Improve model card: Add Transformers library tag, code link, and usage example
Browse filesThis PR improves the model card by:
- Adding `library_name: transformers` to the metadata, enabling the "Use in Transformers" widget and better integration on the Hub.
- Including direct links to the Hugging Face organization page for the project and the associated GitHub code repository.
- Providing a clear Python code snippet for quick inference using the `transformers` library.
README.md
CHANGED
@@ -1,17 +1,67 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
datasets:
|
4 |
- MegaScience/MegaScience
|
5 |
language:
|
6 |
- en
|
|
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
-
base_model:
|
10 |
-
- Qwen/Qwen3-14B-Base
|
11 |
pipeline_tag: text-generation
|
|
|
12 |
---
|
|
|
13 |
# [MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning](https://arxiv.org/abs/2507.16812)
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
## Qwen3-14B-MegaScience
|
16 |
|
17 |
### Training Recipe
|
@@ -41,7 +91,7 @@ pipeline_tag: text-generation
|
|
41 |
|
42 |
## Citation
|
43 |
|
44 |
-
|
45 |
|
46 |
```
|
47 |
@article{fan2025megascience,
|
@@ -51,4 +101,4 @@ Check out our [paper](https://arxiv.org/abs/2507.16812) for more details. If you
|
|
51 |
journal={arXiv preprint arXiv:2507.16812},
|
52 |
url={https://arxiv.org/abs/2507.16812}
|
53 |
}
|
54 |
-
```
|
|
|
1 |
---
|
2 |
+
base_model:
|
3 |
+
- Qwen/Qwen3-14B-Base
|
4 |
datasets:
|
5 |
- MegaScience/MegaScience
|
6 |
language:
|
7 |
- en
|
8 |
+
license: apache-2.0
|
9 |
metrics:
|
10 |
- accuracy
|
|
|
|
|
11 |
pipeline_tag: text-generation
|
12 |
+
library_name: transformers
|
13 |
---
|
14 |
+
|
15 |
# [MegaScience: Pushing the Frontiers of Post-Training Datasets for Science Reasoning](https://arxiv.org/abs/2507.16812)
|
16 |
|
17 |
+
This repository contains the **Qwen3-14B-MegaScience** model, a large language model fine-tuned on the MegaScience dataset for enhanced scientific reasoning.
|
18 |
+
|
19 |
+
**Project Link**: [https://huggingface.co/MegaScience](https://huggingface.co/MegaScience) (Hugging Face Organization for MegaScience project)
|
20 |
+
**Code Repository**: [https://github.com/GAIR-NLP/lm-open-science-evaluation](https://github.com/GAIR-NLP/lm-open-science-evaluation)
|
21 |
+
|
22 |
+
## Usage
|
23 |
+
|
24 |
+
You can use this model with the `transformers` library for text generation:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
28 |
+
import torch
|
29 |
+
|
30 |
+
model_id = "MegaScience/Qwen3-14B-MegaScience"
|
31 |
+
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
34 |
+
model_id,
|
35 |
+
torch_dtype=torch.bfloat16, # or torch.float16 if bfloat16 is not supported
|
36 |
+
device_map="auto"
|
37 |
+
)
|
38 |
+
|
39 |
+
messages = [
|
40 |
+
{"role": "system", "content": "You are a helpful and knowledgeable assistant."},
|
41 |
+
{"role": "user", "content": "Explain the concept of quantum entanglement in simple terms."}
|
42 |
+
]
|
43 |
+
|
44 |
+
text = tokenizer.apply_chat_template(
|
45 |
+
messages,
|
46 |
+
tokenize=False,
|
47 |
+
add_generation_prompt=True
|
48 |
+
)
|
49 |
+
|
50 |
+
model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
51 |
+
|
52 |
+
generated_ids = model.generate(
|
53 |
+
model_inputs.input_ids,
|
54 |
+
max_new_tokens=512,
|
55 |
+
do_sample=True,
|
56 |
+
temperature=0.7,
|
57 |
+
top_p=0.9,
|
58 |
+
eos_token_id=tokenizer.eos_token_id,
|
59 |
+
)
|
60 |
+
|
61 |
+
response = tokenizer.decode(generated_ids[0][model_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
62 |
+
print(response)
|
63 |
+
```
|
64 |
+
|
65 |
## Qwen3-14B-MegaScience
|
66 |
|
67 |
### Training Recipe
|
|
|
91 |
|
92 |
## Citation
|
93 |
|
94 |
+
If you use our dataset or find our work useful, please cite
|
95 |
|
96 |
```
|
97 |
@article{fan2025megascience,
|
|
|
101 |
journal={arXiv preprint arXiv:2507.16812},
|
102 |
url={https://arxiv.org/abs/2507.16812}
|
103 |
}
|
104 |
+
```
|