Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,71 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
---
|
| 4 |
+
# Florence-2-large-PromptGen v2.0
|
| 5 |
+
This upgrade is based on PromptGen 1.5 with some new features to the model:
|
| 6 |
+
|
| 7 |
+
## Features:
|
| 8 |
+
* Improved caption quality for \<GENERATE_TAGS\>, \<DETAILED_CAPTION\> and \<MORE_DETAILED_CAPTION\>.
|
| 9 |
+
<img style="width:100%; hight:100%" src="https://msdn.miaoshouai.com/miaoshou/bo/2024-11-05_03-15-15.png" />
|
| 10 |
+
<img style="width:100%; hight:100%" src="https://msdn.miaoshouai.com/miaoshou/bo/2024-11-05_03-40-29.png" />
|
| 11 |
+
* A new \<ANALYZE\> instruction, which helps the model to better understands the image composition of the input image.
|
| 12 |
+
<img style="width:100%; hight:100%" src="https://msdn.miaoshouai.com/miaoshou/bo/2024-11-05_03-42-58.png" />
|
| 13 |
+
<img style="width:100%; hight:100%" src="https://msdn.miaoshouai.com/miaoshou/bo/2024-11-05_07-42-36.png" />
|
| 14 |
+
* Memory efficient compare to other models! This is a really light weight caption model that allows you to use a little more than 1G of VRAM and produce lightening fast and high quality image captions.
|
| 15 |
+
<img style="width:100%; hight:100%" src="https://msdn.miaoshouai.com/miaoshou/bo/2024-09-05_12-56-39.png" />
|
| 16 |
+
* Designed to handle image captions for Flux model for both T5XXL CLIP and CLIP_L, the Miaoshou Tagger new node called "Flux CLIP Text Encode" which eliminates the need to run two separate tagger tools for caption creation. You can easily populate both CLIPs in a single generation, significantly boosting speed when working with Flux models.
|
| 17 |
+
<img style="width:100%; hight:100%" src="https://msdn.miaoshouai.com/miaoshou/bo/2024-09-05_14-11-02.png" />
|
| 18 |
+
|
| 19 |
+
## Instruction prompt:
|
| 20 |
+
\<GENERATE_TAGS\> generate prompt as danbooru style tags<br>
|
| 21 |
+
\<CAPTION\> a one line caption for the image<br>
|
| 22 |
+
\<DETAILED_CAPTION\> a structured caption format which detects the position of the subjects in the image<br>
|
| 23 |
+
\<MORE_DETAILED_CAPTION\> a very detailed description for the image<br>
|
| 24 |
+
\<ANALYZE\> image composition analysis mode<br>
|
| 25 |
+
\<MIXED_CAPTION\> a mixed caption style of more detailed caption and tags, this is extremely useful for FLUX model when using T5XXL and CLIP_L together. A new node in MiaoshouTagger ComfyUI is added to support this instruction.<br>
|
| 26 |
+
\<MIXED_CAPTION_PLUS\> Combine the power of mixed caption with analyze.<br>
|
| 27 |
+
|
| 28 |
+
## Version History:
|
| 29 |
+
For version 2.0, you will notice the following
|
| 30 |
+
1. \<ANALYZE\> along with a beta node in ComfyUI for partial image analysis
|
| 31 |
+
2. A new instruction for \<MIXED_CAPTION_PLUS\>
|
| 32 |
+
3. A much improve accuracy for \<GENERATE_TAGS\>, \<DETAILED_CAPTION\> and \<MORE_DETAILED_CAPTION\>
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
## How to use:
|
| 36 |
+
|
| 37 |
+
To use this model, you can load it directly from the Hugging Face Model Hub:
|
| 38 |
+
|
| 39 |
+
```python
|
| 40 |
+
|
| 41 |
+
model = AutoModelForCausalLM.from_pretrained("MiaoshouAI/Florence-2-large-PromptGen-v2.0", trust_remote_code=True)
|
| 42 |
+
processor = AutoProcessor.from_pretrained("MiaoshouAI/Florence-2-large-PromptGen-v2.0", trust_remote_code=True)
|
| 43 |
+
|
| 44 |
+
prompt = "<MORE_DETAILED_CAPTION>"
|
| 45 |
+
|
| 46 |
+
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true"
|
| 47 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 48 |
+
|
| 49 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
|
| 50 |
+
|
| 51 |
+
generated_ids = model.generate(
|
| 52 |
+
input_ids=inputs["input_ids"],
|
| 53 |
+
pixel_values=inputs["pixel_values"],
|
| 54 |
+
max_new_tokens=1024,
|
| 55 |
+
do_sample=False,
|
| 56 |
+
num_beams=3
|
| 57 |
+
)
|
| 58 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 59 |
+
|
| 60 |
+
parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
|
| 61 |
+
|
| 62 |
+
print(parsed_answer)
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
## Use under MiaoshouAI Tagger ComfyUI
|
| 66 |
+
If you just want to use this model, you can use it under ComfyUI-Miaoshouai-Tagger
|
| 67 |
+
|
| 68 |
+
https://github.com/miaoshouai/ComfyUI-Miaoshouai-Tagger
|
| 69 |
+
|
| 70 |
+
A detailed use and install instruction is already there.
|
| 71 |
+
(If you have already installed MiaoshouAI Tagger, you need to update the node in ComfyUI Manager first or use git pull to get the latest update.)
|