--- library_name: transformers license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-50-finetuned-ISIC-dec2024gray results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.916498121930078 --- # resnet-50-finetuned-ISIC-dec2024gray This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2017 - Accuracy: 0.9165 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.033 | 1.0 | 974 | 0.2387 | 0.9038 | | 0.9838 | 2.0 | 1948 | 0.2174 | 0.9106 | | 0.9124 | 3.0 | 2922 | 0.2072 | 0.9148 | | 0.8492 | 4.0 | 3896 | 0.2037 | 0.9163 | | 0.9004 | 4.9954 | 4865 | 0.2017 | 0.9165 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.6.0.dev20241225+cu126 - Datasets 3.2.0 - Tokenizers 0.21.0