Update README.md
Browse files
README.md
CHANGED
@@ -16,6 +16,8 @@ pipeline_tag: text-classification
|
|
16 |
model-index:
|
17 |
- name: mdeberta-v3-base-subjectivity-bulgarian
|
18 |
results: []
|
|
|
|
|
19 |
---
|
20 |
|
21 |
# mdeberta-v3-base-subjectivity-bulgarian
|
@@ -94,51 +96,37 @@ The following hyperparameters were used during training:
|
|
94 |
You can use this model directly with the Hugging Face `transformers` library for text classification:
|
95 |
|
96 |
```python
|
97 |
-
from transformers import
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
model
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
print(f"Text: '{text_objective}'")
|
115 |
-
print(f"Predicted label: {predicted_label_objective}")
|
116 |
-
# Expected output: Predicted label: OBJ (or similar with score)
|
117 |
-
|
118 |
-
# Example for a subjective sentence (Bulgarian)
|
119 |
-
text_subjective = "Според мен това е най-доброто решение." # "In my opinion, this is the best decision."
|
120 |
-
inputs_subjective = tokenizer(text_subjective, return_tensors="pt")
|
121 |
-
with torch.no_grad():
|
122 |
-
logits_subjective = model(**inputs_subjective).logits
|
123 |
-
predicted_class_id_subjective = logits_subjective.argmax().item()
|
124 |
-
predicted_label_subjective = model.config.id2label[predicted_class_id_subjective]
|
125 |
-
print(f"Text: '{text_subjective}'")
|
126 |
-
print(f"Predicted label: {predicted_label_subjective}")
|
127 |
-
# Expected output: Predicted label: SUBJ (or similar with score)
|
128 |
```
|
129 |
|
130 |
## Citation
|
131 |
|
132 |
-
If you find
|
133 |
|
134 |
```bibtex
|
135 |
-
@misc{
|
136 |
-
title={AI Wizards at CheckThat! 2025: Enhancing Transformer-Based Embeddings with Sentiment for Subjectivity Detection in News Articles},
|
137 |
-
author={Matteo Fasulo and
|
138 |
year={2025},
|
139 |
eprint={2507.11764},
|
140 |
archivePrefix={arXiv},
|
141 |
primaryClass={cs.CL},
|
142 |
-
url={https://arxiv.org/abs/2507.11764},
|
143 |
}
|
144 |
```
|
|
|
16 |
model-index:
|
17 |
- name: mdeberta-v3-base-subjectivity-bulgarian
|
18 |
results: []
|
19 |
+
datasets:
|
20 |
+
- MatteoFasulo/clef2025_checkthat_task1_subjectivity
|
21 |
---
|
22 |
|
23 |
# mdeberta-v3-base-subjectivity-bulgarian
|
|
|
96 |
You can use this model directly with the Hugging Face `transformers` library for text classification:
|
97 |
|
98 |
```python
|
99 |
+
from transformers import pipeline
|
100 |
+
|
101 |
+
# Load the text classification pipeline
|
102 |
+
classifier = pipeline(
|
103 |
+
"text-classification",
|
104 |
+
model="MatteoFasulo/mdeberta-v3-base-subjectivity-bulgarian",
|
105 |
+
tokenizer="microsoft/mdeberta-v3-base",
|
106 |
+
)
|
107 |
+
|
108 |
+
# Example usage:
|
109 |
+
result1 = classifier("По принцип никой не иска войни, но за нещастие те се случват.")
|
110 |
+
print(f"Classification: {result1}")
|
111 |
+
# Expected output: [{'label': 'SUBJ', 'score': ...}]
|
112 |
+
|
113 |
+
result2 = classifier("В един момент започнал сам да търси изход за своето спасение и здраве")
|
114 |
+
print(f"Classification: {result2}")
|
115 |
+
# Expected output: [{'label': 'OBJ', 'score': ...}]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
```
|
117 |
|
118 |
## Citation
|
119 |
|
120 |
+
If you find our work helpful or inspiring, please feel free to cite it:
|
121 |
|
122 |
```bibtex
|
123 |
+
@misc{fasulo2025aiwizardscheckthat2025,
|
124 |
+
title={AI Wizards at CheckThat! 2025: Enhancing Transformer-Based Embeddings with Sentiment for Subjectivity Detection in News Articles},
|
125 |
+
author={Matteo Fasulo and Luca Babboni and Luca Tedeschini},
|
126 |
year={2025},
|
127 |
eprint={2507.11764},
|
128 |
archivePrefix={arXiv},
|
129 |
primaryClass={cs.CL},
|
130 |
+
url={https://arxiv.org/abs/2507.11764},
|
131 |
}
|
132 |
```
|