--- library_name: transformers license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-ISIC-dec2024testepo7 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.944235770008668 --- # beit-base-patch16-224-pt22k-ft22k-finetuned-ISIC-dec2024testepo7 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1532 - Accuracy: 0.9442 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.7021 | 0.9985 | 486 | 0.1905 | 0.9214 | | 0.7584 | 1.9985 | 972 | 0.1713 | 0.9291 | | 0.5877 | 2.9985 | 1458 | 0.1655 | 0.9333 | | 0.6842 | 3.9985 | 1944 | 0.1591 | 0.9383 | | 0.5674 | 4.9985 | 2430 | 0.1506 | 0.9406 | | 0.5275 | 5.9985 | 2916 | 0.1450 | 0.9439 | | 0.3942 | 6.9985 | 3402 | 0.1532 | 0.9442 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cpu - Datasets 3.2.0 - Tokenizers 0.21.0