Update README.md
Browse files
README.md
CHANGED
@@ -8,4 +8,392 @@ tags:
|
|
8 |
|
9 |
Merge of top 7B models and the SLERP of other 7B models
|
10 |
|
11 |
-
> mergekit is a toolkit for merging pre-trained language models. mergekit uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
Merge of top 7B models and the SLERP of other 7B models
|
10 |
|
11 |
+
> mergekit is a toolkit for merging pre-trained language models. mergekit uses an out-of-core approach to perform unreasonably elaborate merges in resource-constrained situations. Merges can be run entirely on CPU or accelerated with as little as 8 GB of VRAM. Many merging algorithms are supported, with more coming as they catch my attention.
|
12 |
+
|
13 |
+
## Eval
|
14 |
+
|
15 |
+
|
16 |
+

|
17 |
+
|
18 |
+
```python
|
19 |
+
{
|
20 |
+
"all": {
|
21 |
+
"acc": 0.6564118716978186,
|
22 |
+
"acc_stderr": 0.03200912848183244,
|
23 |
+
"acc_norm": 0.6553902167958241,
|
24 |
+
"acc_norm_stderr": 0.03268788255929441,
|
25 |
+
"mc1": 0.5312117503059975,
|
26 |
+
"mc1_stderr": 0.01746936487457752,
|
27 |
+
"mc2": 0.6758096547963126,
|
28 |
+
"mc2_stderr": 0.015381620483561457
|
29 |
+
},
|
30 |
+
"harness|arc:challenge|25": {
|
31 |
+
"acc": 0.6919795221843004,
|
32 |
+
"acc_stderr": 0.013491429517292038,
|
33 |
+
"acc_norm": 0.7252559726962458,
|
34 |
+
"acc_norm_stderr": 0.013044617212771227
|
35 |
+
},
|
36 |
+
"harness|hellaswag|10": {
|
37 |
+
"acc": 0.7234614618601872,
|
38 |
+
"acc_stderr": 0.004463721071319078,
|
39 |
+
"acc_norm": 0.8870742879904402,
|
40 |
+
"acc_norm_stderr": 0.0031585512705264054
|
41 |
+
},
|
42 |
+
"harness|hendrycksTest-abstract_algebra|5": {
|
43 |
+
"acc": 0.33,
|
44 |
+
"acc_stderr": 0.047258156262526045,
|
45 |
+
"acc_norm": 0.33,
|
46 |
+
"acc_norm_stderr": 0.047258156262526045
|
47 |
+
},
|
48 |
+
"harness|hendrycksTest-anatomy|5": {
|
49 |
+
"acc": 0.6518518518518519,
|
50 |
+
"acc_stderr": 0.041153246103369526,
|
51 |
+
"acc_norm": 0.6518518518518519,
|
52 |
+
"acc_norm_stderr": 0.041153246103369526
|
53 |
+
},
|
54 |
+
"harness|hendrycksTest-astronomy|5": {
|
55 |
+
"acc": 0.7039473684210527,
|
56 |
+
"acc_stderr": 0.03715062154998904,
|
57 |
+
"acc_norm": 0.7039473684210527,
|
58 |
+
"acc_norm_stderr": 0.03715062154998904
|
59 |
+
},
|
60 |
+
"harness|hendrycksTest-business_ethics|5": {
|
61 |
+
"acc": 0.65,
|
62 |
+
"acc_stderr": 0.0479372485441102,
|
63 |
+
"acc_norm": 0.65,
|
64 |
+
"acc_norm_stderr": 0.0479372485441102
|
65 |
+
},
|
66 |
+
"harness|hendrycksTest-clinical_knowledge|5": {
|
67 |
+
"acc": 0.6943396226415094,
|
68 |
+
"acc_stderr": 0.028353298073322663,
|
69 |
+
"acc_norm": 0.6943396226415094,
|
70 |
+
"acc_norm_stderr": 0.028353298073322663
|
71 |
+
},
|
72 |
+
"harness|hendrycksTest-college_biology|5": {
|
73 |
+
"acc": 0.7708333333333334,
|
74 |
+
"acc_stderr": 0.03514697467862388,
|
75 |
+
"acc_norm": 0.7708333333333334,
|
76 |
+
"acc_norm_stderr": 0.03514697467862388
|
77 |
+
},
|
78 |
+
"harness|hendrycksTest-college_chemistry|5": {
|
79 |
+
"acc": 0.49,
|
80 |
+
"acc_stderr": 0.05024183937956912,
|
81 |
+
"acc_norm": 0.49,
|
82 |
+
"acc_norm_stderr": 0.05024183937956912
|
83 |
+
},
|
84 |
+
"harness|hendrycksTest-college_computer_science|5": {
|
85 |
+
"acc": 0.52,
|
86 |
+
"acc_stderr": 0.050211673156867795,
|
87 |
+
"acc_norm": 0.52,
|
88 |
+
"acc_norm_stderr": 0.050211673156867795
|
89 |
+
},
|
90 |
+
"harness|hendrycksTest-college_mathematics|5": {
|
91 |
+
"acc": 0.28,
|
92 |
+
"acc_stderr": 0.04512608598542126,
|
93 |
+
"acc_norm": 0.28,
|
94 |
+
"acc_norm_stderr": 0.04512608598542126
|
95 |
+
},
|
96 |
+
"harness|hendrycksTest-college_medicine|5": {
|
97 |
+
"acc": 0.6820809248554913,
|
98 |
+
"acc_stderr": 0.0355068398916558,
|
99 |
+
"acc_norm": 0.6820809248554913,
|
100 |
+
"acc_norm_stderr": 0.0355068398916558
|
101 |
+
},
|
102 |
+
"harness|hendrycksTest-college_physics|5": {
|
103 |
+
"acc": 0.38235294117647056,
|
104 |
+
"acc_stderr": 0.04835503696107224,
|
105 |
+
"acc_norm": 0.38235294117647056,
|
106 |
+
"acc_norm_stderr": 0.04835503696107224
|
107 |
+
},
|
108 |
+
"harness|hendrycksTest-computer_security|5": {
|
109 |
+
"acc": 0.77,
|
110 |
+
"acc_stderr": 0.04229525846816506,
|
111 |
+
"acc_norm": 0.77,
|
112 |
+
"acc_norm_stderr": 0.04229525846816506
|
113 |
+
},
|
114 |
+
"harness|hendrycksTest-conceptual_physics|5": {
|
115 |
+
"acc": 0.5957446808510638,
|
116 |
+
"acc_stderr": 0.03208115750788684,
|
117 |
+
"acc_norm": 0.5957446808510638,
|
118 |
+
"acc_norm_stderr": 0.03208115750788684
|
119 |
+
},
|
120 |
+
"harness|hendrycksTest-econometrics|5": {
|
121 |
+
"acc": 0.5087719298245614,
|
122 |
+
"acc_stderr": 0.04702880432049615,
|
123 |
+
"acc_norm": 0.5087719298245614,
|
124 |
+
"acc_norm_stderr": 0.04702880432049615
|
125 |
+
},
|
126 |
+
"harness|hendrycksTest-electrical_engineering|5": {
|
127 |
+
"acc": 0.5724137931034483,
|
128 |
+
"acc_stderr": 0.04122737111370332,
|
129 |
+
"acc_norm": 0.5724137931034483,
|
130 |
+
"acc_norm_stderr": 0.04122737111370332
|
131 |
+
},
|
132 |
+
"harness|hendrycksTest-elementary_mathematics|5": {
|
133 |
+
"acc": 0.4312169312169312,
|
134 |
+
"acc_stderr": 0.025506481698138208,
|
135 |
+
"acc_norm": 0.4312169312169312,
|
136 |
+
"acc_norm_stderr": 0.025506481698138208
|
137 |
+
},
|
138 |
+
"harness|hendrycksTest-formal_logic|5": {
|
139 |
+
"acc": 0.5,
|
140 |
+
"acc_stderr": 0.04472135954999579,
|
141 |
+
"acc_norm": 0.5,
|
142 |
+
"acc_norm_stderr": 0.04472135954999579
|
143 |
+
},
|
144 |
+
"harness|hendrycksTest-global_facts|5": {
|
145 |
+
"acc": 0.37,
|
146 |
+
"acc_stderr": 0.04852365870939099,
|
147 |
+
"acc_norm": 0.37,
|
148 |
+
"acc_norm_stderr": 0.04852365870939099
|
149 |
+
},
|
150 |
+
"harness|hendrycksTest-high_school_biology|5": {
|
151 |
+
"acc": 0.7903225806451613,
|
152 |
+
"acc_stderr": 0.023157879349083525,
|
153 |
+
"acc_norm": 0.7903225806451613,
|
154 |
+
"acc_norm_stderr": 0.023157879349083525
|
155 |
+
},
|
156 |
+
"harness|hendrycksTest-high_school_chemistry|5": {
|
157 |
+
"acc": 0.4975369458128079,
|
158 |
+
"acc_stderr": 0.03517945038691063,
|
159 |
+
"acc_norm": 0.4975369458128079,
|
160 |
+
"acc_norm_stderr": 0.03517945038691063
|
161 |
+
},
|
162 |
+
"harness|hendrycksTest-high_school_computer_science|5": {
|
163 |
+
"acc": 0.66,
|
164 |
+
"acc_stderr": 0.04760952285695237,
|
165 |
+
"acc_norm": 0.66,
|
166 |
+
"acc_norm_stderr": 0.04760952285695237
|
167 |
+
},
|
168 |
+
"harness|hendrycksTest-high_school_european_history|5": {
|
169 |
+
"acc": 0.7696969696969697,
|
170 |
+
"acc_stderr": 0.0328766675860349,
|
171 |
+
"acc_norm": 0.7696969696969697,
|
172 |
+
"acc_norm_stderr": 0.0328766675860349
|
173 |
+
},
|
174 |
+
"harness|hendrycksTest-high_school_geography|5": {
|
175 |
+
"acc": 0.7878787878787878,
|
176 |
+
"acc_stderr": 0.029126522834586818,
|
177 |
+
"acc_norm": 0.7878787878787878,
|
178 |
+
"acc_norm_stderr": 0.029126522834586818
|
179 |
+
},
|
180 |
+
"harness|hendrycksTest-high_school_government_and_politics|5": {
|
181 |
+
"acc": 0.9067357512953368,
|
182 |
+
"acc_stderr": 0.020986854593289733,
|
183 |
+
"acc_norm": 0.9067357512953368,
|
184 |
+
"acc_norm_stderr": 0.020986854593289733
|
185 |
+
},
|
186 |
+
"harness|hendrycksTest-high_school_macroeconomics|5": {
|
187 |
+
"acc": 0.6641025641025641,
|
188 |
+
"acc_stderr": 0.023946724741563976,
|
189 |
+
"acc_norm": 0.6641025641025641,
|
190 |
+
"acc_norm_stderr": 0.023946724741563976
|
191 |
+
},
|
192 |
+
"harness|hendrycksTest-high_school_mathematics|5": {
|
193 |
+
"acc": 0.3592592592592593,
|
194 |
+
"acc_stderr": 0.02925290592725197,
|
195 |
+
"acc_norm": 0.3592592592592593,
|
196 |
+
"acc_norm_stderr": 0.02925290592725197
|
197 |
+
},
|
198 |
+
"harness|hendrycksTest-high_school_microeconomics|5": {
|
199 |
+
"acc": 0.6764705882352942,
|
200 |
+
"acc_stderr": 0.03038835355188679,
|
201 |
+
"acc_norm": 0.6764705882352942,
|
202 |
+
"acc_norm_stderr": 0.03038835355188679
|
203 |
+
},
|
204 |
+
"harness|hendrycksTest-high_school_physics|5": {
|
205 |
+
"acc": 0.36423841059602646,
|
206 |
+
"acc_stderr": 0.03929111781242742,
|
207 |
+
"acc_norm": 0.36423841059602646,
|
208 |
+
"acc_norm_stderr": 0.03929111781242742
|
209 |
+
},
|
210 |
+
"harness|hendrycksTest-high_school_psychology|5": {
|
211 |
+
"acc": 0.8385321100917431,
|
212 |
+
"acc_stderr": 0.015776239256163224,
|
213 |
+
"acc_norm": 0.8385321100917431,
|
214 |
+
"acc_norm_stderr": 0.015776239256163224
|
215 |
+
},
|
216 |
+
"harness|hendrycksTest-high_school_statistics|5": {
|
217 |
+
"acc": 0.5138888888888888,
|
218 |
+
"acc_stderr": 0.03408655867977749,
|
219 |
+
"acc_norm": 0.5138888888888888,
|
220 |
+
"acc_norm_stderr": 0.03408655867977749
|
221 |
+
},
|
222 |
+
"harness|hendrycksTest-high_school_us_history|5": {
|
223 |
+
"acc": 0.8529411764705882,
|
224 |
+
"acc_stderr": 0.024857478080250447,
|
225 |
+
"acc_norm": 0.8529411764705882,
|
226 |
+
"acc_norm_stderr": 0.024857478080250447
|
227 |
+
},
|
228 |
+
"harness|hendrycksTest-high_school_world_history|5": {
|
229 |
+
"acc": 0.8143459915611815,
|
230 |
+
"acc_stderr": 0.025310495376944856,
|
231 |
+
"acc_norm": 0.8143459915611815,
|
232 |
+
"acc_norm_stderr": 0.025310495376944856
|
233 |
+
},
|
234 |
+
"harness|hendrycksTest-human_aging|5": {
|
235 |
+
"acc": 0.6816143497757847,
|
236 |
+
"acc_stderr": 0.03126580522513713,
|
237 |
+
"acc_norm": 0.6816143497757847,
|
238 |
+
"acc_norm_stderr": 0.03126580522513713
|
239 |
+
},
|
240 |
+
"harness|hendrycksTest-human_sexuality|5": {
|
241 |
+
"acc": 0.816793893129771,
|
242 |
+
"acc_stderr": 0.03392770926494733,
|
243 |
+
"acc_norm": 0.816793893129771,
|
244 |
+
"acc_norm_stderr": 0.03392770926494733
|
245 |
+
},
|
246 |
+
"harness|hendrycksTest-international_law|5": {
|
247 |
+
"acc": 0.7933884297520661,
|
248 |
+
"acc_stderr": 0.03695980128098824,
|
249 |
+
"acc_norm": 0.7933884297520661,
|
250 |
+
"acc_norm_stderr": 0.03695980128098824
|
251 |
+
},
|
252 |
+
"harness|hendrycksTest-jurisprudence|5": {
|
253 |
+
"acc": 0.7870370370370371,
|
254 |
+
"acc_stderr": 0.0395783547198098,
|
255 |
+
"acc_norm": 0.7870370370370371,
|
256 |
+
"acc_norm_stderr": 0.0395783547198098
|
257 |
+
},
|
258 |
+
"harness|hendrycksTest-logical_fallacies|5": {
|
259 |
+
"acc": 0.7607361963190185,
|
260 |
+
"acc_stderr": 0.0335195387952127,
|
261 |
+
"acc_norm": 0.7607361963190185,
|
262 |
+
"acc_norm_stderr": 0.0335195387952127
|
263 |
+
},
|
264 |
+
"harness|hendrycksTest-machine_learning|5": {
|
265 |
+
"acc": 0.48214285714285715,
|
266 |
+
"acc_stderr": 0.047427623612430116,
|
267 |
+
"acc_norm": 0.48214285714285715,
|
268 |
+
"acc_norm_stderr": 0.047427623612430116
|
269 |
+
},
|
270 |
+
"harness|hendrycksTest-management|5": {
|
271 |
+
"acc": 0.7864077669902912,
|
272 |
+
"acc_stderr": 0.040580420156460344,
|
273 |
+
"acc_norm": 0.7864077669902912,
|
274 |
+
"acc_norm_stderr": 0.040580420156460344
|
275 |
+
},
|
276 |
+
"harness|hendrycksTest-marketing|5": {
|
277 |
+
"acc": 0.8760683760683761,
|
278 |
+
"acc_stderr": 0.021586494001281365,
|
279 |
+
"acc_norm": 0.8760683760683761,
|
280 |
+
"acc_norm_stderr": 0.021586494001281365
|
281 |
+
},
|
282 |
+
"harness|hendrycksTest-medical_genetics|5": {
|
283 |
+
"acc": 0.72,
|
284 |
+
"acc_stderr": 0.04512608598542128,
|
285 |
+
"acc_norm": 0.72,
|
286 |
+
"acc_norm_stderr": 0.04512608598542128
|
287 |
+
},
|
288 |
+
"harness|hendrycksTest-miscellaneous|5": {
|
289 |
+
"acc": 0.8250319284802043,
|
290 |
+
"acc_stderr": 0.013586619219903341,
|
291 |
+
"acc_norm": 0.8250319284802043,
|
292 |
+
"acc_norm_stderr": 0.013586619219903341
|
293 |
+
},
|
294 |
+
"harness|hendrycksTest-moral_disputes|5": {
|
295 |
+
"acc": 0.7456647398843931,
|
296 |
+
"acc_stderr": 0.02344582627654554,
|
297 |
+
"acc_norm": 0.7456647398843931,
|
298 |
+
"acc_norm_stderr": 0.02344582627654554
|
299 |
+
},
|
300 |
+
"harness|hendrycksTest-moral_scenarios|5": {
|
301 |
+
"acc": 0.45251396648044695,
|
302 |
+
"acc_stderr": 0.016646914804438778,
|
303 |
+
"acc_norm": 0.45251396648044695,
|
304 |
+
"acc_norm_stderr": 0.016646914804438778
|
305 |
+
},
|
306 |
+
"harness|hendrycksTest-nutrition|5": {
|
307 |
+
"acc": 0.7254901960784313,
|
308 |
+
"acc_stderr": 0.02555316999182652,
|
309 |
+
"acc_norm": 0.7254901960784313,
|
310 |
+
"acc_norm_stderr": 0.02555316999182652
|
311 |
+
},
|
312 |
+
"harness|hendrycksTest-philosophy|5": {
|
313 |
+
"acc": 0.707395498392283,
|
314 |
+
"acc_stderr": 0.02583989833487798,
|
315 |
+
"acc_norm": 0.707395498392283,
|
316 |
+
"acc_norm_stderr": 0.02583989833487798
|
317 |
+
},
|
318 |
+
"harness|hendrycksTest-prehistory|5": {
|
319 |
+
"acc": 0.7561728395061729,
|
320 |
+
"acc_stderr": 0.02389187954195961,
|
321 |
+
"acc_norm": 0.7561728395061729,
|
322 |
+
"acc_norm_stderr": 0.02389187954195961
|
323 |
+
},
|
324 |
+
"harness|hendrycksTest-professional_accounting|5": {
|
325 |
+
"acc": 0.4645390070921986,
|
326 |
+
"acc_stderr": 0.029752389657427047,
|
327 |
+
"acc_norm": 0.4645390070921986,
|
328 |
+
"acc_norm_stderr": 0.029752389657427047
|
329 |
+
},
|
330 |
+
"harness|hendrycksTest-professional_law|5": {
|
331 |
+
"acc": 0.47327249022164275,
|
332 |
+
"acc_stderr": 0.01275197796767601,
|
333 |
+
"acc_norm": 0.47327249022164275,
|
334 |
+
"acc_norm_stderr": 0.01275197796767601
|
335 |
+
},
|
336 |
+
"harness|hendrycksTest-professional_medicine|5": {
|
337 |
+
"acc": 0.6838235294117647,
|
338 |
+
"acc_stderr": 0.02824568739146292,
|
339 |
+
"acc_norm": 0.6838235294117647,
|
340 |
+
"acc_norm_stderr": 0.02824568739146292
|
341 |
+
},
|
342 |
+
"harness|hendrycksTest-professional_psychology|5": {
|
343 |
+
"acc": 0.6715686274509803,
|
344 |
+
"acc_stderr": 0.018999707383162673,
|
345 |
+
"acc_norm": 0.6715686274509803,
|
346 |
+
"acc_norm_stderr": 0.018999707383162673
|
347 |
+
},
|
348 |
+
"harness|hendrycksTest-public_relations|5": {
|
349 |
+
"acc": 0.6545454545454545,
|
350 |
+
"acc_stderr": 0.04554619617541054,
|
351 |
+
"acc_norm": 0.6545454545454545,
|
352 |
+
"acc_norm_stderr": 0.04554619617541054
|
353 |
+
},
|
354 |
+
"harness|hendrycksTest-security_studies|5": {
|
355 |
+
"acc": 0.7306122448979592,
|
356 |
+
"acc_stderr": 0.02840125202902294,
|
357 |
+
"acc_norm": 0.7306122448979592,
|
358 |
+
"acc_norm_stderr": 0.02840125202902294
|
359 |
+
},
|
360 |
+
"harness|hendrycksTest-sociology|5": {
|
361 |
+
"acc": 0.8208955223880597,
|
362 |
+
"acc_stderr": 0.027113286753111837,
|
363 |
+
"acc_norm": 0.8208955223880597,
|
364 |
+
"acc_norm_stderr": 0.027113286753111837
|
365 |
+
},
|
366 |
+
"harness|hendrycksTest-us_foreign_policy|5": {
|
367 |
+
"acc": 0.85,
|
368 |
+
"acc_stderr": 0.03588702812826371,
|
369 |
+
"acc_norm": 0.85,
|
370 |
+
"acc_norm_stderr": 0.03588702812826371
|
371 |
+
},
|
372 |
+
"harness|hendrycksTest-virology|5": {
|
373 |
+
"acc": 0.5542168674698795,
|
374 |
+
"acc_stderr": 0.038695433234721015,
|
375 |
+
"acc_norm": 0.5542168674698795,
|
376 |
+
"acc_norm_stderr": 0.038695433234721015
|
377 |
+
},
|
378 |
+
"harness|hendrycksTest-world_religions|5": {
|
379 |
+
"acc": 0.8362573099415205,
|
380 |
+
"acc_stderr": 0.028380919596145866,
|
381 |
+
"acc_norm": 0.8362573099415205,
|
382 |
+
"acc_norm_stderr": 0.028380919596145866
|
383 |
+
},
|
384 |
+
"harness|truthfulqa:mc|0": {
|
385 |
+
"mc1": 0.5312117503059975,
|
386 |
+
"mc1_stderr": 0.01746936487457752,
|
387 |
+
"mc2": 0.6758096547963126,
|
388 |
+
"mc2_stderr": 0.015381620483561457
|
389 |
+
},
|
390 |
+
"harness|winogrande|5": {
|
391 |
+
"acc": 0.861878453038674,
|
392 |
+
"acc_stderr": 0.00969698839367458
|
393 |
+
},
|
394 |
+
"harness|gsm8k|5": {
|
395 |
+
"acc": 0.7081122062168309,
|
396 |
+
"acc_stderr": 0.012522795894420867
|
397 |
+
}
|
398 |
+
}
|
399 |
+
```
|