Upload folder using huggingface_hub
Browse files- chat_template.jinja +2 -0
- chat_template.json +3 -0
- config.json +50 -0
- configuration_vbert.py +233 -0
- model.safetensors +3 -0
- modeling_vbert.py +633 -0
- preprocessor_config.json +28 -0
- processor_config.json +4 -0
- special_tokens_map.json +79 -0
- tokenizer.json +0 -0
- tokenizer_config.json +1310 -0
chat_template.jinja
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
<|begin_of_text|>{% for message in messages %}{{message['role'] | capitalize}}{% if message['content'][0]['type'] == 'image' %}{{':'}}{% else %}{{': '}}{% endif %}{% for line in message['content'] %}{% if line['type'] == 'text' %}{{line['text']}}{% elif line['type'] == 'image' %}{{ '<image>' }}{% endif %}{% endfor %}<end_of_utterance>
|
2 |
+
{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}
|
chat_template.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"chat_template": "<|begin_of_text|>{% for message in messages %}{{message['role'] | capitalize}}{% if message['content'][0]['type'] == 'image' %}{{':'}}{% else %}{{': '}}{% endif %}{% for line in message['content'] %}{% if line['type'] == 'text' %}{{line['text']}}{% elif line['type'] == 'image' %}{{ '<image>' }}{% endif %}{% endfor %}<end_of_utterance>\n{% endfor %}{% if add_generation_prompt %}{{ 'Assistant:' }}{% endif %}"
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_vocab_size": 40,
|
3 |
+
"architectures": [
|
4 |
+
"VBertForMaskedLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_vbert.VBertConfig",
|
8 |
+
"AutoModel": "modeling_vbert.VBertModel",
|
9 |
+
"AutoModelForMaskedLM": "modeling_vbert.VBertForMaskedLM"
|
10 |
+
},
|
11 |
+
"freeze_config": {
|
12 |
+
"freeze_lm_head": true,
|
13 |
+
"freeze_text_layers": true,
|
14 |
+
"freeze_vision_layers": true
|
15 |
+
},
|
16 |
+
"hidden_size": 768,
|
17 |
+
"image_token_id": 50407,
|
18 |
+
"initializer_range": 0.02,
|
19 |
+
"max_position_embeddings": 8192,
|
20 |
+
"model_type": "vbert",
|
21 |
+
"neftune_noise_alpha": 0.0,
|
22 |
+
"output_attentions": false,
|
23 |
+
"pixel_shuffle_factor": 4,
|
24 |
+
"qk_layer_norms": false,
|
25 |
+
"scale_factor": 4,
|
26 |
+
"text_config": {
|
27 |
+
"hidden_size": 768,
|
28 |
+
"intermediate_size": 1152,
|
29 |
+
"mlp_bias": false,
|
30 |
+
"model_type": "vbert",
|
31 |
+
"num_hidden_layers": 22,
|
32 |
+
"text_model_name": "jhu-clsp/ettin-encoder-150m",
|
33 |
+
"vocab_size": 50368
|
34 |
+
},
|
35 |
+
"tie_word_embeddings": false,
|
36 |
+
"torch_dtype": "float32",
|
37 |
+
"transformers_version": null,
|
38 |
+
"use_cache": true,
|
39 |
+
"use_resampler": false,
|
40 |
+
"vision_config": {
|
41 |
+
"embed_dim": 768,
|
42 |
+
"image_size": 512,
|
43 |
+
"intermediate_size": 3072,
|
44 |
+
"model_type": "vbert",
|
45 |
+
"num_hidden_layers": 12,
|
46 |
+
"patch_size": 16,
|
47 |
+
"vision_model_name": "google/siglip2-base-patch16-512"
|
48 |
+
},
|
49 |
+
"vocab_size": 50368
|
50 |
+
}
|
configuration_vbert.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import os
|
3 |
+
|
4 |
+
from typing import Union, Any, Dict
|
5 |
+
|
6 |
+
from transformers.configuration_utils import PretrainedConfig
|
7 |
+
from transformers.utils import logging
|
8 |
+
from transformers import CONFIG_MAPPING, AutoConfig
|
9 |
+
|
10 |
+
logger = logging.get_logger(__name__)
|
11 |
+
|
12 |
+
def collect_arg_in_candidates(config, candidates, default = None) -> Any:
|
13 |
+
""" Gets the argument in a config given a list of candidates """
|
14 |
+
for c in candidates:
|
15 |
+
if hasattr(config, c):
|
16 |
+
return getattr(config, c)
|
17 |
+
elif c in config:
|
18 |
+
return config[c]
|
19 |
+
if default is not None:
|
20 |
+
return default
|
21 |
+
raise ValueError("No matching arguments found in candidates. Candidates: {}, Config: {}".format(candidates, config))
|
22 |
+
|
23 |
+
class VBertTextConfig(PretrainedConfig):
|
24 |
+
r"""
|
25 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
26 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
27 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
28 |
+
|
29 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
30 |
+
documentation from [`PretrainedConfig`] for more information.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
embed_dim (`int`, *optional*, defaults to 1152):
|
34 |
+
Dimensionality of the encoder layers and the pooler layer. (elsewhere referred to as `embed_dim`)
|
35 |
+
image_size (`int`, *optional*, defaults to 384):
|
36 |
+
The size (resolution) of each image.
|
37 |
+
"""
|
38 |
+
model_type = "vbert"
|
39 |
+
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
# Case for when vllama3 is from the hub with no vision_model_name
|
43 |
+
text_model_name="EuroBERT/EuroBERT-210m",
|
44 |
+
**kwargs,
|
45 |
+
):
|
46 |
+
self.text_model_name = text_model_name
|
47 |
+
text_config = AutoConfig.from_pretrained(text_model_name, trust_remote_code=True)
|
48 |
+
if hasattr(text_config, "text_config"):
|
49 |
+
text_config = text_config.text_config
|
50 |
+
|
51 |
+
self.hidden_size = collect_arg_in_candidates(text_config, ["hidden_size", "embed_dim"])
|
52 |
+
self.num_hidden_layers = collect_arg_in_candidates(text_config, ["num_hidden_layers", "num_hidden_blocks"])
|
53 |
+
self.intermediate_size = collect_arg_in_candidates(text_config, ["intermediate_size", "mlp_dim"])
|
54 |
+
self.mlp_bias = collect_arg_in_candidates(text_config, ["mlp_bias", "mlp_hidden_bias"], default = False)
|
55 |
+
self.vocab_size = collect_arg_in_candidates(text_config, ["vocab_size"])
|
56 |
+
|
57 |
+
super().__init__(text_model_name=text_model_name, **kwargs)
|
58 |
+
|
59 |
+
class VBertVisionConfig(PretrainedConfig):
|
60 |
+
r"""
|
61 |
+
This is the configuration class to store the configuration of a [`LlamaModel`]. It is used to instantiate an LLaMA
|
62 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
63 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
64 |
+
|
65 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
66 |
+
documentation from [`PretrainedConfig`] for more information.
|
67 |
+
|
68 |
+
Args:
|
69 |
+
embed_dim (`int`, *optional*, defaults to 1152):
|
70 |
+
Dimensionality of the encoder layers and the pooler layer. (elsewhere referred to as `embed_dim`)
|
71 |
+
image_size (`int`, *optional*, defaults to 384):
|
72 |
+
The size (resolution) of each image.
|
73 |
+
"""
|
74 |
+
model_type = "vbert"
|
75 |
+
attribute_map = {
|
76 |
+
"hidden_size": "embed_dim",
|
77 |
+
}
|
78 |
+
|
79 |
+
def __init__(
|
80 |
+
self,
|
81 |
+
# Case for when vllama3 is from the hub with no vision_model_name
|
82 |
+
vision_model_name="google/siglip2-base-patch16-512",
|
83 |
+
**kwargs,
|
84 |
+
):
|
85 |
+
self.vision_model_name = vision_model_name
|
86 |
+
vision_config = AutoConfig.from_pretrained(vision_model_name, trust_remote_code=True)
|
87 |
+
if hasattr(vision_config, "vision_config"):
|
88 |
+
vision_config = vision_config.vision_config
|
89 |
+
|
90 |
+
self.embed_dim = collect_arg_in_candidates(vision_config, ["embed_dim", "hidden_size"])
|
91 |
+
self.image_size = collect_arg_in_candidates(vision_config, ["image_size", "img_size"])
|
92 |
+
self.patch_size = collect_arg_in_candidates(vision_config, ["patch_size"])
|
93 |
+
self.num_hidden_layers = collect_arg_in_candidates(vision_config, ["num_hidden_layers", "num_hidden_blocks"])
|
94 |
+
self.intermediate_size = collect_arg_in_candidates(vision_config, ["intermediate_size", "mlp_dim"])
|
95 |
+
|
96 |
+
super().__init__(vision_model_name=vision_model_name, **kwargs)
|
97 |
+
|
98 |
+
class VBertConfig(PretrainedConfig):
|
99 |
+
r"""
|
100 |
+
This is the configuration class to store the configuration of a [`SmolVLMModel`]. It is used to instantiate a
|
101 |
+
SmolVLM model according to the specified arguments, defining the model architecture. Instantiating a
|
102 |
+
configuration with the defaults will yield a similar configuration to that of the model of the SmolVLM
|
103 |
+
[HuggingFaceTB/SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) architecture.
|
104 |
+
|
105 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
106 |
+
documentation from [`PretrainedConfig`] for more information.
|
107 |
+
|
108 |
+
Args:
|
109 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
110 |
+
Whether or not the model should cache the key/value pairs of the attention mechanism. Only
|
111 |
+
relevant if `config.is_decoder=True`.
|
112 |
+
image_token_id (`int`, *optional*, defaults to 128257):
|
113 |
+
The id of the "image" token.
|
114 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
115 |
+
Whether or not to tie the word embeddings with the token embeddings.
|
116 |
+
vision_config (`IdeficsVisionConfig` or `dict`, *optional*, defaults to `IdeficsVisionConfig`):
|
117 |
+
Custom vision config or dict for the vision tower
|
118 |
+
text_config (`PretrainedConfig` or `dict`, *optional*, defaults to `LlamaConfig`):
|
119 |
+
Custom text config or dict for the text model
|
120 |
+
scale_factor (`int`, *optional*, defaults to 2):
|
121 |
+
The scale factor for the image encoder.
|
122 |
+
pad_token_id (`int`, *optional*, defaults to 128002):
|
123 |
+
The id of the padding token.
|
124 |
+
|
125 |
+
Example:
|
126 |
+
```python
|
127 |
+
>>> from transformers import SmolVLMModel, SmolVLMConfig
|
128 |
+
>>> # Initializing configuration
|
129 |
+
>>> configuration = SmolVLMConfig()
|
130 |
+
>>> # Initializing a model from the configuration
|
131 |
+
>>> model = SmolVLMModel(configuration)
|
132 |
+
>>> # Accessing the model configuration
|
133 |
+
>>> configuration = model.config
|
134 |
+
```"""
|
135 |
+
|
136 |
+
model_type = "vbert"
|
137 |
+
is_composition = True
|
138 |
+
# sub_configs = {"text_config": VBertTextConfig, "vision_config": VBertVisionConfig}
|
139 |
+
|
140 |
+
DEFAULT_TEXT_MODEL_NAME = "EuroBERT/EuroBERT-210m"
|
141 |
+
DEFAULT_VISION_MODEL_NAME = "google/siglip2-base-patch16-512"
|
142 |
+
|
143 |
+
def __init__(
|
144 |
+
self,
|
145 |
+
text_config: Union[PretrainedConfig, Dict[str, Any]] = None,
|
146 |
+
vision_config: Union[PretrainedConfig, Dict[str, Any]] = None,
|
147 |
+
image_token_id: int = 128_257,
|
148 |
+
vocab_size=128_256,
|
149 |
+
use_cache = True,
|
150 |
+
tie_word_embeddings = False,
|
151 |
+
freeze_config = None,
|
152 |
+
pad_token_id = None,
|
153 |
+
initializer_range = 0.02,
|
154 |
+
pixel_shuffle_factor = 4,
|
155 |
+
use_resampler = False,
|
156 |
+
additional_vocab_size = 0,
|
157 |
+
neftune_noise_alpha = 0.0,
|
158 |
+
**kwargs,
|
159 |
+
):
|
160 |
+
self.image_token_id = image_token_id
|
161 |
+
self.use_cache = use_cache
|
162 |
+
self.tie_word_embeddings = tie_word_embeddings
|
163 |
+
self.scale_factor = pixel_shuffle_factor
|
164 |
+
self.additional_vocab_size = additional_vocab_size
|
165 |
+
|
166 |
+
if text_config is None:
|
167 |
+
text_config = AutoConfig.from_pretrained(self.DEFAULT_TEXT_MODEL_NAME, trust_remote_code=True)
|
168 |
+
elif isinstance(text_config, dict):
|
169 |
+
text_config = VBertTextConfig(text_config["text_model_name"])
|
170 |
+
self.text_config = text_config
|
171 |
+
|
172 |
+
if vision_config is None:
|
173 |
+
vision_config = AutoConfig.from_pretrained(self.DEFAULT_VISION_MODEL_NAME, trust_remote_code=True)
|
174 |
+
elif isinstance(vision_config, dict):
|
175 |
+
vision_config = VBertVisionConfig(vision_config["vision_model_name"])
|
176 |
+
self.vision_config = vision_config
|
177 |
+
|
178 |
+
self.freeze_config = freeze_config
|
179 |
+
|
180 |
+
# Pixel shuffle factor
|
181 |
+
self.pixel_shuffle_factor = pixel_shuffle_factor
|
182 |
+
self.use_resampler = use_resampler
|
183 |
+
|
184 |
+
self.neftune_noise_alpha = neftune_noise_alpha
|
185 |
+
|
186 |
+
self.initializer_range = initializer_range
|
187 |
+
|
188 |
+
hidden_size = kwargs.pop("hidden_size", self.text_config.hidden_size)
|
189 |
+
|
190 |
+
super().__init__(
|
191 |
+
**kwargs,
|
192 |
+
pad_token_id=pad_token_id,
|
193 |
+
tie_word_embeddings=tie_word_embeddings,
|
194 |
+
vocab_size=vocab_size,
|
195 |
+
hidden_size=hidden_size,
|
196 |
+
)
|
197 |
+
|
198 |
+
def to_dict(self):
|
199 |
+
"""
|
200 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
201 |
+
Returns:
|
202 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
203 |
+
"""
|
204 |
+
output = copy.deepcopy(self.__dict__)
|
205 |
+
|
206 |
+
output["model_type"] = self.__class__.model_type
|
207 |
+
output["vision_config"] = self.vision_config.to_dict()
|
208 |
+
output["text_config"] = self.text_config.to_dict()
|
209 |
+
# output["freeze_config"] = self.freeze_config.to_dict()
|
210 |
+
|
211 |
+
return output
|
212 |
+
|
213 |
+
# @classmethod
|
214 |
+
# def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
215 |
+
# outputs = super(VBertConfig, cls).from_pretrained(pretrained_model_name_or_path, **kwargs)
|
216 |
+
# return outputs
|
217 |
+
|
218 |
+
@classmethod
|
219 |
+
def from_pretrained_models(
|
220 |
+
cls,
|
221 |
+
text_model_name: Union[str, os.PathLike],
|
222 |
+
vision_model_name: Union[str, os.PathLike],
|
223 |
+
**kwargs
|
224 |
+
) -> "PretrainedConfig":
|
225 |
+
# text_model_config = AutoConfig.from_pretrained(text_model_name, trust_remote_code=True)
|
226 |
+
# vision_model_config = AutoConfig.from_pretrained(vision_model_name, trust_remote_code=True)
|
227 |
+
text_model_config = VBertTextConfig(text_model_name)
|
228 |
+
vision_model_config = VBertVisionConfig(vision_model_name)
|
229 |
+
return cls(
|
230 |
+
text_config=text_model_config,
|
231 |
+
vision_config=vision_model_config,
|
232 |
+
**kwargs
|
233 |
+
)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7258bef432f17b1010de6f93d9651d8298da83cea3430dac26b6caf43864162c
|
3 |
+
size 1165468824
|
modeling_vbert.py
ADDED
@@ -0,0 +1,633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.nn import CrossEntropyLoss
|
5 |
+
from typing import Optional, Tuple, Union, List
|
6 |
+
|
7 |
+
from transformers.cache_utils import DynamicCache
|
8 |
+
|
9 |
+
from .configuration_vbert import VBertConfig
|
10 |
+
|
11 |
+
from transformers import AutoModel, AutoConfig, AutoModelForMaskedLM, PreTrainedModel
|
12 |
+
from transformers.modeling_outputs import BaseModelOutput
|
13 |
+
from transformers.models.bert.modeling_bert import BaseModelOutputWithPoolingAndCrossAttentions, MaskedLMOutput
|
14 |
+
|
15 |
+
from typing import List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.utils.checkpoint
|
19 |
+
|
20 |
+
from dataclasses import dataclass
|
21 |
+
|
22 |
+
from transformers import logging
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
class DecoupledEmbedding(nn.Embedding):
|
28 |
+
# Derived from https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
|
29 |
+
"""
|
30 |
+
Implements a decoupling of parameters to allow freezing (or not) a subset of the embeddings.
|
31 |
+
In practise, the regular `weight` can be trained or frozen (i.e. `partially_freeze=True`), and if `num_additional_embeddings` > 0, then it will create `num_additional_embeddings` additional parameters that are always trained.
|
32 |
+
If `num_additional_embeddings=0`, then the module defaults back to the regular behavior of `nn.Embedding`.
|
33 |
+
"""
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
num_embeddings,
|
38 |
+
num_additional_embeddings,
|
39 |
+
embedding_dim,
|
40 |
+
partially_freeze=False,
|
41 |
+
device=None,
|
42 |
+
dtype=None,
|
43 |
+
padding_idx=None,
|
44 |
+
**kwargs,
|
45 |
+
) -> None:
|
46 |
+
"""
|
47 |
+
num_additional_embeddings: int. Number of additional embeddings. Only useful when you `partially_freeze=True`.
|
48 |
+
partially_freeze: bool. If True, the regular `weight` will be frozen. `additional_weight` is never frozen.
|
49 |
+
|
50 |
+
Note: there are a lot of other parameters to initialize a standard `nn.Embedding` such as `padding_idx`, `max_norm` or `norm_type`. We are not supporting these.
|
51 |
+
"""
|
52 |
+
if padding_idx is not None and padding_idx > num_embeddings:
|
53 |
+
raise ValueError(f"padding_idx must be within num_embeddings. Got {padding_idx} and {num_embeddings}")
|
54 |
+
super().__init__(
|
55 |
+
num_embeddings=num_embeddings,
|
56 |
+
embedding_dim=embedding_dim,
|
57 |
+
device=device,
|
58 |
+
dtype=dtype,
|
59 |
+
padding_idx=padding_idx,
|
60 |
+
**kwargs,
|
61 |
+
)
|
62 |
+
self.num_embeddings = num_embeddings
|
63 |
+
self.padding_idx = padding_idx
|
64 |
+
self.num_additional_embeddings = num_additional_embeddings
|
65 |
+
self.partially_freeze = partially_freeze
|
66 |
+
|
67 |
+
if partially_freeze:
|
68 |
+
self.weight.requires_grad_(False)
|
69 |
+
|
70 |
+
if self.num_additional_embeddings > 0:
|
71 |
+
self.additional_embedding = nn.Embedding(
|
72 |
+
num_embeddings=self.num_additional_embeddings,
|
73 |
+
embedding_dim=embedding_dim,
|
74 |
+
device=device,
|
75 |
+
dtype=dtype,
|
76 |
+
)
|
77 |
+
|
78 |
+
def forward(self, input_ids):
|
79 |
+
"""
|
80 |
+
we have 2 embeddings, with different indices - one pretrained self.weight and another
|
81 |
+
self.additional_embedding.weight that is being trained.
|
82 |
+
|
83 |
+
in order to make a lookup of the input ids, we:
|
84 |
+
1. find out the indices of the entries belonging to the 2nd embedding
|
85 |
+
2. extract those values while subtracting the size of the first embedding (num_embeddings),
|
86 |
+
since the 2nd embedding starts from 0 and not num_embeddings
|
87 |
+
3. perform the 2nd embedding lookup
|
88 |
+
4. now we handle the 1st embedding, we overwrite indices belonging to the 2nd embedding with a padding index
|
89 |
+
5. perform the 1st embedding lookup
|
90 |
+
6. now we overwrite the values in the 1st embedding lookup with the values of the 2nd embedding lookup
|
91 |
+
|
92 |
+
note: for the 1st embedding lookup we could have looked up only the low indices and not do
|
93 |
+
the padding, but then we have to create a new tensor and populate it with 2 tensors that are
|
94 |
+
spread out across various indices - i.e. not a simple concat - I haven't benchmarked the
|
95 |
+
complex case if it's any faster, given that seqlens are usually relatively short it's
|
96 |
+
probably not faster or if faster not by much - but might be a good idea to measure.
|
97 |
+
|
98 |
+
"""
|
99 |
+
if self.num_additional_embeddings == 0:
|
100 |
+
return self.additional_embedding(input_ids)
|
101 |
+
|
102 |
+
# Clone so that we don't modify the original input_ids later on
|
103 |
+
input_ids = input_ids.clone()
|
104 |
+
additional_vocab_indices = torch.where(input_ids >= self.num_embeddings)
|
105 |
+
input_ids_additional_vocab = input_ids[additional_vocab_indices]
|
106 |
+
additional_embeddings = self.additional_embedding(input_ids_additional_vocab - self.num_embeddings)
|
107 |
+
|
108 |
+
# for successful lookup replace input_ids with 0, the results of these will be discarded anyway
|
109 |
+
input_ids[additional_vocab_indices] = 0
|
110 |
+
full_vector = F.embedding(input_ids, self.weight)
|
111 |
+
|
112 |
+
# overwrite the records with high indices
|
113 |
+
full_vector[additional_vocab_indices] = additional_embeddings
|
114 |
+
|
115 |
+
return full_vector
|
116 |
+
|
117 |
+
def extra_repr(self) -> str:
|
118 |
+
return "num_embeddings={}, num_additional_embeddings={}, embedding_dim={}, partially_freeze={}".format(
|
119 |
+
self.num_embeddings,
|
120 |
+
self.num_additional_embeddings,
|
121 |
+
self.embedding_dim,
|
122 |
+
self.partially_freeze,
|
123 |
+
)
|
124 |
+
|
125 |
+
@dataclass
|
126 |
+
class VBertBaseModelOutput(BaseModelOutput):
|
127 |
+
"""
|
128 |
+
Base class for SmolVLM model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
129 |
+
Args:
|
130 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
131 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
132 |
+
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
|
133 |
+
hidden_size)` is output.
|
134 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
135 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
136 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
|
137 |
+
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
|
138 |
+
encoder_sequence_length, embed_size_per_head)`.
|
139 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
|
140 |
+
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
|
141 |
+
input) to speed up sequential decoding.
|
142 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
143 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
144 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
145 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
146 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
147 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
148 |
+
sequence_length)`.
|
149 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
150 |
+
heads.
|
151 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
152 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
153 |
+
sequence_length, hidden_size)`.
|
154 |
+
image_hidden_states of the model produced by the vision encoder
|
155 |
+
"""
|
156 |
+
|
157 |
+
last_hidden_state: torch.FloatTensor = None
|
158 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
159 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
160 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
161 |
+
|
162 |
+
@dataclass
|
163 |
+
class VBertMaskedLMOutput(MaskedLMOutput):
|
164 |
+
"""
|
165 |
+
Base class for SmolVLM model's outputs that may also contain a past key/values (to speed up sequential decoding).
|
166 |
+
Args:
|
167 |
+
loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
|
168 |
+
Masked language modeling (MLM) loss.
|
169 |
+
logits (`torch.FloatTensor`):
|
170 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
171 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
172 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
173 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
174 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
175 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
176 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
177 |
+
sequence_length)`.
|
178 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
179 |
+
heads.
|
180 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
181 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
182 |
+
sequence_length, hidden_size)`.
|
183 |
+
image_hidden_states of the model produced by the vision encoder
|
184 |
+
"""
|
185 |
+
loss: Optional[torch.FloatTensor] = None
|
186 |
+
logits: torch.FloatTensor = None
|
187 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
188 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
189 |
+
image_hidden_states: Optional[torch.FloatTensor] = None
|
190 |
+
|
191 |
+
class VBertSimpleMLP(nn.Module):
|
192 |
+
def __init__(self, input_size, output_size):
|
193 |
+
super().__init__()
|
194 |
+
self.proj = nn.Linear(input_size, output_size, bias=False)
|
195 |
+
|
196 |
+
def forward(self, x):
|
197 |
+
return self.proj(x)
|
198 |
+
|
199 |
+
class VBertConnector(nn.Module):
|
200 |
+
def __init__(self, config):
|
201 |
+
super().__init__()
|
202 |
+
self.scale_factor = config.pixel_shuffle_factor
|
203 |
+
self.modality_projection = VBertSimpleMLP(
|
204 |
+
input_size=config.vision_config.hidden_size * (config.scale_factor**2),
|
205 |
+
output_size=config.text_config.hidden_size
|
206 |
+
)
|
207 |
+
|
208 |
+
def pixel_shuffle(self, x, scale_factor):
|
209 |
+
bsz, seq, embed_dim = x.size()
|
210 |
+
height = width = int(seq**0.5)
|
211 |
+
x = x.view(bsz, height, width, embed_dim)
|
212 |
+
x = x.view(bsz, height, int(width / scale_factor), embed_dim * scale_factor)
|
213 |
+
x = x.permute(0, 2, 1, 3)
|
214 |
+
x = x.reshape(bsz, int(width / scale_factor), int(height / scale_factor), embed_dim * (scale_factor**2))
|
215 |
+
x = x.permute(0, 2, 1, 3)
|
216 |
+
x = x.reshape(bsz, int(seq / (scale_factor**2)), embed_dim * (scale_factor**2))
|
217 |
+
return x
|
218 |
+
|
219 |
+
def forward(self, image_hidden_states):
|
220 |
+
image_hidden_states = self.pixel_shuffle(image_hidden_states, self.scale_factor)
|
221 |
+
image_hidden_states = self.modality_projection(image_hidden_states)
|
222 |
+
return image_hidden_states
|
223 |
+
|
224 |
+
class VBertPreTrainedModel(PreTrainedModel):
|
225 |
+
config_class = VBertConfig
|
226 |
+
base_model_prefix = "model"
|
227 |
+
supports_gradient_checkpointing = True
|
228 |
+
_no_split_modules = ["VBertDecoderLayer"]
|
229 |
+
_skip_keys_device_placement = "past_key_values"
|
230 |
+
_supports_flash_attn_2 = True
|
231 |
+
_supports_sdpa = True
|
232 |
+
_supports_cache_class = True
|
233 |
+
|
234 |
+
def _init_weights(self, module):
|
235 |
+
"""Initialize the weights."""
|
236 |
+
|
237 |
+
std = (
|
238 |
+
self.config.initializer_range
|
239 |
+
if hasattr(self.config, "initializer_range")
|
240 |
+
else self.config.text_config.initializer_range
|
241 |
+
)
|
242 |
+
|
243 |
+
if hasattr(module, "class_embedding"):
|
244 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
245 |
+
|
246 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
247 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
248 |
+
if module.bias is not None:
|
249 |
+
module.bias.data.zero_()
|
250 |
+
elif isinstance(module, nn.Embedding):
|
251 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
252 |
+
if module.padding_idx is not None:
|
253 |
+
module.weight.data[module.padding_idx].zero_()
|
254 |
+
|
255 |
+
class VBertModel(VBertPreTrainedModel):
|
256 |
+
"""
|
257 |
+
A subclass of Idefics3Model. We do *not* remove or block the call to inputs_merger
|
258 |
+
in forward. Instead, we override inputs_merger here with custom logic.
|
259 |
+
"""
|
260 |
+
|
261 |
+
def __init__(self, config: VBertConfig, **kwargs):
|
262 |
+
super().__init__(config)
|
263 |
+
|
264 |
+
self.vision_model = VBertModel.init_vision_model(config, **kwargs)
|
265 |
+
self.connector = VBertConnector(config)
|
266 |
+
self.text_model = VBertModel.init_language_model(config, **kwargs)
|
267 |
+
|
268 |
+
self.image_seq_len = int(
|
269 |
+
((config.vision_config.image_size // config.vision_config.patch_size) ** 2) / (config.scale_factor**2)
|
270 |
+
)
|
271 |
+
self.image_token_id = self.config.image_token_id
|
272 |
+
|
273 |
+
self.post_init()
|
274 |
+
|
275 |
+
@staticmethod
|
276 |
+
def init_vision_model(config: VBertConfig, **kwargs):
|
277 |
+
vision_model_config = AutoConfig.from_pretrained(
|
278 |
+
config.vision_config.vision_model_name,
|
279 |
+
trust_remote_code=True,
|
280 |
+
**kwargs,
|
281 |
+
)
|
282 |
+
|
283 |
+
vision_model = AutoModel.from_config(vision_model_config, trust_remote_code=True, **kwargs)
|
284 |
+
|
285 |
+
if hasattr(vision_model, "vision_model"):
|
286 |
+
# If the model has a vision_model attribute, it means it's a wrapper around another model
|
287 |
+
vision_model = vision_model.vision_model
|
288 |
+
|
289 |
+
return vision_model
|
290 |
+
|
291 |
+
@staticmethod
|
292 |
+
def init_language_model(config: VBertConfig, **kwargs):
|
293 |
+
text_model_config = AutoConfig.from_pretrained(
|
294 |
+
config.text_config.text_model_name,
|
295 |
+
trust_remote_code=True,
|
296 |
+
**kwargs,
|
297 |
+
)
|
298 |
+
|
299 |
+
text_model = AutoModel.from_config(text_model_config, trust_remote_code=True, **kwargs)
|
300 |
+
# extractor = regex_lookup(language_model_name, language_model_name2model)
|
301 |
+
|
302 |
+
embed_layer = DecoupledEmbedding(
|
303 |
+
num_embeddings=text_model_config.vocab_size,
|
304 |
+
num_additional_embeddings=config.additional_vocab_size,
|
305 |
+
embedding_dim=config.hidden_size,
|
306 |
+
partially_freeze=config.freeze_config["freeze_text_layers"],
|
307 |
+
padding_idx=config.pad_token_id,
|
308 |
+
)
|
309 |
+
|
310 |
+
text_model.set_input_embeddings(embed_layer)
|
311 |
+
|
312 |
+
return text_model
|
313 |
+
|
314 |
+
def enable_input_require_grads(self):
|
315 |
+
"""
|
316 |
+
Enables the gradients for the input embeddings.
|
317 |
+
|
318 |
+
This is useful for lora when using gradient checkpointing.
|
319 |
+
c.f. https://github.com/huggingface/peft/issues/1402#issuecomment-1913675032
|
320 |
+
|
321 |
+
Override to set output.requires_grad = True for both the decoder's and vision model's embeddings.
|
322 |
+
"""
|
323 |
+
|
324 |
+
def get_lowest_module(module):
|
325 |
+
if len(list(module.children())) == 0:
|
326 |
+
# If the module has no children, it is a leaf module (e.g., Linear, Conv2d, etc.)
|
327 |
+
return module
|
328 |
+
else:
|
329 |
+
# Recursively call the function on each child module
|
330 |
+
return get_lowest_module(list(module.children())[0])
|
331 |
+
|
332 |
+
def make_inputs_require_grads(module, input, output):
|
333 |
+
output.requires_grad_(True)
|
334 |
+
|
335 |
+
self._text_require_grads_hook = self.get_input_embeddings().register_forward_hook(make_inputs_require_grads)
|
336 |
+
self._vision_require_grads_hook = get_lowest_module(self.vision_model).register_forward_hook(
|
337 |
+
make_inputs_require_grads
|
338 |
+
)
|
339 |
+
|
340 |
+
def disable_input_require_grads(self):
|
341 |
+
self._text_require_grads_hook.remove()
|
342 |
+
self._vision_require_grads_hook.remove()
|
343 |
+
|
344 |
+
def get_input_embeddings(self):
|
345 |
+
return self.text_model.get_input_embeddings()
|
346 |
+
|
347 |
+
def set_input_embeddings(self, value):
|
348 |
+
self.text_model.set_input_embeddings(value)
|
349 |
+
|
350 |
+
def inputs_merger(
|
351 |
+
self, input_ids: torch.LongTensor, inputs_embeds: torch.Tensor, image_hidden_states: torch.Tensor
|
352 |
+
):
|
353 |
+
"""
|
354 |
+
This method aims at merging the token embeddings with the image hidden states into one single sequence of vectors that are fed to the transformer LM.
|
355 |
+
The merging happens as follows:
|
356 |
+
- The text token sequence is: `tok_1 tok_2 tok_3 <fake_token_around_image> <image> <image> ... <image> <fake_token_around_image> tok_4`.
|
357 |
+
- We get the image hidden states for the image through the vision encoder and that hidden state, after a pixel shuffle operation, is then projected into the text embedding space.
|
358 |
+
We thus have a sequence of image hidden states of size (1, image_seq_len, hidden_dim), where 1 is for batch_size of 1 image and hidden_dim is the hidden_dim of the LM transformer.
|
359 |
+
- The merging happens so that we obtain the following sequence: `vector_tok_1 vector_tok_2 vector_tok_3 vector_fake_tok_around_image {sequence of image_seq_len image hidden states} vector_fake_toke_around_image vector_tok_4`. That sequence is fed to the LM.
|
360 |
+
- To fit the format of that sequence, `input_ids`, `input_embeds`, `attention_mask` are all 3 adapted to insert the image hidden states.
|
361 |
+
"""
|
362 |
+
_, patch_size, _ = image_hidden_states.shape
|
363 |
+
|
364 |
+
image_mask = input_ids == self.image_token_id
|
365 |
+
num_image_tokens = image_mask.sum(dim=1)
|
366 |
+
if not torch.all(num_image_tokens % patch_size == 0):
|
367 |
+
raise ValueError("At least one sample has <image> tokens not divisible by patch_size.")
|
368 |
+
|
369 |
+
blocks_per_sample = num_image_tokens // patch_size
|
370 |
+
|
371 |
+
offsets = torch.nn.functional.pad(blocks_per_sample.cumsum(dim=0), (1, 0), value=0)
|
372 |
+
block_offset = offsets[:-1]
|
373 |
+
row_cum = image_mask.cumsum(dim=-1)
|
374 |
+
chunk_idx = (row_cum - 1) // patch_size
|
375 |
+
local_idx = (row_cum - 1) % patch_size
|
376 |
+
block_idx = block_offset.unsqueeze(1) + chunk_idx
|
377 |
+
|
378 |
+
image_embeds = torch.zeros_like(inputs_embeds)
|
379 |
+
image_embeds[image_mask] = image_hidden_states[block_idx[image_mask], local_idx[image_mask], :]
|
380 |
+
|
381 |
+
merged_embeds = torch.where(image_mask.unsqueeze(-1), image_embeds, inputs_embeds)
|
382 |
+
return merged_embeds
|
383 |
+
|
384 |
+
def forward(
|
385 |
+
self,
|
386 |
+
input_ids: torch.LongTensor = None,
|
387 |
+
attention_mask: Optional[torch.Tensor] = None,
|
388 |
+
position_ids: Optional[torch.LongTensor] = None,
|
389 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
390 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
391 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
392 |
+
pixel_attention_mask: Optional[torch.BoolTensor] = None,
|
393 |
+
image_hidden_states: Optional[torch.FloatTensor] = None,
|
394 |
+
use_cache: Optional[bool] = None,
|
395 |
+
output_attentions: Optional[bool] = None,
|
396 |
+
output_hidden_states: Optional[bool] = None,
|
397 |
+
return_dict: Optional[bool] = None,
|
398 |
+
cache_position: Optional[torch.LongTensor] = None,
|
399 |
+
) -> Union[Tuple, BaseModelOutputWithPoolingAndCrossAttentions]:
|
400 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
401 |
+
output_hidden_states = (
|
402 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
403 |
+
)
|
404 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
405 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
406 |
+
|
407 |
+
if self.training and self.text_model.gradient_checkpointing and use_cache:
|
408 |
+
logger.warning_once(
|
409 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
410 |
+
)
|
411 |
+
use_cache = False
|
412 |
+
|
413 |
+
# retrieve input_ids and inputs_embeds
|
414 |
+
if input_ids is not None:
|
415 |
+
batch_size, seq_length = input_ids.shape
|
416 |
+
elif inputs_embeds is not None:
|
417 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
418 |
+
else:
|
419 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
420 |
+
|
421 |
+
past_seen_tokens = 0
|
422 |
+
if use_cache:
|
423 |
+
if past_key_values is None:
|
424 |
+
past_key_values = DynamicCache()
|
425 |
+
past_seen_tokens = past_key_values.get_seq_length()
|
426 |
+
|
427 |
+
if inputs_embeds is not None and input_ids is None and past_seen_tokens == 0:
|
428 |
+
raise ValueError("When first calling the model, if input_embeds are passed, input_ids should not be None.")
|
429 |
+
|
430 |
+
if inputs_embeds is None:
|
431 |
+
inputs_embeds = self.text_model.get_input_embeddings()(input_ids).to(input_ids.device)
|
432 |
+
|
433 |
+
# START VISUAL INPUTS INTEGRATION
|
434 |
+
if pixel_values is not None and image_hidden_states is not None:
|
435 |
+
raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time")
|
436 |
+
elif pixel_values is not None:
|
437 |
+
batch_size, num_images, num_channels, height, width = pixel_values.shape
|
438 |
+
pixel_values = pixel_values
|
439 |
+
pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:])
|
440 |
+
|
441 |
+
# Remove padding images - padding images are full 0.
|
442 |
+
nb_values_per_image = pixel_values.shape[1:].numel()
|
443 |
+
real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image
|
444 |
+
|
445 |
+
if not any(real_images_inds):
|
446 |
+
# no images, leave one empty image.
|
447 |
+
real_images_inds[0] = True
|
448 |
+
|
449 |
+
pixel_values = pixel_values[real_images_inds].contiguous()
|
450 |
+
|
451 |
+
# Handle the vision attention mask
|
452 |
+
if pixel_attention_mask is None:
|
453 |
+
pixel_attention_mask = torch.ones(
|
454 |
+
size=[pixel_values.shape[i] for i in (0, 2, 3)],
|
455 |
+
dtype=torch.bool,
|
456 |
+
device=pixel_values.device,
|
457 |
+
)
|
458 |
+
else:
|
459 |
+
# Remove padding images from the mask
|
460 |
+
pixel_attention_mask = pixel_attention_mask.view(
|
461 |
+
batch_size * num_images, *pixel_attention_mask.shape[2:]
|
462 |
+
)
|
463 |
+
pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous()
|
464 |
+
|
465 |
+
# patch_size = self.config.vision_config.patch_size
|
466 |
+
# patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size)
|
467 |
+
# patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size)
|
468 |
+
# patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
|
469 |
+
|
470 |
+
# Get sequence from the vision encoder
|
471 |
+
image_hidden_states = self.vision_model(
|
472 |
+
pixel_values=pixel_values,
|
473 |
+
# patch_attention_mask=patch_attention_mask,
|
474 |
+
).last_hidden_state
|
475 |
+
|
476 |
+
# Modality projection & resampling
|
477 |
+
image_hidden_states = self.connector(image_hidden_states)
|
478 |
+
|
479 |
+
elif image_hidden_states is not None:
|
480 |
+
image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=input_ids.device)
|
481 |
+
|
482 |
+
if inputs_embeds is not None and image_hidden_states is not None:
|
483 |
+
# When we embed, we don't want to replace the potential image_token_id that we generated by images
|
484 |
+
# that simply don't exist
|
485 |
+
inputs_embeds = self.inputs_merger(
|
486 |
+
input_ids=input_ids,
|
487 |
+
inputs_embeds=inputs_embeds,
|
488 |
+
image_hidden_states=image_hidden_states,
|
489 |
+
)
|
490 |
+
|
491 |
+
outputs = self.text_model(
|
492 |
+
inputs_embeds=inputs_embeds,
|
493 |
+
attention_mask=attention_mask,
|
494 |
+
position_ids=position_ids,
|
495 |
+
output_attentions=output_attentions,
|
496 |
+
output_hidden_states=output_hidden_states,
|
497 |
+
return_dict=return_dict,
|
498 |
+
# past_key_values=past_key_values,
|
499 |
+
# use_cache=use_cache,
|
500 |
+
# cache_position=cache_position,
|
501 |
+
)
|
502 |
+
|
503 |
+
if not return_dict:
|
504 |
+
return tuple(v for v in [*outputs, image_hidden_states] if v is not None)
|
505 |
+
|
506 |
+
return VBertBaseModelOutput(
|
507 |
+
last_hidden_state=outputs.last_hidden_state,
|
508 |
+
hidden_states=outputs.hidden_states,
|
509 |
+
attentions=outputs.attentions,
|
510 |
+
image_hidden_states=image_hidden_states,
|
511 |
+
)
|
512 |
+
|
513 |
+
class VBertLMHead(nn.Module):
|
514 |
+
def __init__(self, config, **kwargs):
|
515 |
+
super().__init__()
|
516 |
+
pretrained_config = AutoConfig.from_pretrained(
|
517 |
+
config.text_config.text_model_name,
|
518 |
+
trust_remote_code=True,
|
519 |
+
**kwargs,
|
520 |
+
)
|
521 |
+
pretrained_model = AutoModelForMaskedLM.from_config(pretrained_config, trust_remote_code=True, **kwargs)
|
522 |
+
|
523 |
+
self.head = pretrained_model.head
|
524 |
+
self.decoder = pretrained_model.decoder
|
525 |
+
|
526 |
+
def forward(self, hidden_states):
|
527 |
+
hidden_states = self.head(hidden_states)
|
528 |
+
hidden_states = self.decoder(hidden_states)
|
529 |
+
return hidden_states
|
530 |
+
|
531 |
+
class VBertForMaskedLM(VBertPreTrainedModel):
|
532 |
+
# _tied_weights_keys = ["predictions.decoder.bias", "cls.predictions.decoder.weight"]
|
533 |
+
|
534 |
+
def __init__(self, config, **kwargs):
|
535 |
+
super().__init__(config)
|
536 |
+
|
537 |
+
self.image_token_id = config.image_token_id
|
538 |
+
self.in_features = config.hidden_size
|
539 |
+
self.out_additional_features = config.additional_vocab_size
|
540 |
+
self.vocab_size = config.vocab_size
|
541 |
+
|
542 |
+
if config.is_decoder:
|
543 |
+
logger.warning(
|
544 |
+
"If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for "
|
545 |
+
"bi-directional self-attention."
|
546 |
+
)
|
547 |
+
|
548 |
+
self.model = VBertModel(config, **kwargs)
|
549 |
+
self.lm_head = VBertLMHead(config, **kwargs)
|
550 |
+
if self.out_additional_features > 0:
|
551 |
+
self.additional_fc = nn.Linear(
|
552 |
+
in_features=self.in_features,
|
553 |
+
out_features=self.out_additional_features,
|
554 |
+
bias=False,
|
555 |
+
)
|
556 |
+
|
557 |
+
# Initialize weights and apply final processing
|
558 |
+
self.post_init()
|
559 |
+
|
560 |
+
def forward(
|
561 |
+
self,
|
562 |
+
input_ids: torch.LongTensor = None,
|
563 |
+
attention_mask: Optional[torch.Tensor] = None,
|
564 |
+
position_ids: Optional[torch.LongTensor] = None,
|
565 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
566 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
567 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
568 |
+
pixel_attention_mask: Optional[torch.BoolTensor] = None,
|
569 |
+
image_hidden_states: Optional[torch.FloatTensor] = None,
|
570 |
+
labels: Optional[torch.LongTensor] = None,
|
571 |
+
use_cache: Optional[bool] = None,
|
572 |
+
output_attentions: Optional[bool] = None,
|
573 |
+
output_hidden_states: Optional[bool] = None,
|
574 |
+
return_dict: Optional[bool] = None,
|
575 |
+
) -> Union[Tuple, VBertMaskedLMOutput]:
|
576 |
+
r"""
|
577 |
+
Args:
|
578 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
579 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
580 |
+
config.vocab_size]` or `model.image_token_id` (where `model` is your instance of `Idefics3ForConditionalGeneration`).
|
581 |
+
Tokens with indices set to `model.image_token_id` are ignored (masked), the loss is only
|
582 |
+
computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
583 |
+
```"""
|
584 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
585 |
+
output_hidden_states = (
|
586 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
587 |
+
)
|
588 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
589 |
+
|
590 |
+
|
591 |
+
# Pass the inputs to VBertModel
|
592 |
+
outputs = self.model(
|
593 |
+
input_ids=input_ids,
|
594 |
+
attention_mask=attention_mask,
|
595 |
+
position_ids=position_ids,
|
596 |
+
past_key_values=past_key_values,
|
597 |
+
inputs_embeds=inputs_embeds,
|
598 |
+
pixel_values=pixel_values,
|
599 |
+
pixel_attention_mask=pixel_attention_mask,
|
600 |
+
image_hidden_states=image_hidden_states,
|
601 |
+
use_cache=use_cache,
|
602 |
+
output_attentions=output_attentions,
|
603 |
+
output_hidden_states=output_hidden_states,
|
604 |
+
return_dict=return_dict,
|
605 |
+
)
|
606 |
+
|
607 |
+
# Pass the outputs to the MLM head
|
608 |
+
hidden_states = outputs[0]
|
609 |
+
|
610 |
+
logits = self.lm_head(hidden_states)
|
611 |
+
if self.out_additional_features > 0:
|
612 |
+
proj_states = self.lm_head.head(hidden_states)
|
613 |
+
additional_features = self.additional_fc(proj_states)
|
614 |
+
logits = torch.cat((logits, additional_features), -1)
|
615 |
+
logits = logits.float()
|
616 |
+
|
617 |
+
masked_lm_loss = None
|
618 |
+
if labels is not None:
|
619 |
+
# print the ratio of not ignored tokens
|
620 |
+
loss_fct = CrossEntropyLoss()
|
621 |
+
masked_lm_loss = loss_fct(logits.view(-1, self.vocab_size + self.out_additional_features), labels.view(-1))
|
622 |
+
|
623 |
+
if not return_dict:
|
624 |
+
output = (logits,) + outputs[2:]
|
625 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
626 |
+
|
627 |
+
return VBertMaskedLMOutput(
|
628 |
+
loss=masked_lm_loss,
|
629 |
+
logits=logits,
|
630 |
+
hidden_states=outputs.hidden_states,
|
631 |
+
attentions=outputs.attentions,
|
632 |
+
image_hidden_states=outputs.image_hidden_states,
|
633 |
+
)
|
preprocessor_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": true,
|
3 |
+
"do_image_splitting": true,
|
4 |
+
"do_normalize": true,
|
5 |
+
"do_pad": true,
|
6 |
+
"do_rescale": true,
|
7 |
+
"do_resize": true,
|
8 |
+
"image_mean": [
|
9 |
+
0.5,
|
10 |
+
0.5,
|
11 |
+
0.5
|
12 |
+
],
|
13 |
+
"image_processor_type": "Idefics3ImageProcessor",
|
14 |
+
"image_std": [
|
15 |
+
0.5,
|
16 |
+
0.5,
|
17 |
+
0.5
|
18 |
+
],
|
19 |
+
"max_image_size": {
|
20 |
+
"longest_edge": 512
|
21 |
+
},
|
22 |
+
"processor_class": "Idefics3Processor",
|
23 |
+
"resample": 1,
|
24 |
+
"rescale_factor": 0.00392156862745098,
|
25 |
+
"size": {
|
26 |
+
"longest_edge": 2048
|
27 |
+
}
|
28 |
+
}
|
processor_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"image_seq_len": 64,
|
3 |
+
"processor_class": "Idefics3Processor"
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<global-img>",
|
4 |
+
"<row_1_col_1>",
|
5 |
+
"<row_1_col_2>",
|
6 |
+
"<row_1_col_3>",
|
7 |
+
"<row_1_col_4>",
|
8 |
+
"<row_1_col_5>",
|
9 |
+
"<row_1_col_6>",
|
10 |
+
"<row_2_col_1>",
|
11 |
+
"<row_2_col_2>",
|
12 |
+
"<row_2_col_3>",
|
13 |
+
"<row_2_col_4>",
|
14 |
+
"<row_2_col_5>",
|
15 |
+
"<row_2_col_6>",
|
16 |
+
"<row_3_col_1>",
|
17 |
+
"<row_3_col_2>",
|
18 |
+
"<row_3_col_3>",
|
19 |
+
"<row_3_col_4>",
|
20 |
+
"<row_3_col_5>",
|
21 |
+
"<row_3_col_6>",
|
22 |
+
"<row_4_col_1>",
|
23 |
+
"<row_4_col_2>",
|
24 |
+
"<row_4_col_3>",
|
25 |
+
"<row_4_col_4>",
|
26 |
+
"<row_4_col_5>",
|
27 |
+
"<row_4_col_6>",
|
28 |
+
"<row_5_col_1>",
|
29 |
+
"<row_5_col_2>",
|
30 |
+
"<row_5_col_3>",
|
31 |
+
"<row_5_col_4>",
|
32 |
+
"<row_5_col_5>",
|
33 |
+
"<row_5_col_6>",
|
34 |
+
"<row_6_col_1>",
|
35 |
+
"<row_6_col_2>",
|
36 |
+
"<row_6_col_3>",
|
37 |
+
"<row_6_col_4>",
|
38 |
+
"<row_6_col_5>",
|
39 |
+
"<row_6_col_6>",
|
40 |
+
"<end_of_utterance>",
|
41 |
+
"<fake_token_around_image>",
|
42 |
+
"<image>"
|
43 |
+
],
|
44 |
+
"cls_token": {
|
45 |
+
"content": "[CLS]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
},
|
51 |
+
"mask_token": {
|
52 |
+
"content": "[MASK]",
|
53 |
+
"lstrip": true,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false
|
57 |
+
},
|
58 |
+
"pad_token": {
|
59 |
+
"content": "[PAD]",
|
60 |
+
"lstrip": false,
|
61 |
+
"normalized": false,
|
62 |
+
"rstrip": false,
|
63 |
+
"single_word": false
|
64 |
+
},
|
65 |
+
"sep_token": {
|
66 |
+
"content": "[SEP]",
|
67 |
+
"lstrip": false,
|
68 |
+
"normalized": false,
|
69 |
+
"rstrip": false,
|
70 |
+
"single_word": false
|
71 |
+
},
|
72 |
+
"unk_token": {
|
73 |
+
"content": "[UNK]",
|
74 |
+
"lstrip": false,
|
75 |
+
"normalized": false,
|
76 |
+
"rstrip": false,
|
77 |
+
"single_word": false
|
78 |
+
}
|
79 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,1310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "|||IP_ADDRESS|||",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": true,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": false
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<|padding|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"50254": {
|
20 |
+
"content": " ",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": true,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": false
|
26 |
+
},
|
27 |
+
"50255": {
|
28 |
+
"content": " ",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": false
|
34 |
+
},
|
35 |
+
"50256": {
|
36 |
+
"content": " ",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": true,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": false
|
42 |
+
},
|
43 |
+
"50257": {
|
44 |
+
"content": " ",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": true,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": false
|
50 |
+
},
|
51 |
+
"50258": {
|
52 |
+
"content": " ",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": true,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": false
|
58 |
+
},
|
59 |
+
"50259": {
|
60 |
+
"content": " ",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": true,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": false
|
66 |
+
},
|
67 |
+
"50260": {
|
68 |
+
"content": " ",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": true,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": false
|
74 |
+
},
|
75 |
+
"50261": {
|
76 |
+
"content": " ",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": true,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": false
|
82 |
+
},
|
83 |
+
"50262": {
|
84 |
+
"content": " ",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": true,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": false
|
90 |
+
},
|
91 |
+
"50263": {
|
92 |
+
"content": " ",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": true,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": false
|
98 |
+
},
|
99 |
+
"50264": {
|
100 |
+
"content": " ",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": true,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": false
|
106 |
+
},
|
107 |
+
"50265": {
|
108 |
+
"content": " ",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": true,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": false
|
114 |
+
},
|
115 |
+
"50266": {
|
116 |
+
"content": " ",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": true,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": false
|
122 |
+
},
|
123 |
+
"50267": {
|
124 |
+
"content": " ",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": true,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": false
|
130 |
+
},
|
131 |
+
"50268": {
|
132 |
+
"content": " ",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": true,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": false
|
138 |
+
},
|
139 |
+
"50269": {
|
140 |
+
"content": " ",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": true,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": false
|
146 |
+
},
|
147 |
+
"50270": {
|
148 |
+
"content": " ",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": true,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": false
|
154 |
+
},
|
155 |
+
"50271": {
|
156 |
+
"content": " ",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": true,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": false
|
162 |
+
},
|
163 |
+
"50272": {
|
164 |
+
"content": " ",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": true,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": false
|
170 |
+
},
|
171 |
+
"50273": {
|
172 |
+
"content": " ",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": true,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": false
|
178 |
+
},
|
179 |
+
"50274": {
|
180 |
+
"content": " ",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": true,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": false
|
186 |
+
},
|
187 |
+
"50275": {
|
188 |
+
"content": " ",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": true,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": false
|
194 |
+
},
|
195 |
+
"50276": {
|
196 |
+
"content": " ",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": true,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": false
|
202 |
+
},
|
203 |
+
"50277": {
|
204 |
+
"content": "|||EMAIL_ADDRESS|||",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": true,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": false
|
210 |
+
},
|
211 |
+
"50278": {
|
212 |
+
"content": "|||PHONE_NUMBER|||",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": true,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": false
|
218 |
+
},
|
219 |
+
"50279": {
|
220 |
+
"content": "<|endoftext|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"50280": {
|
228 |
+
"content": "[UNK]",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"50281": {
|
236 |
+
"content": "[CLS]",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"50282": {
|
244 |
+
"content": "[SEP]",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"50283": {
|
252 |
+
"content": "[PAD]",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"50284": {
|
260 |
+
"content": "[MASK]",
|
261 |
+
"lstrip": true,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"50285": {
|
268 |
+
"content": "[unused0]",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": true,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": false
|
274 |
+
},
|
275 |
+
"50286": {
|
276 |
+
"content": "[unused1]",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": true,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": false
|
282 |
+
},
|
283 |
+
"50287": {
|
284 |
+
"content": "[unused2]",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": true,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": false
|
290 |
+
},
|
291 |
+
"50288": {
|
292 |
+
"content": "[unused3]",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": true,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": false
|
298 |
+
},
|
299 |
+
"50289": {
|
300 |
+
"content": "[unused4]",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": true,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": false
|
306 |
+
},
|
307 |
+
"50290": {
|
308 |
+
"content": "[unused5]",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": true,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": false
|
314 |
+
},
|
315 |
+
"50291": {
|
316 |
+
"content": "[unused6]",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": true,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": false
|
322 |
+
},
|
323 |
+
"50292": {
|
324 |
+
"content": "[unused7]",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": true,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": false
|
330 |
+
},
|
331 |
+
"50293": {
|
332 |
+
"content": "[unused8]",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": true,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": false
|
338 |
+
},
|
339 |
+
"50294": {
|
340 |
+
"content": "[unused9]",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": true,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": false
|
346 |
+
},
|
347 |
+
"50295": {
|
348 |
+
"content": "[unused10]",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": true,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": false
|
354 |
+
},
|
355 |
+
"50296": {
|
356 |
+
"content": "[unused11]",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": true,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": false
|
362 |
+
},
|
363 |
+
"50297": {
|
364 |
+
"content": "[unused12]",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": true,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": false
|
370 |
+
},
|
371 |
+
"50298": {
|
372 |
+
"content": "[unused13]",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": true,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": false
|
378 |
+
},
|
379 |
+
"50299": {
|
380 |
+
"content": "[unused14]",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": true,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": false
|
386 |
+
},
|
387 |
+
"50300": {
|
388 |
+
"content": "[unused15]",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": true,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": false
|
394 |
+
},
|
395 |
+
"50301": {
|
396 |
+
"content": "[unused16]",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": true,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": false
|
402 |
+
},
|
403 |
+
"50302": {
|
404 |
+
"content": "[unused17]",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": true,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": false
|
410 |
+
},
|
411 |
+
"50303": {
|
412 |
+
"content": "[unused18]",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": true,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": false
|
418 |
+
},
|
419 |
+
"50304": {
|
420 |
+
"content": "[unused19]",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": true,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": false
|
426 |
+
},
|
427 |
+
"50305": {
|
428 |
+
"content": "[unused20]",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": true,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": false
|
434 |
+
},
|
435 |
+
"50306": {
|
436 |
+
"content": "[unused21]",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": true,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": false
|
442 |
+
},
|
443 |
+
"50307": {
|
444 |
+
"content": "[unused22]",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": true,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": false
|
450 |
+
},
|
451 |
+
"50308": {
|
452 |
+
"content": "[unused23]",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": true,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": false
|
458 |
+
},
|
459 |
+
"50309": {
|
460 |
+
"content": "[unused24]",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": true,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": false
|
466 |
+
},
|
467 |
+
"50310": {
|
468 |
+
"content": "[unused25]",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": true,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": false
|
474 |
+
},
|
475 |
+
"50311": {
|
476 |
+
"content": "[unused26]",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": true,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": false
|
482 |
+
},
|
483 |
+
"50312": {
|
484 |
+
"content": "[unused27]",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": true,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": false
|
490 |
+
},
|
491 |
+
"50313": {
|
492 |
+
"content": "[unused28]",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": true,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": false
|
498 |
+
},
|
499 |
+
"50314": {
|
500 |
+
"content": "[unused29]",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": true,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": false
|
506 |
+
},
|
507 |
+
"50315": {
|
508 |
+
"content": "[unused30]",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": true,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": false
|
514 |
+
},
|
515 |
+
"50316": {
|
516 |
+
"content": "[unused31]",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": true,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": false
|
522 |
+
},
|
523 |
+
"50317": {
|
524 |
+
"content": "[unused32]",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": true,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": false
|
530 |
+
},
|
531 |
+
"50318": {
|
532 |
+
"content": "[unused33]",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": true,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": false
|
538 |
+
},
|
539 |
+
"50319": {
|
540 |
+
"content": "[unused34]",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": true,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": false
|
546 |
+
},
|
547 |
+
"50320": {
|
548 |
+
"content": "[unused35]",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": true,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": false
|
554 |
+
},
|
555 |
+
"50321": {
|
556 |
+
"content": "[unused36]",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": true,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": false
|
562 |
+
},
|
563 |
+
"50322": {
|
564 |
+
"content": "[unused37]",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": true,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": false
|
570 |
+
},
|
571 |
+
"50323": {
|
572 |
+
"content": "[unused38]",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": true,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": false
|
578 |
+
},
|
579 |
+
"50324": {
|
580 |
+
"content": "[unused39]",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": true,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": false
|
586 |
+
},
|
587 |
+
"50325": {
|
588 |
+
"content": "[unused40]",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": true,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": false
|
594 |
+
},
|
595 |
+
"50326": {
|
596 |
+
"content": "[unused41]",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": true,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": false
|
602 |
+
},
|
603 |
+
"50327": {
|
604 |
+
"content": "[unused42]",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": true,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": false
|
610 |
+
},
|
611 |
+
"50328": {
|
612 |
+
"content": "[unused43]",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": true,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": false
|
618 |
+
},
|
619 |
+
"50329": {
|
620 |
+
"content": "[unused44]",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": true,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": false
|
626 |
+
},
|
627 |
+
"50330": {
|
628 |
+
"content": "[unused45]",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": true,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": false
|
634 |
+
},
|
635 |
+
"50331": {
|
636 |
+
"content": "[unused46]",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": true,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": false
|
642 |
+
},
|
643 |
+
"50332": {
|
644 |
+
"content": "[unused47]",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": true,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": false
|
650 |
+
},
|
651 |
+
"50333": {
|
652 |
+
"content": "[unused48]",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": true,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": false
|
658 |
+
},
|
659 |
+
"50334": {
|
660 |
+
"content": "[unused49]",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": true,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": false
|
666 |
+
},
|
667 |
+
"50335": {
|
668 |
+
"content": "[unused50]",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": true,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": false
|
674 |
+
},
|
675 |
+
"50336": {
|
676 |
+
"content": "[unused51]",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": true,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": false
|
682 |
+
},
|
683 |
+
"50337": {
|
684 |
+
"content": "[unused52]",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": true,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": false
|
690 |
+
},
|
691 |
+
"50338": {
|
692 |
+
"content": "[unused53]",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": true,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": false
|
698 |
+
},
|
699 |
+
"50339": {
|
700 |
+
"content": "[unused54]",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": true,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": false
|
706 |
+
},
|
707 |
+
"50340": {
|
708 |
+
"content": "[unused55]",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": true,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": false
|
714 |
+
},
|
715 |
+
"50341": {
|
716 |
+
"content": "[unused56]",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": true,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": false
|
722 |
+
},
|
723 |
+
"50342": {
|
724 |
+
"content": "[unused57]",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": true,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": false
|
730 |
+
},
|
731 |
+
"50343": {
|
732 |
+
"content": "[unused58]",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": true,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": false
|
738 |
+
},
|
739 |
+
"50344": {
|
740 |
+
"content": "[unused59]",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": true,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": false
|
746 |
+
},
|
747 |
+
"50345": {
|
748 |
+
"content": "[unused60]",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": true,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": false
|
754 |
+
},
|
755 |
+
"50346": {
|
756 |
+
"content": "[unused61]",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": true,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": false
|
762 |
+
},
|
763 |
+
"50347": {
|
764 |
+
"content": "[unused62]",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": true,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": false
|
770 |
+
},
|
771 |
+
"50348": {
|
772 |
+
"content": "[unused63]",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": true,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": false
|
778 |
+
},
|
779 |
+
"50349": {
|
780 |
+
"content": "[unused64]",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": true,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": false
|
786 |
+
},
|
787 |
+
"50350": {
|
788 |
+
"content": "[unused65]",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": true,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": false
|
794 |
+
},
|
795 |
+
"50351": {
|
796 |
+
"content": "[unused66]",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": true,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": false
|
802 |
+
},
|
803 |
+
"50352": {
|
804 |
+
"content": "[unused67]",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": true,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": false
|
810 |
+
},
|
811 |
+
"50353": {
|
812 |
+
"content": "[unused68]",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": true,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": false
|
818 |
+
},
|
819 |
+
"50354": {
|
820 |
+
"content": "[unused69]",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": true,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": false
|
826 |
+
},
|
827 |
+
"50355": {
|
828 |
+
"content": "[unused70]",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": true,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": false
|
834 |
+
},
|
835 |
+
"50356": {
|
836 |
+
"content": "[unused71]",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": true,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": false
|
842 |
+
},
|
843 |
+
"50357": {
|
844 |
+
"content": "[unused72]",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": true,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": false
|
850 |
+
},
|
851 |
+
"50358": {
|
852 |
+
"content": "[unused73]",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": true,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": false
|
858 |
+
},
|
859 |
+
"50359": {
|
860 |
+
"content": "[unused74]",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": true,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": false
|
866 |
+
},
|
867 |
+
"50360": {
|
868 |
+
"content": "[unused75]",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": true,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": false
|
874 |
+
},
|
875 |
+
"50361": {
|
876 |
+
"content": "[unused76]",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": true,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": false
|
882 |
+
},
|
883 |
+
"50362": {
|
884 |
+
"content": "[unused77]",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": true,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": false
|
890 |
+
},
|
891 |
+
"50363": {
|
892 |
+
"content": "[unused78]",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": true,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": false
|
898 |
+
},
|
899 |
+
"50364": {
|
900 |
+
"content": "[unused79]",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": true,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": false
|
906 |
+
},
|
907 |
+
"50365": {
|
908 |
+
"content": "[unused80]",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": true,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": false
|
914 |
+
},
|
915 |
+
"50366": {
|
916 |
+
"content": "[unused81]",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": true,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": false
|
922 |
+
},
|
923 |
+
"50367": {
|
924 |
+
"content": "[unused82]",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": true,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": false
|
930 |
+
},
|
931 |
+
"50368": {
|
932 |
+
"content": "<global-img>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"50369": {
|
940 |
+
"content": "<row_1_col_1>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"50370": {
|
948 |
+
"content": "<row_1_col_2>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"50371": {
|
956 |
+
"content": "<row_1_col_3>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"50372": {
|
964 |
+
"content": "<row_1_col_4>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"50373": {
|
972 |
+
"content": "<row_1_col_5>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"50374": {
|
980 |
+
"content": "<row_1_col_6>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"50375": {
|
988 |
+
"content": "<row_2_col_1>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"50376": {
|
996 |
+
"content": "<row_2_col_2>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"50377": {
|
1004 |
+
"content": "<row_2_col_3>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"50378": {
|
1012 |
+
"content": "<row_2_col_4>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"50379": {
|
1020 |
+
"content": "<row_2_col_5>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"50380": {
|
1028 |
+
"content": "<row_2_col_6>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"50381": {
|
1036 |
+
"content": "<row_3_col_1>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"50382": {
|
1044 |
+
"content": "<row_3_col_2>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"50383": {
|
1052 |
+
"content": "<row_3_col_3>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"50384": {
|
1060 |
+
"content": "<row_3_col_4>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"50385": {
|
1068 |
+
"content": "<row_3_col_5>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"50386": {
|
1076 |
+
"content": "<row_3_col_6>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"50387": {
|
1084 |
+
"content": "<row_4_col_1>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"50388": {
|
1092 |
+
"content": "<row_4_col_2>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"50389": {
|
1100 |
+
"content": "<row_4_col_3>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"50390": {
|
1108 |
+
"content": "<row_4_col_4>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"50391": {
|
1116 |
+
"content": "<row_4_col_5>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"50392": {
|
1124 |
+
"content": "<row_4_col_6>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"50393": {
|
1132 |
+
"content": "<row_5_col_1>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"50394": {
|
1140 |
+
"content": "<row_5_col_2>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"50395": {
|
1148 |
+
"content": "<row_5_col_3>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"50396": {
|
1156 |
+
"content": "<row_5_col_4>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"50397": {
|
1164 |
+
"content": "<row_5_col_5>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"50398": {
|
1172 |
+
"content": "<row_5_col_6>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"50399": {
|
1180 |
+
"content": "<row_6_col_1>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"50400": {
|
1188 |
+
"content": "<row_6_col_2>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"50401": {
|
1196 |
+
"content": "<row_6_col_3>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"50402": {
|
1204 |
+
"content": "<row_6_col_4>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"50403": {
|
1212 |
+
"content": "<row_6_col_5>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"50404": {
|
1220 |
+
"content": "<row_6_col_6>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"50405": {
|
1228 |
+
"content": "<end_of_utterance>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"50406": {
|
1236 |
+
"content": "<fake_token_around_image>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"50407": {
|
1244 |
+
"content": "<image>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
}
|
1251 |
+
},
|
1252 |
+
"additional_special_tokens": [
|
1253 |
+
"<global-img>",
|
1254 |
+
"<row_1_col_1>",
|
1255 |
+
"<row_1_col_2>",
|
1256 |
+
"<row_1_col_3>",
|
1257 |
+
"<row_1_col_4>",
|
1258 |
+
"<row_1_col_5>",
|
1259 |
+
"<row_1_col_6>",
|
1260 |
+
"<row_2_col_1>",
|
1261 |
+
"<row_2_col_2>",
|
1262 |
+
"<row_2_col_3>",
|
1263 |
+
"<row_2_col_4>",
|
1264 |
+
"<row_2_col_5>",
|
1265 |
+
"<row_2_col_6>",
|
1266 |
+
"<row_3_col_1>",
|
1267 |
+
"<row_3_col_2>",
|
1268 |
+
"<row_3_col_3>",
|
1269 |
+
"<row_3_col_4>",
|
1270 |
+
"<row_3_col_5>",
|
1271 |
+
"<row_3_col_6>",
|
1272 |
+
"<row_4_col_1>",
|
1273 |
+
"<row_4_col_2>",
|
1274 |
+
"<row_4_col_3>",
|
1275 |
+
"<row_4_col_4>",
|
1276 |
+
"<row_4_col_5>",
|
1277 |
+
"<row_4_col_6>",
|
1278 |
+
"<row_5_col_1>",
|
1279 |
+
"<row_5_col_2>",
|
1280 |
+
"<row_5_col_3>",
|
1281 |
+
"<row_5_col_4>",
|
1282 |
+
"<row_5_col_5>",
|
1283 |
+
"<row_5_col_6>",
|
1284 |
+
"<row_6_col_1>",
|
1285 |
+
"<row_6_col_2>",
|
1286 |
+
"<row_6_col_3>",
|
1287 |
+
"<row_6_col_4>",
|
1288 |
+
"<row_6_col_5>",
|
1289 |
+
"<row_6_col_6>",
|
1290 |
+
"<end_of_utterance>",
|
1291 |
+
"<fake_token_around_image>",
|
1292 |
+
"<image>"
|
1293 |
+
],
|
1294 |
+
"clean_up_tokenization_spaces": true,
|
1295 |
+
"cls_token": "[CLS]",
|
1296 |
+
"extra_special_tokens": {},
|
1297 |
+
"legacy": false,
|
1298 |
+
"mask_token": "[MASK]",
|
1299 |
+
"model_input_names": [
|
1300 |
+
"input_ids",
|
1301 |
+
"attention_mask",
|
1302 |
+
"pixel_values",
|
1303 |
+
"pixel_attention_mask"
|
1304 |
+
],
|
1305 |
+
"model_max_length": 8192,
|
1306 |
+
"pad_token": "[PAD]",
|
1307 |
+
"sep_token": "[SEP]",
|
1308 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
1309 |
+
"unk_token": "[UNK]"
|
1310 |
+
}
|