--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: vit-base-patch16-224-best-finetuned-on-affectnet_short results: [] --- # vit-base-patch16-224-best-finetuned-on-affectnet_short This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9712 - Accuracy: 0.6718 - Precision: 0.6698 - Recall: 0.6718 - F1: 0.6703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 22 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.9968 | 1.0 | 32 | 1.9113 | 0.2754 | 0.2518 | 0.2754 | 0.2280 | | 1.4178 | 2.0 | 64 | 1.2704 | 0.5049 | 0.5149 | 0.5049 | 0.4900 | | 1.1751 | 3.0 | 96 | 1.1116 | 0.5841 | 0.5891 | 0.5841 | 0.5787 | | 1.0127 | 4.0 | 128 | 1.0237 | 0.6162 | 0.6335 | 0.6162 | 0.6141 | | 0.9969 | 5.0 | 160 | 0.9890 | 0.6259 | 0.6294 | 0.6259 | 0.6150 | | 0.9376 | 6.0 | 192 | 0.9768 | 0.6190 | 0.6335 | 0.6190 | 0.6183 | | 0.8299 | 7.0 | 224 | 0.9579 | 0.6357 | 0.6339 | 0.6357 | 0.6282 | | 0.7645 | 8.0 | 256 | 0.9366 | 0.6489 | 0.6559 | 0.6489 | 0.6474 | | 0.7944 | 9.0 | 288 | 0.9303 | 0.6443 | 0.6494 | 0.6443 | 0.6447 | | 0.7334 | 10.0 | 320 | 0.9510 | 0.6546 | 0.6634 | 0.6546 | 0.6523 | | 0.6596 | 11.0 | 352 | 0.9369 | 0.6449 | 0.6528 | 0.6449 | 0.6428 | | 0.6781 | 12.0 | 384 | 0.9717 | 0.6368 | 0.6513 | 0.6368 | 0.6360 | | 0.5688 | 13.0 | 416 | 0.9509 | 0.6540 | 0.6531 | 0.6540 | 0.6495 | | 0.5766 | 14.0 | 448 | 0.9485 | 0.6615 | 0.6655 | 0.6615 | 0.6601 | | 0.5529 | 15.0 | 480 | 0.9590 | 0.6569 | 0.6561 | 0.6569 | 0.6538 | | 0.4998 | 16.0 | 512 | 0.9677 | 0.6512 | 0.6514 | 0.6512 | 0.6488 | | 0.4908 | 17.0 | 544 | 0.9670 | 0.6638 | 0.6645 | 0.6638 | 0.6616 | | 0.4682 | 18.0 | 576 | 0.9635 | 0.6678 | 0.6707 | 0.6678 | 0.6684 | | 0.4761 | 19.0 | 608 | 0.9680 | 0.6667 | 0.6674 | 0.6667 | 0.6658 | | 0.4161 | 20.0 | 640 | 0.9701 | 0.6713 | 0.6719 | 0.6713 | 0.6701 | | 0.4295 | 21.0 | 672 | 0.9712 | 0.6718 | 0.6698 | 0.6718 | 0.6703 | | 0.434 | 22.0 | 704 | 0.9755 | 0.6707 | 0.6705 | 0.6707 | 0.6690 | ### Framework versions - Transformers 4.29.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3