Update README.md
Browse files
README.md
CHANGED
@@ -27,7 +27,7 @@ language:
|
|
27 |
- ro
|
28 |
- uk
|
29 |
datasets:
|
30 |
-
-
|
31 |
arxiv_id: 2507.11764
|
32 |
code_url: https://github.com/MatteoFasulo/clef2025-checkthat
|
33 |
---
|
@@ -87,25 +87,21 @@ You can easily use this model with the Hugging Face `transformers` library:
|
|
87 |
```python
|
88 |
from transformers import pipeline
|
89 |
|
90 |
-
# Load the text classification pipeline
|
91 |
classifier = pipeline(
|
92 |
"text-classification",
|
93 |
-
model="MatteoFasulo/mdeberta-v3-base-subjectivity-multilingual"
|
|
|
94 |
)
|
95 |
|
96 |
-
# Example
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
#
|
104 |
-
text_subjective = "This is a fantastic movie! I absolutely loved it."
|
105 |
-
result_subjective = classifier(text_subjective)
|
106 |
-
print(f"Text: '{text_subjective}'
|
107 |
-
Result: {result_subjective}")
|
108 |
-
# Expected output: [{'label': 'SUBJ', 'score': <confidence_score>}]
|
109 |
```
|
110 |
|
111 |
## Training procedure
|
@@ -146,13 +142,16 @@ The code and materials for this model are available on GitHub: [MatteoFasulo/cle
|
|
146 |
|
147 |
## Citation
|
148 |
|
149 |
-
If you find
|
150 |
|
151 |
```bibtex
|
152 |
-
@
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
157 |
}
|
158 |
```
|
|
|
27 |
- ro
|
28 |
- uk
|
29 |
datasets:
|
30 |
+
- MatteoFasulo/clef2025_checkthat_task1_subjectivity
|
31 |
arxiv_id: 2507.11764
|
32 |
code_url: https://github.com/MatteoFasulo/clef2025-checkthat
|
33 |
---
|
|
|
87 |
```python
|
88 |
from transformers import pipeline
|
89 |
|
90 |
+
# Load the text classification pipeline
|
91 |
classifier = pipeline(
|
92 |
"text-classification",
|
93 |
+
model="MatteoFasulo/mdeberta-v3-base-subjectivity-multilingual",
|
94 |
+
tokenizer="microsoft/mdeberta-v3-base",
|
95 |
)
|
96 |
|
97 |
+
# Example usage:
|
98 |
+
result1 = classifier("Questa è una scoperta affascinante e fantastica!")
|
99 |
+
print(f"Classification: {result1}")
|
100 |
+
# Expected output: [{'label': 'SUBJ', 'score': ...}]
|
101 |
+
|
102 |
+
result2 = classifier("The capital of France is Paris.")
|
103 |
+
print(f"Classification: {result2}")
|
104 |
+
# Expected output: [{'label': 'OBJ', 'score': ...}]
|
|
|
|
|
|
|
|
|
|
|
105 |
```
|
106 |
|
107 |
## Training procedure
|
|
|
142 |
|
143 |
## Citation
|
144 |
|
145 |
+
If you find our work helpful or inspiring, please feel free to cite it:
|
146 |
|
147 |
```bibtex
|
148 |
+
@misc{fasulo2025aiwizardscheckthat2025,
|
149 |
+
title={AI Wizards at CheckThat! 2025: Enhancing Transformer-Based Embeddings with Sentiment for Subjectivity Detection in News Articles},
|
150 |
+
author={Matteo Fasulo and Luca Babboni and Luca Tedeschini},
|
151 |
+
year={2025},
|
152 |
+
eprint={2507.11764},
|
153 |
+
archivePrefix={arXiv},
|
154 |
+
primaryClass={cs.CL},
|
155 |
+
url={https://arxiv.org/abs/2507.11764},
|
156 |
}
|
157 |
```
|