--- library_name: transformers license: other base_model: google/mobilenet_v2_1.0_224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: mobilenet_v2_1.0_224-finetuned-ISIC-dec2024test results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9276220745449292 --- # mobilenet_v2_1.0_224-finetuned-ISIC-dec2024test This model is a fine-tuned version of [google/mobilenet_v2_1.0_224](https://huggingface.co/google/mobilenet_v2_1.0_224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1763 - Accuracy: 0.9276 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.9055 | 0.9985 | 486 | 0.1955 | 0.9195 | | 0.8797 | 1.9985 | 972 | 0.2074 | 0.9138 | | 0.8144 | 2.9985 | 1458 | 0.1797 | 0.9263 | | 0.9243 | 3.9985 | 1944 | 0.1862 | 0.9233 | | 0.8199 | 4.9985 | 2430 | 0.1763 | 0.9276 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cpu - Datasets 3.2.0 - Tokenizers 0.21.0