File size: 2,952 Bytes
1eb8bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: cc-by-nc-4.0
base_model: facebook/wav2vec2-large-uralic-voxpopuli-v2
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v2-large-uralic-voxpopuli-v2-karelian-cs-w-rus
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v2-large-uralic-voxpopuli-v2-karelian-cs-w-rus

This model is a fine-tuned version of [facebook/wav2vec2-large-uralic-voxpopuli-v2](https://huggingface.co/facebook/wav2vec2-large-uralic-voxpopuli-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5997
- Wer: 0.4401
- Cer: 0.1228

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 43
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 6.2662        | 0.48  | 500   | 1.8324          | 0.9998 | 0.6007 |
| 1.032         | 0.97  | 1000  | 0.7219          | 0.6129 | 0.1779 |
| 0.6635        | 1.45  | 1500  | 0.6393          | 0.5535 | 0.1572 |
| 0.5568        | 1.94  | 2000  | 0.5816          | 0.5192 | 0.1486 |
| 0.4728        | 2.42  | 2500  | 0.5838          | 0.5076 | 0.1444 |
| 0.427         | 2.9   | 3000  | 0.5746          | 0.4915 | 0.1377 |
| 0.3789        | 3.39  | 3500  | 0.5658          | 0.4781 | 0.1342 |
| 0.3543        | 3.87  | 4000  | 0.5859          | 0.4737 | 0.1349 |
| 0.3223        | 4.35  | 4500  | 0.5678          | 0.4708 | 0.1327 |
| 0.3053        | 4.84  | 5000  | 0.5572          | 0.4652 | 0.1311 |
| 0.2852        | 5.32  | 5500  | 0.5768          | 0.4594 | 0.1285 |
| 0.2663        | 5.81  | 6000  | 0.5687          | 0.4594 | 0.1282 |
| 0.2585        | 6.29  | 6500  | 0.5891          | 0.4572 | 0.1280 |
| 0.2477        | 6.77  | 7000  | 0.5930          | 0.4524 | 0.1257 |
| 0.2341        | 7.26  | 7500  | 0.5841          | 0.4456 | 0.1244 |
| 0.2325        | 7.74  | 8000  | 0.5973          | 0.4460 | 0.1242 |
| 0.2195        | 8.22  | 8500  | 0.6069          | 0.4403 | 0.1234 |
| 0.2187        | 8.71  | 9000  | 0.5899          | 0.4390 | 0.1229 |
| 0.2134        | 9.19  | 9500  | 0.5944          | 0.4398 | 0.1231 |
| 0.2111        | 9.68  | 10000 | 0.5997          | 0.4401 | 0.1228 |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.5.1
- Datasets 2.15.0
- Tokenizers 0.13.3