Mauregato commited on
Commit
cf37b95
·
1 Parent(s): 993fab8

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: qqq-finetuned-on-calls
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # qqq-finetuned-on-calls
14
+
15
+ This model is a fine-tuned version of [bragovo/qqq](https://huggingface.co/bragovo/qqq) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0021
18
+ - Rouge-1: 1.0
19
+ - Rouge-2: 1.0
20
+ - Rouge-l: 1.0
21
+ - Gen Len: 11.0
22
+ - Avg Rouge F: 1.0
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 3
43
+ - eval_batch_size: 1
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 50
48
+ - num_epochs: 100
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Avg Rouge F |
53
+ |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:-----------:|
54
+ | 2.1855 | 3.12 | 25 | 1.4282 | 0.0 | 0.0 | 0.0 | 15.0 | 0.0 |
55
+ | 1.5665 | 6.25 | 50 | 0.6420 | 0.1818 | 0.0 | 0.1818 | 12.0 | 0.1212 |
56
+ | 1.1046 | 9.38 | 75 | 0.2184 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
57
+ | 0.8218 | 12.5 | 100 | 0.1098 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
58
+ | 0.606 | 15.62 | 125 | 0.0749 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
59
+ | 0.5488 | 18.75 | 150 | 0.0577 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
60
+ | 0.4161 | 21.88 | 175 | 0.0684 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
61
+ | 0.3196 | 25.0 | 200 | 0.0570 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
62
+ | 0.2929 | 28.12 | 225 | 0.0416 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
63
+ | 0.2519 | 31.25 | 250 | 0.0247 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
64
+ | 0.178 | 34.38 | 275 | 0.0118 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
65
+ | 0.1603 | 37.5 | 300 | 0.0064 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
66
+ | 0.1684 | 40.62 | 325 | 0.0051 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
67
+ | 0.1326 | 43.75 | 350 | 0.0051 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
68
+ | 0.1349 | 46.88 | 375 | 0.0064 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
69
+ | 0.1105 | 50.0 | 400 | 0.0061 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
70
+ | 0.1026 | 53.12 | 425 | 0.0049 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
71
+ | 0.0936 | 56.25 | 450 | 0.0030 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
72
+ | 0.0704 | 59.38 | 475 | 0.0025 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
73
+ | 0.0699 | 62.5 | 500 | 0.0021 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
74
+ | 0.0863 | 65.62 | 525 | 0.0020 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
75
+ | 0.0595 | 68.75 | 550 | 0.0024 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
76
+ | 0.0594 | 71.88 | 575 | 0.0028 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
77
+ | 0.0683 | 75.0 | 600 | 0.0026 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
78
+ | 0.074 | 78.12 | 625 | 0.0025 | 1.0 | 1.0 | 1.0 | 11.0 | 1.0 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.29.0
84
+ - Pytorch 2.0.0+cu118
85
+ - Datasets 2.12.0
86
+ - Tokenizers 0.13.3