--- library_name: peft license: cc-by-4.0 base_model: pczarnik/herbert-base-ner tags: - generated_from_trainer metrics: - precision - recall - f1 model-index: - name: herbert-ner-lora-sensitive results: [] --- # herbert-ner-lora-sensitive This model is a fine-tuned version of [pczarnik/herbert-base-ner](https://huggingface.co/pczarnik/herbert-base-ner) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0070 - Precision: 0.8622 - Recall: 0.8596 - F1: 0.8609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | No log | 1.0 | 315 | 0.0148 | 0.8076 | 0.7253 | 0.7642 | | 0.1305 | 2.0 | 630 | 0.0096 | 0.8339 | 0.8133 | 0.8234 | | 0.1305 | 3.0 | 945 | 0.0079 | 0.8538 | 0.8472 | 0.8505 | | 0.0112 | 4.0 | 1260 | 0.0072 | 0.8556 | 0.8596 | 0.8576 | | 0.0092 | 5.0 | 1575 | 0.0070 | 0.8622 | 0.8596 | 0.8609 | ### Framework versions - PEFT 0.12.0 - Transformers 4.50.3 - Pytorch 2.4.1 - Datasets 2.21.0 - Tokenizers 0.21.1