--- license: apache-2.0 base_model: Mitchins/t5-base-artgen-multi-instruct tags: - text2text-generation - prompt-enhancement - ai-art - openvino - t5 - art-generation - stable-diffusion - intel language: - en library_name: optimum-intel pipeline_tag: text-generation model-index: - name: t5-base-artgen-multi-instruct-OpenVINO results: [] datasets: - art-prompts widget: - text: "Enhance this prompt: robot in space" example_title: "Standard Enhancement" - text: "Enhance this prompt (no lora): beautiful landscape" example_title: "Clean Enhancement" - text: "Enhance this prompt (with lora): anime girl" example_title: "Technical Enhancement" - text: "Simplify this prompt: A stunning, highly detailed masterpiece" example_title: "Simplification" --- # T5 Base Art Generation Multi-Instruct OpenVINO OpenVINO version of [Mitchins/t5-base-artgen-multi-instruct](https://huggingface.co/Mitchins/t5-base-artgen-multi-instruct) for optimized Intel hardware inference. ## Model Details - **Base Model**: T5-base (Google) - **Training Samples**: 297,282 - **Parameters**: 222M - **Format**: OpenVINO IR (FP32) - **Optimization**: Intel CPU/GPU/VPU optimized ## Quad-Instruction Capabilities 1. **Standard Enhancement**: `Enhance this prompt: {text}` 2. **Clean Enhancement**: `Enhance this prompt (no lora): {text}` 3. **Technical Enhancement**: `Enhance this prompt (with lora): {text}` 4. **Simplification**: `Simplify this prompt: {text}` ## Usage ```python from optimum.intel import OVModelForSeq2SeqLM from transformers import T5Tokenizer # Load OpenVINO model model = OVModelForSeq2SeqLM.from_pretrained("Mitchins/t5-base-artgen-multi-instruct-OpenVINO") tokenizer = T5Tokenizer.from_pretrained("Mitchins/t5-base-artgen-multi-instruct-OpenVINO") # Example usage text = "woman in red dress" prompt = f"Enhance this prompt (no lora): {text}" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=80) result = tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ## Performance Optimized for Intel hardware (CPU, integrated GPU, VPU) with significant speedup compared to standard PyTorch inference. ## Deployment Perfect for Intel NUC and other Intel-based edge devices.