File size: 2,045 Bytes
37e0a99 7d3818f 37e0a99 7d3818f e06d2b2 7d3818f 37e0a99 7d3818f 37e0a99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
base_model: openai-community/gpt2
library_name: peft
license: mit
metrics:
- accuracy
tags:
- generated_from_trainer
model-index:
- name: GPT2-small-QLoRA-finetuned-amazon-reviews-en-classification
results: []
datasets:
- mteb/amazon_reviews_multi
language:
- en
widget:
- text: It`s an amazing product
- text: I hate this product
- text: It's ok, but a bit expensive
pipeline_tag: text-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# GPT2-small-QLoRA-finetuned-amazon-reviews-en-classification
This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on [mteb/amazon_reviews_multi](https://huggingface.co/datasets/mteb/amazon_reviews_multi) dataset.
It is the result of the post [QLoRA](https://maximofn.com/qlora/)
It achieves the following results on the evaluation set:
- Loss: 0.8883
- Accuracy: 0.615
## Model description
This model provides classification of reviews in english
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 224
- eval_batch_size: 224
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.088 | 1.0 | 893 | 0.9780 | 0.5848 |
| 0.9588 | 2.0 | 1786 | 0.8940 | 0.6156 |
| 0.9147 | 3.0 | 2679 | 0.8918 | 0.6168 |
### Framework versions
- PEFT 0.12.0
- Transformers 4.43.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1 |