Upload run_benchmarks.py with huggingface_hub
Browse files- run_benchmarks.py +44 -27
run_benchmarks.py
CHANGED
|
@@ -114,38 +114,55 @@ class DeIdBenchmarkRunner:
|
|
| 114 |
|
| 115 |
return True
|
| 116 |
|
| 117 |
-
def calculate_semantic_preservation(self, predicted: str, expected: str) -> float:
|
| 118 |
-
"""Calculate semantic preservation
|
| 119 |
-
#
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
|
|
|
| 125 |
|
| 126 |
-
#
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
types[ptype] = types.get(ptype, 0) + 1
|
| 133 |
-
return types
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
exp_count = expected_types.get(ptype, 0)
|
| 145 |
-
if exp_count > 0:
|
| 146 |
-
similarity += min(pred_count, exp_count) / exp_count
|
| 147 |
|
| 148 |
-
return
|
| 149 |
|
| 150 |
def call_model(self, instruction: str, input_text: str) -> Tuple[str, float]:
|
| 151 |
"""Call the de-identification model and measure latency"""
|
|
@@ -212,7 +229,7 @@ class DeIdBenchmarkRunner:
|
|
| 212 |
# Calculate metrics
|
| 213 |
pii_detection = self.calculate_pii_detection_rate(input_text, predicted_output)
|
| 214 |
completeness = self.calculate_completeness(predicted_output)
|
| 215 |
-
semantic_preservation = self.calculate_semantic_preservation(predicted_output, expected_output)
|
| 216 |
|
| 217 |
# Update totals
|
| 218 |
total_pii_detection += pii_detection
|
|
|
|
| 114 |
|
| 115 |
return True
|
| 116 |
|
| 117 |
+
def calculate_semantic_preservation(self, input_text: str, predicted: str, expected: str) -> float:
|
| 118 |
+
"""Calculate semantic preservation - how well the meaning is preserved after de-identification"""
|
| 119 |
+
# For de-identification, semantic preservation should focus on:
|
| 120 |
+
# 1. Whether the core message/content is maintained
|
| 121 |
+
# 2. Whether the text structure remains coherent
|
| 122 |
+
# 3. Whether placeholder density is reasonable
|
| 123 |
+
|
| 124 |
+
# Simple approach: compare text length and placeholder density
|
| 125 |
+
input_words = len(input_text.split())
|
| 126 |
+
expected_words = len(expected.split())
|
| 127 |
+
predicted_words = len(predicted.split())
|
| 128 |
+
|
| 129 |
+
# Length preservation (closer to 1.0 is better)
|
| 130 |
+
if expected_words == 0:
|
| 131 |
+
length_preservation = 1.0
|
| 132 |
+
else:
|
| 133 |
+
length_ratio = predicted_words / expected_words
|
| 134 |
+
# Penalize if too different in length (ideal ratio around 0.8-1.2)
|
| 135 |
+
if 0.5 <= length_ratio <= 2.0:
|
| 136 |
+
length_preservation = 1.0 - abs(1.0 - length_ratio) * 0.5
|
| 137 |
+
else:
|
| 138 |
+
length_preservation = 0.1 # Heavily penalize extreme length differences
|
| 139 |
|
| 140 |
+
# Placeholder density (should be reasonable, not too sparse or dense)
|
| 141 |
+
pred_placeholders = self.extract_placeholders(predicted)
|
| 142 |
+
placeholder_ratio = len(pred_placeholders) / max(predicted_words, 1)
|
| 143 |
|
| 144 |
+
if 0.05 <= placeholder_ratio <= 0.3: # Reasonable placeholder density
|
| 145 |
+
density_score = 1.0
|
| 146 |
+
elif placeholder_ratio < 0.05: # Too few placeholders
|
| 147 |
+
density_score = placeholder_ratio / 0.05
|
| 148 |
+
else: # Too many placeholders
|
| 149 |
+
density_score = max(0.1, 1.0 - (placeholder_ratio - 0.3) * 2)
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
# Structure preservation (check if basic sentence structure is maintained)
|
| 152 |
+
# Simple check: count punctuation marks as proxy for structure
|
| 153 |
+
input_punct = len(re.findall(r'[.!?]', input_text))
|
| 154 |
+
predicted_punct = len(re.findall(r'[.!?]', predicted))
|
| 155 |
|
| 156 |
+
if input_punct == 0:
|
| 157 |
+
structure_score = 1.0
|
| 158 |
+
else:
|
| 159 |
+
structure_ratio = min(predicted_punct, input_punct * 1.5) / input_punct
|
| 160 |
+
structure_score = min(1.0, structure_ratio)
|
| 161 |
|
| 162 |
+
# Combine scores (weighted average)
|
| 163 |
+
final_score = (length_preservation * 0.4) + (density_score * 0.4) + (structure_score * 0.2)
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
+
return max(0.0, min(1.0, final_score)) # Clamp to [0,1]
|
| 166 |
|
| 167 |
def call_model(self, instruction: str, input_text: str) -> Tuple[str, float]:
|
| 168 |
"""Call the de-identification model and measure latency"""
|
|
|
|
| 229 |
# Calculate metrics
|
| 230 |
pii_detection = self.calculate_pii_detection_rate(input_text, predicted_output)
|
| 231 |
completeness = self.calculate_completeness(predicted_output)
|
| 232 |
+
semantic_preservation = self.calculate_semantic_preservation(input_text, predicted_output, expected_output)
|
| 233 |
|
| 234 |
# Update totals
|
| 235 |
total_pii_detection += pii_detection
|