Furkan Gözükara

MonsterMMORPG

AI & ML interests

Check out my youtube page SECourses for Stable Diffusion tutorials. They will help you tremendously in every topic

Articles

Organizations

MonsterMMORPG's activity

replied to their post about 2 hours ago
reacted to their post with 🤯🤝👍🧠😎🤗❤️👀🚀🔥 about 3 hours ago
view post
Post
151
Kohya brought massive improvements to FLUX LoRA (as low as 4 GB GPUs) and DreamBooth / Fine-Tuning (as low as 6 GB GPUs) training - check attached images in full size to see full details

You can download all configs and full instructions

> https://www.patreon.com/posts/112099700 - Fine Tuning post

> https://www.patreon.com/posts/110879657 - LoRA post

Kohya brought massive improvements to FLUX LoRA and DreamBooth / Fine-Tuning (min 6GB GPU) training.

Now as low as 4GB GPUs can train FLUX LoRA with decent quality and 24GB and below GPUs got a huge speed boost when doing Full DreamBooth / Fine-Tuning training

You need minimum 4GB GPU to do a FLUX LoRA training and minimum 6 GB GPU to do FLUX DreamBooth / Full Fine-Tuning training. It is just mind blowing.

You can download all configs and full instructions > https://www.patreon.com/posts/112099700

The above post also has 1-click installers and downloaders for Windows, RunPod and Massed Compute

The model downloader scripts also updated and downloading 30+GB models takes total 1 minute on Massed Compute

You can read the recent updates here : https://github.com/kohya-ss/sd-scripts/tree/sd3?tab=readme-ov-file#recent-updates

This is the Kohya GUI branch : https://github.com/bmaltais/kohya_ss/tree/sd3-flux.1

Key thing to reduce VRAM usage is using block swap

Kohya implemented the logic of OneTrainer to improve block swapping speed significantly and now it is supported for LoRAs as well

Now you can do FP16 training with LoRAs on 24 GB and below GPUs

Now you can train a FLUX LoRA on a 4 GB GPU - key is FP8, block swap and using certain layers training (remember single layer LoRA training)

It took me more than 1 day to test all newer configs, their VRAM demands, their relative step speeds and prepare the configs :)
posted an update about 3 hours ago
view post
Post
151
Kohya brought massive improvements to FLUX LoRA (as low as 4 GB GPUs) and DreamBooth / Fine-Tuning (as low as 6 GB GPUs) training - check attached images in full size to see full details

You can download all configs and full instructions

> https://www.patreon.com/posts/112099700 - Fine Tuning post

> https://www.patreon.com/posts/110879657 - LoRA post

Kohya brought massive improvements to FLUX LoRA and DreamBooth / Fine-Tuning (min 6GB GPU) training.

Now as low as 4GB GPUs can train FLUX LoRA with decent quality and 24GB and below GPUs got a huge speed boost when doing Full DreamBooth / Fine-Tuning training

You need minimum 4GB GPU to do a FLUX LoRA training and minimum 6 GB GPU to do FLUX DreamBooth / Full Fine-Tuning training. It is just mind blowing.

You can download all configs and full instructions > https://www.patreon.com/posts/112099700

The above post also has 1-click installers and downloaders for Windows, RunPod and Massed Compute

The model downloader scripts also updated and downloading 30+GB models takes total 1 minute on Massed Compute

You can read the recent updates here : https://github.com/kohya-ss/sd-scripts/tree/sd3?tab=readme-ov-file#recent-updates

This is the Kohya GUI branch : https://github.com/bmaltais/kohya_ss/tree/sd3-flux.1

Key thing to reduce VRAM usage is using block swap

Kohya implemented the logic of OneTrainer to improve block swapping speed significantly and now it is supported for LoRAs as well

Now you can do FP16 training with LoRAs on 24 GB and below GPUs

Now you can train a FLUX LoRA on a 4 GB GPU - key is FP8, block swap and using certain layers training (remember single layer LoRA training)

It took me more than 1 day to test all newer configs, their VRAM demands, their relative step speeds and prepare the configs :)
replied to maxiw's post 1 day ago
reacted to maxiw's post with 🤗🚀👍🔥❤️ 4 days ago
view post
Post
4279
I was curious to see what people post here on HF so I created a dataset with all HF Posts: maxiw/hf-posts

Some interesting stats:

Top 5 Authors by Total Impressions:
-----------------------------------
@merve : 171,783 impressions (68 posts)
@fdaudens : 135,253 impressions (81 posts)
@singhsidhukuldeep : 122,591 impressions (81 posts)
@akhaliq : 119,526 impressions (78 posts)
@MonsterMMORPG : 112,500 impressions (45 posts)

Top 5 Users by Number of Reactions Given:
----------------------------------------
@osanseviero : 1278 reactions
@clem : 910 reactions
@John6666 : 899 reactions
@victor : 674 reactions
@samusenps : 655 reactions

Top 5 Most Used Reactions:
-------------------------
❤️: 7048 times
🔥: 5921 times
👍: 4856 times
🚀: 2549 times
🤗: 2065 times
·
replied to maxiw's post 4 days ago
view reply

Wow I am surprised i am on the list :D