NER-Small / ner_inference.py
Minibase's picture
Upload ner_inference.py with huggingface_hub
827270e verified
raw
history blame
8.21 kB
#!/usr/bin/env python3
"""
NER-Small Inference Client
A Python client for running inference with the Minibase-NER-Small model.
Handles named entity recognition requests to the local llama.cpp server.
"""
import requests
import json
from typing import Optional, Dict, Any, Tuple, List
import time
import re
class NERClient:
"""
Client for the NER-Small named entity recognition model.
This client communicates with a local llama.cpp server running the
Minibase-NER-Small model for named entity recognition tasks.
"""
def __init__(self, base_url: str = "http://127.0.0.1:8000", timeout: int = 30):
"""
Initialize the NER client.
Args:
base_url: Base URL of the llama.cpp server
timeout: Request timeout in seconds
"""
self.base_url = base_url.rstrip('/')
self.timeout = timeout
self.default_instruction = "Extract all named entities from the following text. List them as 1. Entity, 2. Entity, etc."
def _make_request(self, prompt: str, max_tokens: int = 512,
temperature: float = 0.1) -> Tuple[str, float]:
"""
Make a completion request to the model.
Args:
prompt: The input prompt
max_tokens: Maximum tokens to generate
temperature: Sampling temperature
Returns:
Tuple of (response_text, latency_ms)
"""
payload = {
"prompt": prompt,
"max_tokens": max_tokens,
"temperature": temperature
}
headers = {'Content-Type': 'application/json'}
start_time = time.time()
try:
response = requests.post(
f"{self.base_url}/completion",
json=payload,
headers=headers,
timeout=self.timeout
)
latency = (time.time() - start_time) * 1000 # Convert to milliseconds
if response.status_code == 200:
result = response.json()
return result.get('content', ''), latency
else:
return f"Error: HTTP {response.status_code}", latency
except requests.exceptions.RequestException as e:
latency = (time.time() - start_time) * 1000
return f"Error: {e}", latency
def extract_entities(self, text: str, instruction: Optional[str] = None,
max_tokens: int = 512, temperature: float = 0.1) -> List[Dict[str, Any]]:
"""
Extract named entities from text.
Args:
text: Input text to analyze
instruction: Custom instruction (uses default if None)
max_tokens: Maximum tokens to generate
temperature: Sampling temperature
Returns:
List of entity dictionaries with text and metadata
"""
if instruction is None:
instruction = self.default_instruction
prompt = f"{instruction}\n\nInput: {text}\n\nResponse: "
response_text, latency = self._make_request(prompt, max_tokens, temperature)
if response_text.startswith("Error"):
return []
# Parse the numbered list response
entities = self._parse_entity_response(response_text)
# Add metadata to each entity
for entity in entities:
entity.update({
'confidence': 1.0, # Placeholder - model doesn't provide confidence
'latency_ms': latency
})
return entities
def extract_entities_batch(self, texts: List[str], instruction: Optional[str] = None,
max_tokens: int = 512, temperature: float = 0.1) -> List[List[Dict[str, Any]]]:
"""
Extract named entities from multiple texts.
Args:
texts: List of input texts to analyze
instruction: Custom instruction (uses default if None)
max_tokens: Maximum tokens to generate
temperature: Sampling temperature
Returns:
List of entity lists, one per input text
"""
results = []
for text in texts:
entities = self.extract_entities(text, instruction, max_tokens, temperature)
results.append(entities)
return results
def _parse_entity_response(self, response_text: str) -> List[Dict[str, Any]]:
"""
Parse the model's numbered list response into structured entities.
Args:
response_text: Raw model response
Returns:
List of entity dictionaries
"""
entities = []
# Clean up the response
response_text = response_text.strip()
# Split by lines and process each line
lines = response_text.split('\n')
for line in lines:
line = line.strip()
if not line:
continue
# Try to extract entity names from numbered list format
# Pattern 1: "1. Entity Name" or "1. Entity Name - Description"
numbered_match = re.match(r'^\d+\.\s*(.+?)(?:\s*-\s*.+)?$', line)
if numbered_match:
entity_text = numbered_match.group(1).strip()
# Remove any trailing punctuation
entity_text = re.sub(r'[.,;:!?]$', '', entity_text).strip()
# Skip very short entities or generic terms
if entity_text and len(entity_text) > 1 and not entity_text.lower() in ['the', 'and', 'or', 'but', 'for', 'with']:
entities.append({
'text': entity_text,
'type': 'ENTITY', # Model doesn't specify types
'start': 0, # Position information not available
'end': 0
})
return entities
def health_check(self) -> bool:
"""
Check if the model server is healthy and responding.
Returns:
True if server is healthy, False otherwise
"""
try:
response = requests.get(f"{self.base_url}/health", timeout=5)
return response.status_code == 200
except:
return False
def get_model_info(self) -> Optional[Dict[str, Any]]:
"""
Get information about the loaded model.
Returns:
Model information dictionary or None if unavailable
"""
try:
response = requests.get(f"{self.base_url}/v1/models", timeout=5)
if response.status_code == 200:
return response.json()
except:
pass
return None
def main():
"""
Command-line interface for NER inference.
"""
import argparse
parser = argparse.ArgumentParser(description='NER-Small Inference Client')
parser.add_argument('text', help='Text to analyze for named entities')
parser.add_argument('--url', default='http://127.0.0.1:8000',
help='Model server URL (default: http://127.0.0.1:8000)')
parser.add_argument('--max-tokens', type=int, default=512,
help='Maximum tokens to generate (default: 512)')
parser.add_argument('--temperature', type=float, default=0.1,
help='Sampling temperature (default: 0.1)')
args = parser.parse_args()
# Initialize client
client = NERClient(args.url)
# Check server health
if not client.health_check():
print(f"❌ Error: Cannot connect to model server at {args.url}")
print("Make sure the llama.cpp server is running with the NER-Small model.")
return 1
# Extract entities
entities = client.extract_entities(
args.text,
max_tokens=args.max_tokens,
temperature=args.temperature
)
# Display results
print(f"📝 Input Text: {args.text}")
print(f"🎯 Found {len(entities)} entities:")
print()
if entities:
for i, entity in enumerate(entities, 1):
print(f"{i}. {entity['text']} (Type: {entity['type']})")
else:
print("No entities found.")
return 0
if __name__ == "__main__":
exit(main())