MatteoFasulo commited on
Commit
f66e8bc
·
verified ·
1 Parent(s): 753b39d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -9
README.md CHANGED
@@ -17,6 +17,8 @@ tags:
17
  model-index:
18
  - name: mdeberta-v3-base-subjectivity-multilingual-no-arabic
19
  results: []
 
 
20
  ---
21
 
22
  # mdeberta-v3-base-subjectivity-multilingual-no-arabic
@@ -90,9 +92,12 @@ You can use the model with the `pipeline` API from the `transformers` library fo
90
  ```python
91
  from transformers import pipeline
92
 
93
- model_name = "MatteoFasulo/mdeberta-v3-base-subjectivity-multilingual-no-arabic"
94
- # The pipeline automatically infers the task and labels from the model config
95
- classifier = pipeline("text-classification", model=model_name)
 
 
 
96
 
97
  # Example usage:
98
  # A subjective sentence
@@ -106,14 +111,17 @@ print(f"Sentence: 'The new policy will be implemented next quarter.' -> {result_
106
 
107
  ## Citation
108
 
109
- If you find our work helpful or inspiring, please feel free to cite the paper:
110
 
111
  ```bibtex
112
- @article{fasulo2025ai,
113
- title={AI Wizards at CheckThat! 2025: Enhancing Transformer-Based Embeddings with Sentiment for Subjectivity Detection in News Articles},
114
- author={Fasulo, Matteo and Fabris, Alessandro and Caldararu, Silvia and Kiselov, Valerij and Stoica, George and Ilie, Andrei},
115
- journal={arXiv preprint arXiv:2507.11764},
116
- year={2025}
 
 
 
117
  }
118
  ```
119
 
 
17
  model-index:
18
  - name: mdeberta-v3-base-subjectivity-multilingual-no-arabic
19
  results: []
20
+ datasets:
21
+ - MatteoFasulo/clef2025_checkthat_task1_subjectivity
22
  ---
23
 
24
  # mdeberta-v3-base-subjectivity-multilingual-no-arabic
 
92
  ```python
93
  from transformers import pipeline
94
 
95
+ # Load the text classification pipeline
96
+ classifier = pipeline(
97
+ "text-classification",
98
+ model="MatteoFasulo/mdeberta-v3-base-subjectivity-multilingual-no-arabic",
99
+ tokenizer="microsoft/mdeberta-v3-base",
100
+ )
101
 
102
  # Example usage:
103
  # A subjective sentence
 
111
 
112
  ## Citation
113
 
114
+ If you find our work helpful or inspiring, please feel free to cite it:
115
 
116
  ```bibtex
117
+ @misc{fasulo2025aiwizardscheckthat2025,
118
+ title={AI Wizards at CheckThat! 2025: Enhancing Transformer-Based Embeddings with Sentiment for Subjectivity Detection in News Articles},
119
+ author={Matteo Fasulo and Luca Babboni and Luca Tedeschini},
120
+ year={2025},
121
+ eprint={2507.11764},
122
+ archivePrefix={arXiv},
123
+ primaryClass={cs.CL},
124
+ url={https://arxiv.org/abs/2507.11764},
125
  }
126
  ```
127