Improve model card: Add library_name, science tag, GitHub link, and usage example
Browse filesThis PR enhances the model card by:
- Adding `library_name: transformers` to the metadata, enabling the "how to use" widget on the Hub and improving library filtering.
- Adding the `science` tag for better discoverability of this scientific reasoning model.
- Including a direct link to the GitHub repository for quick access to the project's code and resources.
- Providing a Python code snippet for quick inference using the `transformers` library, making the model easier to use for researchers.
README.md
CHANGED
@@ -1,17 +1,25 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
datasets:
|
4 |
- MegaScience/MegaScience
|
5 |
language:
|
6 |
- en
|
|
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
-
base_model:
|
10 |
-
- meta-llama/Llama-3.1-8B
|
11 |
pipeline_tag: text-generation
|
|
|
|
|
|
|
12 |
---
|
|
|
13 |
# [MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning](https://arxiv.org/abs/2507.16812)
|
14 |
|
|
|
|
|
|
|
|
|
15 |
## Llama3.1-8B-MegaScience
|
16 |
|
17 |
### Training Recipe
|
@@ -39,6 +47,45 @@ pipeline_tag: text-generation
|
|
39 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/616bfc2b40e2f69baa1c7add/VogIpBbjfNxXFP9DfVMms.png" alt="Data Pipeline" style="width:100%;">
|
40 |
</div>
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
## Citation
|
43 |
|
44 |
Check out our [paper](https://arxiv.org/abs/2507.16812) for more details. If you use our dataset or find our work useful, please cite
|
@@ -51,4 +98,4 @@ Check out our [paper](https://arxiv.org/abs/2507.16812) for more details. If you
|
|
51 |
journal={arXiv preprint arXiv:2507.16812},
|
52 |
url={https://arxiv.org/abs/2507.16812}
|
53 |
}
|
54 |
-
```
|
|
|
1 |
---
|
2 |
+
base_model:
|
3 |
+
- meta-llama/Llama-3.1-8B
|
4 |
datasets:
|
5 |
- MegaScience/MegaScience
|
6 |
language:
|
7 |
- en
|
8 |
+
license: llama3.1
|
9 |
metrics:
|
10 |
- accuracy
|
|
|
|
|
11 |
pipeline_tag: text-generation
|
12 |
+
library_name: transformers
|
13 |
+
tags:
|
14 |
+
- science
|
15 |
---
|
16 |
+
|
17 |
# [MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning](https://arxiv.org/abs/2507.16812)
|
18 |
|
19 |
+
**Llama3.1-8B-MegaScience** is a model fine-tuned on **MegaScience**, a large-scale mixture of high-quality open-source scientific datasets totaling 1.25 million instances, as presented in the paper "MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning". The MegaScience dataset features truthful reference answers extracted from 12k university-level scientific textbooks, comprising 650k reasoning questions spanning 7 scientific disciplines. This model significantly outperforms corresponding official instruct models in average performance on scientific reasoning tasks and exhibits greater effectiveness for larger and stronger models, suggesting a scaling benefit for scientific tuning.
|
20 |
+
|
21 |
+
For more details on the project, including the data curation pipeline and evaluation system, visit the [official GitHub repository](https://github.com/GAIR-NLP/lm-open-science-evaluation).
|
22 |
+
|
23 |
## Llama3.1-8B-MegaScience
|
24 |
|
25 |
### Training Recipe
|
|
|
47 |
<img src="https://cdn-uploads.huggingface.co/production/uploads/616bfc2b40e2f69baa1c7add/VogIpBbjfNxXFP9DfVMms.png" alt="Data Pipeline" style="width:100%;">
|
48 |
</div>
|
49 |
|
50 |
+
### Usage
|
51 |
+
|
52 |
+
You can use the model with the `transformers` library:
|
53 |
+
|
54 |
+
```python
|
55 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
56 |
+
import torch
|
57 |
+
|
58 |
+
model_id = "MegaScience/Llama3.1-8B-MegaScience"
|
59 |
+
|
60 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
61 |
+
model = AutoModelForCausalLM.from_pretrained(
|
62 |
+
model_id,
|
63 |
+
torch_dtype=torch.bfloat16,
|
64 |
+
device_map="auto"
|
65 |
+
)
|
66 |
+
|
67 |
+
messages = [
|
68 |
+
{"role": "user", "content": "Explain the concept of quantum entanglement."},
|
69 |
+
]
|
70 |
+
|
71 |
+
input_ids = tokenizer.apply_chat_template(
|
72 |
+
messages,
|
73 |
+
add_generation_prompt=True,
|
74 |
+
return_tensors="pt"
|
75 |
+
).to(model.device)
|
76 |
+
|
77 |
+
outputs = model.generate(
|
78 |
+
input_ids,
|
79 |
+
max_new_tokens=512,
|
80 |
+
eos_token_id=tokenizer.eos_token_id,
|
81 |
+
do_sample=True,
|
82 |
+
temperature=0.7,
|
83 |
+
top_p=0.9
|
84 |
+
)
|
85 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
86 |
+
print(response)
|
87 |
+
```
|
88 |
+
|
89 |
## Citation
|
90 |
|
91 |
Check out our [paper](https://arxiv.org/abs/2507.16812) for more details. If you use our dataset or find our work useful, please cite
|
|
|
98 |
journal={arXiv preprint arXiv:2507.16812},
|
99 |
url={https://arxiv.org/abs/2507.16812}
|
100 |
}
|
101 |
+
```
|