MatteoFasulo commited on
Commit
4fb2d78
·
verified ·
1 Parent(s): 7425929

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -22
README.md CHANGED
@@ -27,7 +27,7 @@ language:
27
  - ro
28
  - uk
29
  datasets:
30
- - clef-2025-checkthat-task1
31
  arxiv_id: 2507.11764
32
  code_url: https://github.com/MatteoFasulo/clef2025-checkthat
33
  ---
@@ -87,25 +87,21 @@ You can easily use this model with the Hugging Face `transformers` library:
87
  ```python
88
  from transformers import pipeline
89
 
90
- # Load the text classification pipeline with the model
91
  classifier = pipeline(
92
  "text-classification",
93
- model="MatteoFasulo/mdeberta-v3-base-subjectivity-multilingual"
 
94
  )
95
 
96
- # Example 1: Objective sentence
97
- text_objective = "The capital of France is Paris."
98
- result_objective = classifier(text_objective)
99
- print(f"Text: '{text_objective}'
100
- Result: {result_objective}")
101
- # Expected output: [{'label': 'OBJ', 'score': <confidence_score>}]
102
-
103
- # Example 2: Subjective sentence
104
- text_subjective = "This is a fantastic movie! I absolutely loved it."
105
- result_subjective = classifier(text_subjective)
106
- print(f"Text: '{text_subjective}'
107
- Result: {result_subjective}")
108
- # Expected output: [{'label': 'SUBJ', 'score': <confidence_score>}]
109
  ```
110
 
111
  ## Training procedure
@@ -146,13 +142,16 @@ The code and materials for this model are available on GitHub: [MatteoFasulo/cle
146
 
147
  ## Citation
148
 
149
- If you find this work useful for your research, please cite the paper:
150
 
151
  ```bibtex
152
- @article{fasulo2025ai,
153
- title={AI Wizards at CheckThat! 2025: Enhancing Transformer-Based Embeddings with Sentiment for Subjectivity Detection in News Articles},
154
- author={Fasulo, Matteo and Zhumash, Alim M Z and Turchi, Matteo and Rossi, Andrea and Di Nunzio, Giorgio Maria},
155
- journal={arXiv preprint arXiv:2507.11764},
156
- year={2025}
 
 
 
157
  }
158
  ```
 
27
  - ro
28
  - uk
29
  datasets:
30
+ - MatteoFasulo/clef2025_checkthat_task1_subjectivity
31
  arxiv_id: 2507.11764
32
  code_url: https://github.com/MatteoFasulo/clef2025-checkthat
33
  ---
 
87
  ```python
88
  from transformers import pipeline
89
 
90
+ # Load the text classification pipeline
91
  classifier = pipeline(
92
  "text-classification",
93
+ model="MatteoFasulo/mdeberta-v3-base-subjectivity-multilingual",
94
+ tokenizer="microsoft/mdeberta-v3-base",
95
  )
96
 
97
+ # Example usage:
98
+ result1 = classifier("Questa è una scoperta affascinante e fantastica!")
99
+ print(f"Classification: {result1}")
100
+ # Expected output: [{'label': 'SUBJ', 'score': ...}]
101
+
102
+ result2 = classifier("The capital of France is Paris.")
103
+ print(f"Classification: {result2}")
104
+ # Expected output: [{'label': 'OBJ', 'score': ...}]
 
 
 
 
 
105
  ```
106
 
107
  ## Training procedure
 
142
 
143
  ## Citation
144
 
145
+ If you find our work helpful or inspiring, please feel free to cite it:
146
 
147
  ```bibtex
148
+ @misc{fasulo2025aiwizardscheckthat2025,
149
+ title={AI Wizards at CheckThat! 2025: Enhancing Transformer-Based Embeddings with Sentiment for Subjectivity Detection in News Articles},
150
+ author={Matteo Fasulo and Luca Babboni and Luca Tedeschini},
151
+ year={2025},
152
+ eprint={2507.11764},
153
+ archivePrefix={arXiv},
154
+ primaryClass={cs.CL},
155
+ url={https://arxiv.org/abs/2507.11764},
156
  }
157
  ```