--- base_model: - Qwen/Qwen2.5-7B datasets: - MegaScience/MegaScience language: - en license: apache-2.0 metrics: - accuracy pipeline_tag: text-generation library_name: transformers --- # [MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning](https://arxiv.org/abs/2507.16812) Scientific reasoning is critical for developing AI scientists and supporting human researchers in advancing the frontiers of natural science discovery. This work introduces **TextbookReasoning**, an open dataset featuring truthful reference answers extracted from 12k university-level scientific textbooks, comprising 650k reasoning questions. It further presents **MegaScience**, a large-scale mixture of high-quality open-source datasets totaling 1.25 million instances, developed through systematic ablation studies. Models trained on MegaScience demonstrate superior performance and training efficiency, significantly outperforming corresponding official instruct models, especially for larger and stronger base models. Find the code and more details on the [MegaScience GitHub repository](https://github.com/GAIR-NLP/lm-open-science-evaluation). ## Qwen2.5-7B-MegaScience ### Training Recipe - **LR**: 5e-6 - **LR Schedule**: Cosine - **Batch Size**: 512 - **Max Length**: 4,096 - **Warm Up Ratio**: 0.05 - **Epochs**: 3 ### Evaluation Results