MicheleM commited on
Commit
fd41059
·
1 Parent(s): b630813

readme added

Browse files
Files changed (3) hide show
  1. Figure_1.png +0 -0
  2. Figure_2.png +0 -0
  3. README.md +36 -0
Figure_1.png ADDED
Figure_2.png ADDED
README.md CHANGED
@@ -1,3 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
 
1
+ # Human Activity Recognition with LSTM
2
+
3
+ ## Overview
4
+ This project focuses on **Human Activity Recognition (HAR)** using **LSTM-based neural networks**. The goal is to classify different human activities based on motion sensor data.
5
+
6
+ ### Dataset Used
7
+ The model is trained on the **UCI HAR Dataset**, a widely used benchmark dataset for human activity recognition. It contains data collected from accelerometers and gyroscopes of smartphones while subjects performed daily activities.
8
+
9
+ ## Model Performance
10
+ ### Classification Report
11
+ Below are the precision, recall, and F1-score for each activity class:
12
+
13
+
14
+ precision recall f1-score support
15
+
16
+ Class 0 0.92 0.98 0.95 496
17
+ Class 1 0.95 0.91 0.93 471
18
+ Class 2 0.98 0.95 0.96 420
19
+ Class 3 0.92 0.94 0.93 491
20
+ Class 4 0.94 0.93 0.94 532
21
+ Class 5 1.00 0.99 1.00 537
22
+
23
+ accuracy 0.95 2947
24
+
25
+ macro avg 0.95 0.95 0.95 2947 weighted avg 0.95 0.95 0.95 2947
26
+
27
+ ### Confusion Matrix
28
+ The confusion matrix below visualizes the model's performance in classifying different activities:
29
+
30
+ ![Confusion Matrix](https://huggingface.co/MicS2/Human-Activity-Recognition/Figure_1.png)
31
+
32
+ ## Next Steps
33
+ - Improve the model with **GRU & CNN architectures**.
34
+ - Expand testing with **real-world sensor data**.
35
+ - Fine-tune hyperparameters for better generalization.
36
+
37
  ---
38
  license: mit
39
  ---