Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,89 +1,35 @@
|
|
| 1 |
---
|
| 2 |
-
library_name: transformers
|
| 3 |
-
license: apache-2.0
|
| 4 |
base_model: openai/whisper-small
|
| 5 |
-
tags:
|
| 6 |
-
- generated_from_trainer
|
| 7 |
datasets:
|
| 8 |
-
- common_voice_17_0
|
| 9 |
-
|
| 10 |
-
|
|
|
|
| 11 |
model-index:
|
| 12 |
-
- name:
|
| 13 |
results:
|
| 14 |
- task:
|
| 15 |
-
name: Automatic Speech Recognition
|
| 16 |
type: automatic-speech-recognition
|
|
|
|
| 17 |
dataset:
|
| 18 |
-
name:
|
| 19 |
-
type:
|
| 20 |
-
config: sw
|
| 21 |
-
split: test
|
| 22 |
-
args: sw
|
| 23 |
metrics:
|
| 24 |
-
-
|
| 25 |
-
|
| 26 |
-
value: 43.87610007301795
|
| 27 |
---
|
| 28 |
|
| 29 |
-
|
| 30 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 31 |
-
|
| 32 |
-
# ASR-Swahili-Small
|
| 33 |
-
|
| 34 |
-
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_17_0 dataset.
|
| 35 |
-
It achieves the following results on the evaluation set:
|
| 36 |
-
- Loss: 0.6535
|
| 37 |
-
- Model Preparation Time: 0.0032
|
| 38 |
-
- Wer: 43.8761
|
| 39 |
-
|
| 40 |
-
## Model description
|
| 41 |
-
|
| 42 |
-
More information needed
|
| 43 |
-
|
| 44 |
-
## Intended uses & limitations
|
| 45 |
-
|
| 46 |
-
More information needed
|
| 47 |
-
|
| 48 |
-
## Training and evaluation data
|
| 49 |
-
|
| 50 |
-
More information needed
|
| 51 |
-
|
| 52 |
-
## Training procedure
|
| 53 |
-
|
| 54 |
-
### Training hyperparameters
|
| 55 |
-
|
| 56 |
-
The following hyperparameters were used during training:
|
| 57 |
-
- learning_rate: 1e-05
|
| 58 |
-
- train_batch_size: 32
|
| 59 |
-
- eval_batch_size: 16
|
| 60 |
-
- seed: 42
|
| 61 |
-
- gradient_accumulation_steps: 4
|
| 62 |
-
- total_train_batch_size: 128
|
| 63 |
-
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 64 |
-
- lr_scheduler_type: linear
|
| 65 |
-
- lr_scheduler_warmup_steps: 50
|
| 66 |
-
- num_epochs: 1
|
| 67 |
-
- mixed_precision_training: Native AMP
|
| 68 |
-
|
| 69 |
-
### Training results
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
| 1.5279 | 0.1103 | 50 | 1.1295 | 0.0032 | 64.1770 |
|
| 74 |
-
| 0.8155 | 0.2206 | 100 | 0.8755 | 0.0032 | 56.6888 |
|
| 75 |
-
| 0.6529 | 0.3309 | 150 | 0.7871 | 0.0032 | 49.3640 |
|
| 76 |
-
| 0.5837 | 0.4413 | 200 | 0.7383 | 0.0032 | 47.9315 |
|
| 77 |
-
| 0.5479 | 0.5516 | 250 | 0.7044 | 0.0032 | 46.3078 |
|
| 78 |
-
| 0.5195 | 0.6619 | 300 | 0.6823 | 0.0032 | 45.4835 |
|
| 79 |
-
| 0.505 | 0.7722 | 350 | 0.6674 | 0.0032 | 44.5285 |
|
| 80 |
-
| 0.4985 | 0.8825 | 400 | 0.6570 | 0.0032 | 43.8828 |
|
| 81 |
-
| 0.4841 | 0.9928 | 450 | 0.6535 | 0.0032 | 43.8761 |
|
| 82 |
|
|
|
|
| 83 |
|
| 84 |
-
###
|
|
|
|
|
|
|
| 85 |
|
| 86 |
-
|
| 87 |
-
-
|
| 88 |
-
-
|
| 89 |
-
- Tokenizers 0.21.0
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
base_model: openai/whisper-small
|
|
|
|
|
|
|
| 3 |
datasets:
|
| 4 |
+
- mozilla-foundation/common_voice_17_0
|
| 5 |
+
language: sw
|
| 6 |
+
library_name: transformers
|
| 7 |
+
license: apache-2.0
|
| 8 |
model-index:
|
| 9 |
+
- name: Finetuned openai/whisper-small on Swahili
|
| 10 |
results:
|
| 11 |
- task:
|
|
|
|
| 12 |
type: automatic-speech-recognition
|
| 13 |
+
name: Speech-to-Text
|
| 14 |
dataset:
|
| 15 |
+
name: Common Voice (Swahili)
|
| 16 |
+
type: common_voice
|
|
|
|
|
|
|
|
|
|
| 17 |
metrics:
|
| 18 |
+
- type: wer
|
| 19 |
+
value: 43.876
|
|
|
|
| 20 |
---
|
| 21 |
|
| 22 |
+
# Finetuned openai/whisper-small on 58000 Swahili training audio samples from mozilla-foundation/common_voice_17_0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
This model was created from the Mozilla.ai Blueprint:
|
| 25 |
+
[speech-to-text-finetune](https://github.com/mozilla-ai/speech-to-text-finetune).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
## Evaluation results on 12253 audio samples of Swahili:
|
| 28 |
|
| 29 |
+
### Baseline model (before finetuning) on Swahili
|
| 30 |
+
- Word Error Rate: 133.795
|
| 31 |
+
- Loss: 2.459
|
| 32 |
|
| 33 |
+
### Finetuned model (after finetuning) on Swahili
|
| 34 |
+
- Word Error Rate: 43.876
|
| 35 |
+
- Loss: 0.653
|
|
|