Upload folder using huggingface_hub
Browse files- README.md +178 -3
- config.json +14 -0
- model.onnx +3 -0
- model.safetensors +3 -0
- model_info.json +21 -0
    	
        README.md
    CHANGED
    
    | @@ -1,3 +1,178 @@ | |
| 1 | 
            -
            ---
         | 
| 2 | 
            -
             | 
| 3 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            language: multilingual
         | 
| 3 | 
            +
            license: mit
         | 
| 4 | 
            +
            library_name: pytorch
         | 
| 5 | 
            +
            tags:
         | 
| 6 | 
            +
            - text-classification
         | 
| 7 | 
            +
            - language-detection
         | 
| 8 | 
            +
            - byte-level
         | 
| 9 | 
            +
            - multilingual
         | 
| 10 | 
            +
            - english-detection
         | 
| 11 | 
            +
            - cnn
         | 
| 12 | 
            +
            pipeline_tag: text-classification
         | 
| 13 | 
            +
            datasets:
         | 
| 14 | 
            +
            - custom
         | 
| 15 | 
            +
            metrics:
         | 
| 16 | 
            +
            - accuracy
         | 
| 17 | 
            +
            model-index:
         | 
| 18 | 
            +
            - name: innit
         | 
| 19 | 
            +
              results:
         | 
| 20 | 
            +
              - task:
         | 
| 21 | 
            +
                  type: text-classification
         | 
| 22 | 
            +
                  name: English vs Non-English Detection
         | 
| 23 | 
            +
                metrics:
         | 
| 24 | 
            +
                - type: accuracy
         | 
| 25 | 
            +
                  value: 99.94
         | 
| 26 | 
            +
                  name: Validation Accuracy
         | 
| 27 | 
            +
                - type: accuracy  
         | 
| 28 | 
            +
                  value: 100.0
         | 
| 29 | 
            +
                  name: Challenge Set Accuracy
         | 
| 30 | 
            +
            ---
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            # innit: Fast English vs Non-English Text Detection
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            A lightweight byte-level CNN for fast binary language detection (English vs Non-English).
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            ## Model Details
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            - **Model Type**: Byte-level Convolutional Neural Network
         | 
| 39 | 
            +
            - **Task**: Binary text classification (English vs Non-English)
         | 
| 40 | 
            +
            - **Architecture**: TinyByteCNN_EN with 6 convolutional blocks
         | 
| 41 | 
            +
            - **Parameters**: 156,642
         | 
| 42 | 
            +
            - **Input**: Raw UTF-8 bytes (max 256 bytes)
         | 
| 43 | 
            +
            - **Output**: Binary classification (0=Non-English, 1=English)
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            ## Performance
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            - **Validation Accuracy**: 99.94%
         | 
| 48 | 
            +
            - **Challenge Set Accuracy**: 100% (14/14 test cases)
         | 
| 49 | 
            +
            - **Inference Speed**: Sub-millisecond on modern CPUs
         | 
| 50 | 
            +
            - **Model Size**: ~600KB
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            ## Supported Languages
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            Trained to distinguish English from 52+ languages across diverse scripts:
         | 
| 55 | 
            +
            - **Latin scripts**: Spanish, French, German, Italian, Dutch, Portuguese, etc.
         | 
| 56 | 
            +
            - **CJK scripts**: Chinese (Simplified/Traditional), Japanese, Korean
         | 
| 57 | 
            +
            - **Cyrillic scripts**: Russian, Ukrainian, Bulgarian, Serbian
         | 
| 58 | 
            +
            - **Other scripts**: Arabic, Hindi, Bengali, Thai, Hebrew, etc.
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            ## Architecture
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            ```
         | 
| 63 | 
            +
            TinyByteCNN_EN:
         | 
| 64 | 
            +
            ├── Embedding: 257 → 80 dimensions (256 bytes + padding)
         | 
| 65 | 
            +
            ├── 6x Convolutional Blocks:
         | 
| 66 | 
            +
            │   ├── Conv1D (kernel=3, residual connections)
         | 
| 67 | 
            +
            │   ├── GELU activation
         | 
| 68 | 
            +
            │   ├── BatchNorm1D  
         | 
| 69 | 
            +
            │   └── Dropout (0.15)
         | 
| 70 | 
            +
            ├── Enhanced Pooling: mean + max + std
         | 
| 71 | 
            +
            └── Classification Head: 240 → 80 → 2
         | 
| 72 | 
            +
            ```
         | 
| 73 | 
            +
             | 
| 74 | 
            +
            ## Training Data
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            - **Total samples**: 17,543 balanced samples
         | 
| 77 | 
            +
            - **English**: 8,772 samples from diverse sources
         | 
| 78 | 
            +
            - **Non-English**: 8,771 samples across 52+ languages
         | 
| 79 | 
            +
            - **Text lengths**: 3-276 characters (optimized for short texts)
         | 
| 80 | 
            +
            - **Special coverage**: Emoji handling, mathematical formulas, scientific notation
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            ## Quick Start
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            ### Option 1: ONNX Runtime (Recommended)
         | 
| 85 | 
            +
            ```python
         | 
| 86 | 
            +
            import onnxruntime as ort
         | 
| 87 | 
            +
            import numpy as np
         | 
| 88 | 
            +
             | 
| 89 | 
            +
            # Load ONNX model
         | 
| 90 | 
            +
            session = ort.InferenceSession("model.onnx")
         | 
| 91 | 
            +
             | 
| 92 | 
            +
            def predict(text):
         | 
| 93 | 
            +
                # Prepare input
         | 
| 94 | 
            +
                bytes_data = text.encode('utf-8', errors='ignore')[:256]
         | 
| 95 | 
            +
                padded = np.zeros(256, dtype=np.int64)
         | 
| 96 | 
            +
                padded[:len(bytes_data)] = list(bytes_data)
         | 
| 97 | 
            +
                
         | 
| 98 | 
            +
                # Run inference
         | 
| 99 | 
            +
                outputs = session.run(['logits'], {'input_bytes': padded.reshape(1, -1)})
         | 
| 100 | 
            +
                logits = outputs[0][0]
         | 
| 101 | 
            +
                
         | 
| 102 | 
            +
                # Apply softmax
         | 
| 103 | 
            +
                exp_logits = np.exp(logits - np.max(logits))
         | 
| 104 | 
            +
                probs = exp_logits / np.sum(exp_logits)
         | 
| 105 | 
            +
                return probs[1]  # English probability
         | 
| 106 | 
            +
             | 
| 107 | 
            +
            # Examples
         | 
| 108 | 
            +
            print(predict("Hello world!"))           # ~1.0 (English)
         | 
| 109 | 
            +
            print(predict("Bonjour le monde"))       # ~0.0 (French)
         | 
| 110 | 
            +
            print(predict("Check our sale! 🎉"))     # ~1.0 (English with emoji)
         | 
| 111 | 
            +
            ```
         | 
| 112 | 
            +
             | 
| 113 | 
            +
            ### Option 2: Python Package
         | 
| 114 | 
            +
            ```bash
         | 
| 115 | 
            +
            # Install the utility package
         | 
| 116 | 
            +
            pip install innit-detector
         | 
| 117 | 
            +
             | 
| 118 | 
            +
            # CLI usage
         | 
| 119 | 
            +
            innit "Hello world!"                    # → English (confidence: 0.974)
         | 
| 120 | 
            +
            innit --download                        # Download model first
         | 
| 121 | 
            +
            innit "Hello" "Bonjour" "你好"          # Multiple texts
         | 
| 122 | 
            +
             | 
| 123 | 
            +
            # Library usage
         | 
| 124 | 
            +
            from innit_detector import InnitDetector
         | 
| 125 | 
            +
            detector = InnitDetector()
         | 
| 126 | 
            +
            result = detector.predict("Hello world!")
         | 
| 127 | 
            +
            print(result['is_english'])  # True
         | 
| 128 | 
            +
            ```
         | 
| 129 | 
            +
             | 
| 130 | 
            +
            ### Option 3: PyTorch (Advanced)
         | 
| 131 | 
            +
            ```python
         | 
| 132 | 
            +
            import torch
         | 
| 133 | 
            +
            import torch.nn.functional as F
         | 
| 134 | 
            +
            from safetensors.torch import load_file
         | 
| 135 | 
            +
            import numpy as np
         | 
| 136 | 
            +
             | 
| 137 | 
            +
            # Load model (requires TinyByteCNN_EN class definition)
         | 
| 138 | 
            +
            state_dict = load_file("model.safetensors")
         | 
| 139 | 
            +
            model = TinyByteCNN_EN(emb=80, blocks=6, dropout=0.15)
         | 
| 140 | 
            +
            model.load_state_dict(state_dict)
         | 
| 141 | 
            +
            model.eval()
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            def predict(text):
         | 
| 144 | 
            +
                bytes_data = text.encode('utf-8', errors='ignore')[:256]
         | 
| 145 | 
            +
                padded = np.zeros(256, dtype=np.long)
         | 
| 146 | 
            +
                padded[:len(bytes_data)] = list(bytes_data)
         | 
| 147 | 
            +
                
         | 
| 148 | 
            +
                with torch.no_grad():
         | 
| 149 | 
            +
                    logits = model(torch.tensor(padded).unsqueeze(0))
         | 
| 150 | 
            +
                    probs = F.softmax(logits, dim=1)
         | 
| 151 | 
            +
                    return probs[0][1].item()
         | 
| 152 | 
            +
            ```
         | 
| 153 | 
            +
             | 
| 154 | 
            +
            ## ONNX Support
         | 
| 155 | 
            +
             | 
| 156 | 
            +
            ONNX version available for cross-platform deployment:
         | 
| 157 | 
            +
            - `model.onnx` - Full precision (FP32) for maximum compatibility
         | 
| 158 | 
            +
             | 
| 159 | 
            +
            ## Challenge Set Results
         | 
| 160 | 
            +
             | 
| 161 | 
            +
            Perfect 100% accuracy on comprehensive test cases:
         | 
| 162 | 
            +
            - Ultra-short texts: "Good morning!" ✅
         | 
| 163 | 
            +
            - Emoji handling: "Check out our sale! 🎉" ✅  
         | 
| 164 | 
            +
            - Mathematical formulas: "x = (-b ± √(b²-4ac))/2a" ✅
         | 
| 165 | 
            +
            - Scientific notation: "CO₂ + H₂O → C₆H₁₂O₆" ✅
         | 
| 166 | 
            +
            - Diverse scripts: Arabic, CJK, Cyrillic, Devanagari ✅
         | 
| 167 | 
            +
            - English-like languages: Dutch, German ✅
         | 
| 168 | 
            +
             | 
| 169 | 
            +
            ## Limitations
         | 
| 170 | 
            +
             | 
| 171 | 
            +
            - Binary classification only (English vs Non-English)
         | 
| 172 | 
            +
            - Optimized for texts up to 256 UTF-8 bytes
         | 
| 173 | 
            +
            - May have reduced accuracy on very rare languages not in training data
         | 
| 174 | 
            +
            - Not suitable for multilingual text (mixed languages in single input)
         | 
| 175 | 
            +
             | 
| 176 | 
            +
            ## License
         | 
| 177 | 
            +
             | 
| 178 | 
            +
            MIT License - free for commercial use.
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,14 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "architectures": [
         | 
| 3 | 
            +
                "TinyByteCNN_EN"
         | 
| 4 | 
            +
              ],
         | 
| 5 | 
            +
              "model_type": "byte_cnn",
         | 
| 6 | 
            +
              "emb_dim": 80,
         | 
| 7 | 
            +
              "num_blocks": 6,
         | 
| 8 | 
            +
              "dropout": 0.15,
         | 
| 9 | 
            +
              "vocab_size": 257,
         | 
| 10 | 
            +
              "num_classes": 2,
         | 
| 11 | 
            +
              "max_length": 256,
         | 
| 12 | 
            +
              "validation_accuracy": 99.94301994301995,
         | 
| 13 | 
            +
              "torch_dtype": "float32"
         | 
| 14 | 
            +
            }
         | 
    	
        model.onnx
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:692e33fc0d94ab5ec9436c8b84853c4662e739b0a6f28110894c383a06f913ac
         | 
| 3 | 
            +
            size 643861
         | 
    	
        model.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:dcc8aae0bf9626072b33569b6097c73763029e62eaae3f6b0d571fbb426a061c
         | 
| 3 | 
            +
            size 634264
         | 
    	
        model_info.json
    ADDED
    
    | @@ -0,0 +1,21 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "model_name": "innit",
         | 
| 3 | 
            +
              "version": "1.0",
         | 
| 4 | 
            +
              "task": "english_detection",
         | 
| 5 | 
            +
              "architecture": "TinyByteCNN_EN",
         | 
| 6 | 
            +
              "parameters": 156642,
         | 
| 7 | 
            +
              "input_format": "utf8_bytes",
         | 
| 8 | 
            +
              "max_length": 256,
         | 
| 9 | 
            +
              "output_classes": [
         | 
| 10 | 
            +
                "NOT-EN",
         | 
| 11 | 
            +
                "EN"
         | 
| 12 | 
            +
              ],
         | 
| 13 | 
            +
              "validation_accuracy": 99.94,
         | 
| 14 | 
            +
              "challenge_accuracy": 100.0,
         | 
| 15 | 
            +
              "files": {
         | 
| 16 | 
            +
                "pytorch": "model.safetensors",
         | 
| 17 | 
            +
                "config": "config.json",
         | 
| 18 | 
            +
                "onnx": "model.onnx",
         | 
| 19 | 
            +
                "readme": "README.md"
         | 
| 20 | 
            +
              }
         | 
| 21 | 
            +
            }
         | 
