Metinimo19 commited on
Commit
4eb1640
·
verified ·
1 Parent(s): 808368f

Add detailed model card with comprehensive documentation

Browse files
Files changed (1) hide show
  1. README.md +139 -170
README.md CHANGED
@@ -1,199 +1,168 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
 
 
 
11
 
12
- ## Model Details
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
49
 
50
- [More Information Needed]
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
 
55
 
56
- [More Information Needed]
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
 
61
 
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ language: tr
3
+ tags:
4
+ - turkish
5
+ - conspiracy-detection
6
+ - bert
7
+ - classification
8
+ - text-classification
9
+ - fine-tuned
10
+ license: apache-2.0
11
+ datasets:
12
+ - custom
13
+ metrics:
14
+ - accuracy
15
+ - f1
16
+ - precision
17
+ - recall
18
+ model-index:
19
+ - name: turkish-conspiracy-detection
20
+ results:
21
+ - task:
22
+ type: text-classification
23
+ name: Text Classification
24
+ dataset:
25
+ type: custom
26
+ name: Turkish Conspiracy Detection Dataset
27
+ metrics:
28
+ - type: accuracy
29
+ value: 0.9879
30
+ name: Accuracy
31
+ - type: f1
32
+ value: 0.9879
33
+ name: F1 Score
34
+ - type: precision
35
+ value: 0.9879
36
+ name: Precision
37
+ - type: recall
38
+ value: 0.9879
39
+ name: Recall
40
  ---
41
 
42
+ # Türkçe Komplo Teorisi Tespit Modeli
43
 
44
+ Bu model, Türkçe metinlerde komplo teorisi tespiti yapmak için fine-tune edilmiş BERT tabanlı bir sınıflandırma modelidir.
45
 
46
+ ## Model Detayları
47
 
48
+ ### Model Açıklaması
49
+ - **Geliştirici**: Metinimo19
50
+ - **Model Türü**: Text Classification (İkili Sınıflandırma)
51
+ - **Dil**: Türkçe (tr)
52
+ - **Temel Model**: [savasy/bert-base-turkish-sentiment-cased](https://huggingface.co/savasy/bert-base-turkish-sentiment-cased)
53
+ - **Fine-tuning Görevi**: Komplo teorisi vs gerçek haber ayrımı
54
+ - **Lisans**: Apache 2.0
55
 
56
+ ### Model Kaynakları
57
+ - **Repository**: https://huggingface.co/Metinimo19/turkish-conspiracy-detection
58
+ - **Temel Model**: https://huggingface.co/savasy/bert-base-turkish-sentiment-cased
59
 
60
+ ## Kullanım
61
 
62
+ ### Doğrudan Kullanım
63
+ Model, Türkçe metinlerde komplo teorisi tespiti için kullanılabilir:
64
+
65
+ ```python
66
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
67
+ import torch
68
 
69
+ # Model ve tokenizer'ı yükle
70
+ tokenizer = AutoTokenizer.from_pretrained("Metinimo19/turkish-conspiracy-detection")
71
+ model = AutoModelForSequenceClassification.from_pretrained("Metinimo19/turkish-conspiracy-detection")
72
 
73
+ # Örnek metin
74
+ text = "5G teknolojisi insanları kontrol etmek için tasarlanmış gizli bir sistemdir."
 
 
 
 
 
75
 
76
+ # Tahmin yap
77
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
78
+ with torch.no_grad():
79
+ outputs = model(**inputs)
80
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
81
+ predicted_class = torch.argmax(predictions, dim=-1).item()
82
 
83
+ # Sonuç
84
+ result = "Komplo Teorisi" if predicted_class == 1 else "Gerçek Haber"
85
+ confidence = predictions[0][predicted_class].item()
86
+ print(f"Tahmin: {result} (Güven: {confidence:.2%})")
87
+ ```
88
 
89
+ ## Eğitim Detayları
 
 
90
 
91
+ ### Eğitim Verisi
92
+ - **Veri Seti Boyutu**: 1,651 Türkçe örnek
93
+ - **Sınıf Dağılımı**: Dengeli (yaklaşık %50 gerçek haber, %50 komplo teorisi)
94
+ - **Veri Türü**: Türkçe metinler (haberler, sosyal medya içerikleri, makale özetleri)
95
 
96
+ ### Eğitim Prosedürü
97
 
98
+ #### Eğitim Hiperparametreleri
99
+ - **Batch Size**: 16 (train ve eval)
100
+ - **Learning Rate**: 2e-5
101
+ - **Epochs**: 3
102
+ - **Warmup Steps**: 500
103
+ - **Weight Decay**: 0.01
104
+ - **Optimizer**: AdamW
105
+ - **Mixed Precision**: FP16 (GPU kullanımında)
106
 
107
+ #### Veri Bölünmesi
108
+ - **Eğitim**: %70 (1,155 örnek)
109
+ - **Doğrulama**: %15 (248 örnek)
110
+ - **Test**: %15 (248 örnek)
111
 
112
+ ## Değerlendirme
113
 
114
+ ### Test Sonuçları
115
+ Model test seti üzerinde şu performansı gösterdi:
116
 
117
+ | Metrik | Değer |
118
+ |--------|-------|
119
+ | **Accuracy** | 0.9879 |
120
+ | **F1 Score** | 0.9879 |
121
+ | **Precision** | 0.9879 |
122
+ | **Recall** | 0.9879 |
123
 
124
+ ### Sınıf Tanımları
125
+ - **0**: Gerçek Haber - Doğrulanabilir, güvenilir kaynaklardan gelen bilgiler
126
+ - **1**: Komplo Teorisi - Kanıtlanmamış, spekülatif veya yanlış bilgiler
127
 
128
+ ## Sınırlamalar ve Önyargılar
129
 
130
+ ### Sınırlamalar
131
+ - Model sadece Türkçe metinler için eğitilmiştir
132
+ - 512 token uzunluğundaki metinlerle sınırlıdır
133
+ - Eğitim verisinin boyutu nispeten küçüktür (1,651 örnek)
134
+ - Belirli konularda (5G, aşı, uzaylılar vb.) daha fazla veri içerir
135
 
136
+ ### Öneriler
137
+ - Kritik kararlar için model çıktılarını tek başına kullanmayın
138
+ - Sonuçları uzman değerlendirmesiyle destekleyin
139
+ - Modelin sınırlarını göz önünde bulundurun
140
 
141
+ ## Teknik Özellikler
142
+
143
+ ### Model Mimarisi
144
+ - **Temel Mimari**: BERT (Bidirectional Encoder Representations from Transformers)
145
+ - **Parametre Sayısı**: ~110M parametre
146
+ - **Sınıflandırma Katmanı**: Linear layer (768 → 2)
147
+ - **Aktivasyon**: Softmax
148
+
149
+ ### Hesaplama Altyapısı
150
+ - **Eğitim Platformu**: Google Colab
151
+ - **GPU**: Tesla T4 (16GB)
152
+ - **Eğitim Süresi**: Yaklaşık 10-15 dakika
153
+ - **Framework**: PyTorch + Transformers
154
+
155
+ ## Nasıl Başlanır
156
+
157
+ ```python
158
+ from transformers import pipeline
159
 
160
+ # Pipeline kullanarak basit kullanım
161
+ classifier = pipeline("text-classification", model="Metinimo19/turkish-conspiracy-detection")
162
+ result = classifier("Ay'a hiç çıkmadık, tüm görüntüler sahteydi.")
163
+ print(result)
164
+ ```
165
 
166
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
 
168
+ *Bu model, eğitim ve araştırma amaçları için geliştirilmiştir. Üretim ortamında kullanmadan önce kapsamlı testler yapılması önerilir.*