Update README.md
Browse files
README.md
CHANGED
@@ -18,6 +18,8 @@ repo_url: https://github.com/MatteoFasulo/clef2025-checkthat
|
|
18 |
model-index:
|
19 |
- name: mdeberta-v3-base-subjectivity-italian
|
20 |
results: []
|
|
|
|
|
21 |
---
|
22 |
|
23 |
# mdeberta-v3-base-subjectivity-italian
|
@@ -100,70 +102,37 @@ The following hyperparameters were used during training:
|
|
100 |
You can use this model for text classification (subjectivity detection) with the `transformers` library:
|
101 |
|
102 |
```python
|
103 |
-
from transformers import
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
model
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
print(f"Text: '{text_1}'")
|
121 |
-
print(f"Predicted label: {predicted_label_1}") # Expected: SUBJ
|
122 |
-
|
123 |
-
# Example 2: Objective sentence
|
124 |
-
text_2 = "The capital of France is Paris."
|
125 |
-
inputs_2 = tokenizer(text_2, return_tensors="pt")
|
126 |
-
|
127 |
-
with torch.no_grad():
|
128 |
-
logits_2 = model(**inputs_2).logits
|
129 |
-
|
130 |
-
predicted_class_id_2 = logits_2.argmax().item()
|
131 |
-
predicted_label_2 = model.config.id2label[predicted_class_id_2]
|
132 |
-
|
133 |
-
print(f"Text: '{text_2}'")
|
134 |
-
print(f"Predicted label: {predicted_label_2}") # Expected: OBJ
|
135 |
-
|
136 |
-
# Example 3: Batch processing
|
137 |
-
texts_to_classify = [
|
138 |
-
"I believe this decision is a grave mistake for our future.",
|
139 |
-
"The report indicates a significant decline in quarterly earnings.",
|
140 |
-
"What an absolutely brilliant performance by the lead actor!",
|
141 |
-
"The meeting is scheduled for tomorrow at 10 AM in conference room B."
|
142 |
-
]
|
143 |
-
inputs_batch = tokenizer(texts_to_classify, padding=True, truncation=True, return_tensors="pt")
|
144 |
-
|
145 |
-
with torch.no_grad():
|
146 |
-
logits_batch = model(**inputs_batch).logits
|
147 |
-
|
148 |
-
predicted_class_ids_batch = logits_batch.argmax(dim=1).tolist()
|
149 |
-
predicted_labels_batch = [model.config.id2label[id] for id in predicted_class_ids_batch]
|
150 |
-
|
151 |
-
for text, label in zip(texts_to_classify, predicted_labels_batch):
|
152 |
-
print(f"Text: '{text}' -> Label: {label}")
|
153 |
```
|
154 |
|
155 |
## Citation
|
156 |
|
157 |
-
If you find
|
158 |
|
159 |
```bibtex
|
160 |
-
@misc{
|
161 |
-
title={AI Wizards at CheckThat! 2025: Enhancing Transformer-Based Embeddings with Sentiment for Subjectivity Detection in News Articles},
|
162 |
-
author={
|
163 |
-
year={
|
164 |
eprint={2507.11764},
|
165 |
archivePrefix={arXiv},
|
166 |
primaryClass={cs.CL},
|
167 |
-
url={https://arxiv.org/abs/2507.11764},
|
168 |
}
|
169 |
```
|
|
|
18 |
model-index:
|
19 |
- name: mdeberta-v3-base-subjectivity-italian
|
20 |
results: []
|
21 |
+
datasets:
|
22 |
+
- MatteoFasulo/clef2025_checkthat_task1_subjectivity
|
23 |
---
|
24 |
|
25 |
# mdeberta-v3-base-subjectivity-italian
|
|
|
102 |
You can use this model for text classification (subjectivity detection) with the `transformers` library:
|
103 |
|
104 |
```python
|
105 |
+
from transformers import pipeline
|
106 |
+
|
107 |
+
# Load the text classification pipeline
|
108 |
+
classifier = pipeline(
|
109 |
+
"text-classification",
|
110 |
+
model="MatteoFasulo/mdeberta-v3-base-subjectivity-italian",
|
111 |
+
tokenizer="microsoft/mdeberta-v3-base",
|
112 |
+
)
|
113 |
+
|
114 |
+
# Example usage:
|
115 |
+
# A subjective sentence
|
116 |
+
result_subj = classifier("Questa è una scoperta affascinante e fantastica!")
|
117 |
+
print(f"Sentence: 'This is a truly amazing and groundbreaking discovery!' -> {result_subj}")
|
118 |
+
|
119 |
+
# An objective sentence
|
120 |
+
result_obj = classifier("In particolare Volkswagen e Stellantis son o arrivati a cedere il 7% in Borsa.")
|
121 |
+
print(f"Sentence: 'The new policy will be implemented next quarter.' -> {result_obj}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
```
|
123 |
|
124 |
## Citation
|
125 |
|
126 |
+
If you find our work helpful or inspiring, please feel free to cite it:
|
127 |
|
128 |
```bibtex
|
129 |
+
@misc{fasulo2025aiwizardscheckthat2025,
|
130 |
+
title={AI Wizards at CheckThat! 2025: Enhancing Transformer-Based Embeddings with Sentiment for Subjectivity Detection in News Articles},
|
131 |
+
author={Matteo Fasulo and Luca Babboni and Luca Tedeschini},
|
132 |
+
year={2025},
|
133 |
eprint={2507.11764},
|
134 |
archivePrefix={arXiv},
|
135 |
primaryClass={cs.CL},
|
136 |
+
url={https://arxiv.org/abs/2507.11764},
|
137 |
}
|
138 |
```
|