Mitchins commited on
Commit
de0aac4
·
verified ·
1 Parent(s): ce5b097

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +66 -173
README.md CHANGED
@@ -1,199 +1,92 @@
1
  ---
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
39
 
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: t5-small
4
+ tags:
5
+ - text2text-generation
6
+ - prompt-engineering
7
+ - art-generation
8
+ - bidirectional
9
+ - image-prompts
10
  library_name: transformers
11
+ pipeline_tag: text2text-generation
12
  ---
13
 
14
+ # T5-Small Art Generation Bidirectional Prompt Converter
15
 
16
+ A fine-tuned T5-small model for bidirectional prompt transformation in AI art generation.
17
 
18
+ ## Model Description
19
 
20
+ This model can convert between simple descriptions and elaborate art generation prompts in both directions:
21
 
22
+ - **Simple → Elaborate**: Transform basic descriptions into rich, detailed art prompts
23
+ - **Elaborate → Simple**: Extract core concepts from complex prompts
24
 
25
+ ## Training Data
26
 
27
+ Trained on 53K+ high-quality prompt pairs with saturation control to reduce bias:
28
+ - Simple descriptions from BLIP2 image analysis
29
+ - Elaborate prompts from curated art generation datasets
30
+ - Bias reduction: Capped "beautiful woman" and similar oversaturated content
31
+ - Balanced bidirectional training (50/50 split)
32
 
33
+ ## Usage
34
 
35
+ ```python
36
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
 
 
 
 
 
37
 
38
+ tokenizer = T5Tokenizer.from_pretrained("mitchins/t5-small-artgen-bidirectional")
39
+ model = T5ForConditionalGeneration.from_pretrained("mitchins/t5-small-artgen-bidirectional")
40
 
41
+ # Simple to elaborate
42
+ input_text = "Generate a detailed artistic prompt for: a cat sitting on a table"
43
+ inputs = tokenizer.encode(input_text, return_tensors="pt")
44
+ outputs = model.generate(inputs, max_length=200, num_beams=3, temperature=0.8, do_sample=True)
45
+ result = tokenizer.decode(outputs[0], skip_special_tokens=True)
46
+ print(result)
47
 
48
+ # Elaborate to simple
49
+ input_text = "Simplify this prompt: A majestic golden dragon soaring through storm clouds above a medieval castle, with lightning illuminating its scales in photorealistic detail"
50
+ inputs = tokenizer.encode(input_text, return_tensors="pt")
51
+ outputs = model.generate(inputs, max_length=200, num_beams=3, temperature=0.8, do_sample=True)
52
+ result = tokenizer.decode(outputs[0], skip_special_tokens=True)
53
+ print(result)
54
+ ```
55
 
56
+ ## Examples
57
 
58
+ **Simple Elaborate:**
59
+ - Input: `"Generate a detailed artistic prompt for: a robot in a garden"`
60
+ - Output: `"A colossal, bioluminescent robot stands in a lush, bioluminescent garden, its scales shimmering with iridescent colors. The scene is bathed in the soft, ethereal light of the setting sun. Rendered in a detailed matte painting style, with deep colors, fantastical elements, and intricate details, reminiscent of fantasy concept art trending on Artstation."`
61
 
62
+ **Elaborate Simple:**
63
+ - Input: `"Simplify this prompt: Hyperrealistic 8K render of a majestic phoenix rising from crystalline flames, its feathers crafted from pure starlight, soaring above an ancient mystical forest at dawn with volumetric lighting"`
64
+ - Output: `"A phoenix flying over a forest at sunset"`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
  ## Training Details
67
 
68
+ - **Base Model**: t5-small
69
+ - **Training Samples**: 53,372 bidirectional pairs
70
+ - **Epochs**: 3
71
+ - **Saturation Control**: Applied bias reduction techniques
72
+ - **Task Balance**: 25K elaborate→simple + 24K simple→elaborate
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
+ ## Limitations
75
 
76
+ - Trained primarily on English prompts
77
+ - May occasionally repeat tokens (use repetition_penalty=1.2)
78
+ - Optimized for art generation prompts, may not work well for other domains
79
 
80
+ ## Citation
81
 
82
+ If you use this model, please cite:
83
 
84
+ ```
85
+ @misc{t5-small-artgen-bidirectional,
86
+ author = {mitchins},
87
+ title = {T5-Small Art Generation Bidirectional Prompt Converter},
88
+ year = {2025},
89
+ publisher = {Hugging Face},
90
+ url = {https://huggingface.co/mitchins/t5-small-artgen-bidirectional}
91
+ }
92
+ ```