Mollel commited on
Commit
1197e93
·
verified ·
1 Parent(s): 1be69db

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +20 -68
README.md CHANGED
@@ -1,83 +1,35 @@
1
  ---
2
- library_name: transformers
3
- license: apache-2.0
4
  base_model: openai/whisper-small
5
- tags:
6
- - generated_from_trainer
7
  datasets:
8
- - common_voice_17_0
9
- metrics:
10
- - wer
 
11
  model-index:
12
- - name: ASR-Swahili-Small
13
  results:
14
  - task:
15
- name: Automatic Speech Recognition
16
  type: automatic-speech-recognition
 
17
  dataset:
18
- name: common_voice_17_0
19
- type: common_voice_17_0
20
- config: sw
21
- split: test
22
- args: sw
23
  metrics:
24
- - name: Wer
25
- type: wer
26
- value: 53.40302063717767
27
  ---
28
 
29
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
- should probably proofread and complete it, then remove this comment. -->
31
-
32
- # ASR-Swahili-Small
33
-
34
- This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_17_0 dataset.
35
- It achieves the following results on the evaluation set:
36
- - Loss: 0.8496
37
- - Model Preparation Time: 0.003
38
- - Wer: 53.4030
39
-
40
- ## Model description
41
-
42
- More information needed
43
-
44
- ## Intended uses & limitations
45
-
46
- More information needed
47
-
48
- ## Training and evaluation data
49
-
50
- More information needed
51
-
52
- ## Training procedure
53
-
54
- ### Training hyperparameters
55
-
56
- The following hyperparameters were used during training:
57
- - learning_rate: 1e-05
58
- - train_batch_size: 32
59
- - eval_batch_size: 16
60
- - seed: 42
61
- - gradient_accumulation_steps: 4
62
- - total_train_batch_size: 128
63
- - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
64
- - lr_scheduler_type: linear
65
- - lr_scheduler_warmup_steps: 50
66
- - num_epochs: 1
67
- - mixed_precision_training: Native AMP
68
-
69
- ### Training results
70
 
71
- | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer |
72
- |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:-------:|
73
- | 1.5828 | 0.32 | 50 | 1.1291 | 0.003 | 63.7351 |
74
- | 0.8342 | 0.64 | 100 | 0.8994 | 0.003 | 56.2661 |
75
- | 0.7015 | 0.96 | 150 | 0.8496 | 0.003 | 53.4030 |
76
 
 
77
 
78
- ### Framework versions
 
 
79
 
80
- - Transformers 4.49.0
81
- - Pytorch 2.6.0+cu124
82
- - Datasets 3.3.1
83
- - Tokenizers 0.21.0
 
1
  ---
 
 
2
  base_model: openai/whisper-small
 
 
3
  datasets:
4
+ - mozilla-foundation/common_voice_17_0
5
+ language: sw
6
+ library_name: transformers
7
+ license: apache-2.0
8
  model-index:
9
+ - name: Finetuned openai/whisper-small on Swahili
10
  results:
11
  - task:
 
12
  type: automatic-speech-recognition
13
+ name: Speech-to-Text
14
  dataset:
15
+ name: Common Voice (Swahili)
16
+ type: common_voice
 
 
 
17
  metrics:
18
+ - type: wer
19
+ value: 53.403
 
20
  ---
21
 
22
+ # Finetuned openai/whisper-small on 20000 Swahili training audio samples from mozilla-foundation/common_voice_17_0.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
+ This model was created from the Mozilla.ai Blueprint:
25
+ [speech-to-text-finetune](https://github.com/mozilla-ai/speech-to-text-finetune).
 
 
 
26
 
27
+ ## Evaluation results on 12253 audio samples of Swahili:
28
 
29
+ ### Baseline model (before finetuning) on Swahili
30
+ - Word Error Rate: 133.795
31
+ - Loss: 2.459
32
 
33
+ ### Finetuned model (after finetuning) on Swahili
34
+ - Word Error Rate: 53.403
35
+ - Loss: 0.85