--- library_name: peft license: cc-by-4.0 base_model: pczarnik/herbert-base-ner tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: herbert-ner-lora-core results: [] --- # herbert-ner-lora-core This model is a fine-tuned version of [pczarnik/herbert-base-ner](https://huggingface.co/pczarnik/herbert-base-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0054 - Precision: 0.9028 - Recall: 0.9178 - F1: 0.9102 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 488 | 0.0136 | 0.7914 | 0.8605 | 0.8245 | | 0.1553 | 2.0 | 976 | 0.0082 | 0.8759 | 0.9086 | 0.8920 | | 0.0144 | 3.0 | 1464 | 0.0064 | 0.8916 | 0.9153 | 0.9033 | | 0.0108 | 4.0 | 1952 | 0.0056 | 0.8973 | 0.9145 | 0.9058 | | 0.0094 | 5.0 | 2440 | 0.0054 | 0.9028 | 0.9178 | 0.9102 | ### Framework versions - PEFT 0.12.0 - Transformers 4.50.3 - Pytorch 2.4.1 - Datasets 2.21.0 - Tokenizers 0.21.1