={arXiv},
124
  primaryClass={cs.CL},
125
+ url={https://arxiv.org/abs/2507.11764},
126
  }
127
  ```