Mungert commited on
Commit
f04727a
·
verified ·
1 Parent(s): fa6a8f3

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +197 -0
README.md ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ tags:
7
+ - nvidia
8
+ - AceInstruct
9
+ - code
10
+ - math
11
+ - general_domain
12
+ - instruct_model
13
+ - pytorch
14
+ ---
15
+
16
+ # <span style="color: #7FFF7F;">AceInstruct-7B GGUF Models</span>
17
+
18
+
19
+ ## <span style="color: #7F7FFF;">Model Generation Details</span>
20
+
21
+ This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`b9c3eefd`](https://github.com/ggerganov/llama.cpp/commit/b9c3eefde1b67104bd993485ff38dd62abe9d70c).
22
+
23
+
24
+
25
+
26
+
27
+ ---
28
+
29
+ ## <span style="color: #7FFF7F;">Quantization Beyond the IMatrix</span>
30
+
31
+ I've been experimenting with a new quantization approach that selectively elevates the precision of key layers beyond what the default IMatrix configuration provides.
32
+
33
+ In my testing, standard IMatrix quantization underperforms at lower bit depths, especially with Mixture of Experts (MoE) models. To address this, I'm using the `--tensor-type` option in `llama.cpp` to manually "bump" important layers to higher precision. You can see the implementation here:
34
+ 👉 [Layer bumping with llama.cpp](https://github.com/Mungert69/GGUFModelBuilder/blob/main/model-converter/tensor_list_builder.py)
35
+
36
+ While this does increase model file size, it significantly improves precision for a given quantization level.
37
+
38
+ ### **I'd love your feedback—have you tried this? How does it perform for you?**
39
+
40
+
41
+
42
+
43
+ ---
44
+
45
+ <a href="https://readyforquantum.com/huggingface_gguf_selection_guide.html" style="color: #7FFF7F;">
46
+ Click here to get info on choosing the right GGUF model format
47
+ </a>
48
+
49
+ ---
50
+
51
+
52
+
53
+ <!--Begin Original Model Card-->
54
+
55
+
56
+ ## Introduction
57
+ We introduce AceInstruct, a family of advanced SFT models for coding, mathematics, and general-purpose tasks. The AceInstruct family, which includes AceInstruct-1.5B, 7B, and 72B, is <b>Improved using Qwen</b>.
58
+ These models are fine-tuned on Qwen2.5-Base using [general SFT datasets](https://huggingface.co/datasets/nvidia/AceMath-Instruct-Training-Data). These same datasets are also used in the training of [AceMath-Instruct](https://huggingface.co/nvidia/AceMath-72B-Instruct). Different from AceMath-Instruct which is specialized for math questions, AceInstruct is versatile and can be applied to a wide range of domains. Benchmark evaluations across coding, mathematics, and general knowledge tasks demonstrate that AceInstruct delivers performance comparable to Qwen2.5-Instruct.
59
+
60
+ For more information about AceInstruct, check our [website](https://research.nvidia.com/labs/adlr/acemath/) and [paper](https://arxiv.org/abs/2412.15084).
61
+
62
+
63
+ ## Benchmark Results
64
+ | | Qwen2.5-1.5B-Instruct | AceInstruct-1.5B | Qwen2.5-7B-Instruct | AceInstruct-7B | Qwen2.5-72B-Instruct | AceInstruct-72B |
65
+ | --------- |:-----:|:-----:|:-----:|:-----:|:-----:|:-----:|
66
+ | HumanEval | 61.60 | 73.17 | 84.80 | 85.37 | 86.60 | 89.63 |
67
+ | MBPP | 63.20 | 65.76 | 79.20 | 74.32 | 88.20 | 83.66 |
68
+ | GSM8K | 73.20 | 80.44 | 91.60 | 93.10 | 95.80 | 96.36 |
69
+ | MATH | 55.20 | 60.34 | 75.50 | 76.40 | 83.10 | 84.50 |
70
+ | MMLU | 58.37 | 58.17 | 74.51 | 74.68 | 84.67 | 83.88 |
71
+ | MMLU Pro | 32.40 | 33.78 | 56.30 | 54.50 | 71.10 | 66.10 |
72
+ | Average | 57.33 | 61.94 | 76.99 | 76.40 | 84.91 | 84.02 |
73
+
74
+ We compare AceInstruct to Qwen2.5-Instruct across coding, mathematics, and general knowledge tasks. We find that AceInstruct-1.5B outperforms Qwen2.5-1.5B-Instruct (61.94 vs. 57.33), while AceInstruct-7B and AceInstruct-72B perform similarly to Qwen2.5-7B-Instruct and Qwen2.5-72B-Instruct.
75
+
76
+
77
+ ## All Resources
78
+ ### AceMath Instruction Models
79
+ - [AceMath-1.5B-Instruct](https://huggingface.co/nvidia/AceMath-1.5B-Instruct), [AceMath-7B-Instruct](https://huggingface.co/nvidia/AceMath-7B-Instruct), [AceMath-72B-Instruct](https://huggingface.co/nvidia/AceMath-72B-Instruct)
80
+
81
+ ### AceMath Reward Models
82
+ - [AceMath-7B-RM](https://huggingface.co/nvidia/AceMath-7B-RM), [AceMath-72B-RM](https://huggingface.co/nvidia/AceMath-72B-RM)
83
+
84
+ ### Evaluation & Training Data
85
+ - [AceMath-RewardBench](https://huggingface.co/datasets/nvidia/AceMath-RewardBench), [AceMath-Instruct Training Data](https://huggingface.co/datasets/nvidia/AceMath-Instruct-Training-Data), [AceMath-RM Training Data](https://huggingface.co/datasets/nvidia/AceMath-RM-Training-Data)
86
+
87
+ ### General Instruction Models
88
+ - [AceInstruct-1.5B](https://huggingface.co/nvidia/AceInstruct-1.5B), [AceInstruct-7B](https://huggingface.co/nvidia/AceInstruct-7B), [AceInstruct-72B](https://huggingface.co/nvidia/AceInstruct-72B)
89
+
90
+
91
+ ## How to use
92
+ ```python
93
+ from transformers import AutoModelForCausalLM, AutoTokenizer
94
+
95
+ model_name = "AceInstruct-7B"
96
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
97
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
98
+
99
+ prompt = "Tell me something about artificial intelligence."
100
+ messages = [{"role": "user", "content": prompt}]
101
+
102
+ text = tokenizer.apply_chat_template(
103
+ messages,
104
+ tokenize=False,
105
+ add_generation_prompt=True
106
+ )
107
+ model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
108
+
109
+ generated_ids = model.generate(
110
+ **model_inputs,
111
+ max_new_tokens=1024
112
+ )
113
+ generated_ids = [
114
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
115
+ ]
116
+
117
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
118
+ ```
119
+
120
+
121
+ ## Correspondence to
122
+ Zihan Liu ([email protected]), Yang Chen ([email protected]), Wei Ping ([email protected])
123
+
124
+
125
+ ## Citation
126
+ If you find our work helpful, we’d appreciate it if you could cite us.
127
+ <pre>
128
+ @article{acemath2024,
129
+ title={AceMath: Advancing Frontier Math Reasoning with Post-Training and Reward Modeling},
130
+ author={Liu, Zihan and Chen, Yang and Shoeybi, Mohammad and Catanzaro, Bryan and Ping, Wei},
131
+ journal={arXiv preprint},
132
+ year={2024}
133
+ }
134
+ </pre>
135
+
136
+
137
+ ## License
138
+ All models in the AceInstruct family are for non-commercial use only, subject to [Terms of Use](https://openai.com/policies/row-terms-of-use/) of the data generated by OpenAI. We put the AceInstruct models under the license of [Creative Commons Attribution: Non-Commercial 4.0 International](https://spdx.org/licenses/CC-BY-NC-4.0).
139
+
140
+ <!--End Original Model Card-->
141
+
142
+ ---
143
+
144
+ # <span id="testllm" style="color: #7F7FFF;">🚀 If you find these models useful</span>
145
+
146
+ Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**:
147
+
148
+ 👉 [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme)
149
+
150
+
151
+ The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder)
152
+
153
+ 💬 **How to test**:
154
+ Choose an **AI assistant type**:
155
+ - `TurboLLM` (GPT-4.1-mini)
156
+ - `HugLLM` (Hugginface Open-source models)
157
+ - `TestLLM` (Experimental CPU-only)
158
+
159
+ ### **What I’m Testing**
160
+ I’m pushing the limits of **small open-source models for AI network monitoring**, specifically:
161
+ - **Function calling** against live network services
162
+ - **How small can a model go** while still handling:
163
+ - Automated **Nmap security scans**
164
+ - **Quantum-readiness checks**
165
+ - **Network Monitoring tasks**
166
+
167
+ 🟡 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space):
168
+ - ✅ **Zero-configuration setup**
169
+ - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low.
170
+ - 🔧 **Help wanted!** If you’re into **edge-device AI**, let’s collaborate!
171
+
172
+ ### **Other Assistants**
173
+ 🟢 **TurboLLM** – Uses **gpt-4.1-mini** :
174
+ - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited.
175
+ - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents**
176
+ - **Real-time network diagnostics and monitoring**
177
+ - **Security Audits**
178
+ - **Penetration testing** (Nmap/Metasploit)
179
+
180
+ 🔵 **HugLLM** – Latest Open-source models:
181
+ - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita.
182
+
183
+ ### 💡 **Example commands you could test**:
184
+ 1. `"Give me info on my websites SSL certificate"`
185
+ 2. `"Check if my server is using quantum safe encyption for communication"`
186
+ 3. `"Run a comprehensive security audit on my server"`
187
+ 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a [Quantum Network Monitor Agent](https://readyforquantum.com/Download/?utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) to run the .net code on. This is a very flexible and powerful feature. Use with caution!
188
+
189
+ ### Final Word
190
+
191
+ I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAI—all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful.
192
+
193
+ If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) ☕. Your support helps cover service costs and allows me to raise token limits for everyone.
194
+
195
+ I'm also open to job opportunities or sponsorship.
196
+
197
+ Thank you! 😊