--- library_name: transformers license: cc-by-4.0 base_model: pczarnik/herbert-base-ner tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: herbert-finetuned-core results: [] --- # herbert-finetuned-core This model is a fine-tuned version of [pczarnik/herbert-base-ner](https://huggingface.co/pczarnik/herbert-base-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Precision: 1.0 - Recall: 1.0 - F1: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.0286 | 1.0 | 434 | 0.0004 | 0.9999 | 0.9999 | 0.9999 | | 0.0007 | 2.0 | 868 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | | 0.0002 | 3.0 | 1302 | 0.0001 | 1.0000 | 1.0000 | 1.0000 | | 0.0002 | 4.0 | 1736 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 5.0 | 2170 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 6.0 | 2604 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 7.0 | 3038 | 0.0000 | 1.0 | 1.0 | 1.0 | | 0.0001 | 8.0 | 3472 | 0.0000 | 1.0 | 1.0 | 1.0 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.4.1 - Datasets 2.21.0 - Tokenizers 0.21.1