--- license: apache-2.0 base_model: - Qwen/Qwen3-0.6B-Base tags: - transformers - sentence-transformers - sentence-similarity - feature-extraction --- # Qwen3-Embedding-0.6B GGUF Models ## Model Generation Details This model was generated using [llama.cpp](https://github.com/ggerganov/llama.cpp) at commit [`1f63e75f`](https://github.com/ggerganov/llama.cpp/commit/1f63e75f3b5dc7f44dbe63c8a41d23958fe95bc0). # Qwen3-Embedding-0.6B

## Highlights The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining. **Exceptional Versatility**: The embedding model has achieved state-of-the-art performance across a wide range of downstream application evaluations. The 8B size embedding model ranks **No.1** in the MTEB multilingual leaderboard (as of June 5, 2025, score **70.58**), while the reranking model excels in various text retrieval scenarios. **Comprehensive Flexibility**: The Qwen3 Embedding series offers a full spectrum of sizes (from 0.6B to 8B) for both embedding and reranking models, catering to diverse use cases that prioritize efficiency and effectiveness. Developers can seamlessly combine these two modules. Additionally, the embedding model allows for flexible vector definitions across all dimensions, and both embedding and reranking models support user-defined instructions to enhance performance for specific tasks, languages, or scenarios. **Multilingual Capability**: The Qwen3 Embedding series offer support for over 100 languages, thanks to the multilingual capabilites of Qwen3 models. This includes various programming languages, and provides robust multilingual, cross-lingual, and code retrieval capabilities. ## Model Overview **Qwen3-Embedding-0.6B** has the following features: - Model Type: Text Embedding - Supported Languages: 100+ Languages - Number of Paramaters: 0.6B - Context Length: 32k - Embedding Dimension: Up to 1024, supports user-defined output dimensions ranging from 32 to 1024 For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3-embedding/), [GitHub](https://github.com/QwenLM/Qwen3-Embedding). ## Qwen3 Embedding Series Model list | Model Type | Models | Size | Layers | Sequence Length | Embedding Dimension | MRL Support | Instruction Aware | |------------------|----------------------|------|--------|-----------------|---------------------|-------------|----------------| | Text Embedding | [Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) | 0.6B | 28 | 32K | 1024 | Yes | Yes | | Text Embedding | [Qwen3-Embedding-4B](https://huggingface.co/Qwen/Qwen3-Embedding-4B) | 4B | 36 | 32K | 2560 | Yes | Yes | | Text Embedding | [Qwen3-Embedding-8B](https://huggingface.co/Qwen/Qwen3-Embedding-8B) | 8B | 36 | 32K | 4096 | Yes | Yes | | Text Reranking | [Qwen3-Reranker-0.6B](https://huggingface.co/Qwen/Qwen3-Reranker-0.6B) | 0.6B | 28 | 32K | - | - | Yes | | Text Reranking | [Qwen3-Reranker-4B](https://huggingface.co/Qwen/Qwen3-Reranker-4B) | 4B | 36 | 32K | - | - | Yes | | Text Reranking | [Qwen3-Reranker-8B](https://huggingface.co/Qwen/Qwen3-Reranker-8B) | 8B | 36 | 32K | - | - | Yes | > **Note**: > - `MRL Support` indicates whether the embedding model supports custom dimensions for the final embedding. > - `Instruction Aware` notes whether the embedding or reranking model supports customizing the input instruction according to different tasks. > - Our evaluation indicates that, for most downstream tasks, using instructions (instruct) typically yields an improvement of 1% to 5% compared to not using them. Therefore, we recommend that developers create tailored instructions specific to their tasks and scenarios. In multilingual contexts, we also advise users to write their instructions in English, as most instructions utilized during the model training process were originally written in English. ## Usage With Transformers versions earlier than 4.51.0, you may encounter the following error: ``` KeyError: 'qwen3' ``` ### Sentence Transformers Usage ```python # Requires transformers>=4.51.0 # Requires sentence-transformers>=2.7.0 from sentence_transformers import SentenceTransformer # Load the model model = SentenceTransformer("Qwen/Qwen3-Embedding-0.6B") # We recommend enabling flash_attention_2 for better acceleration and memory saving, # together with setting `padding_side` to "left": # model = SentenceTransformer( # "Qwen/Qwen3-Embedding-0.6B", # model_kwargs={"attn_implementation": "flash_attention_2", "device_map": "auto"}, # tokenizer_kwargs={"padding_side": "left"}, # ) # The queries and documents to embed queries = [ "What is the capital of China?", "Explain gravity", ] documents = [ "The capital of China is Beijing.", "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.", ] # Encode the queries and documents. Note that queries benefit from using a prompt # Here we use the prompt called "query" stored under `model.prompts`, but you can # also pass your own prompt via the `prompt` argument query_embeddings = model.encode(queries, prompt_name="query") document_embeddings = model.encode(documents) # Compute the (cosine) similarity between the query and document embeddings similarity = model.similarity(query_embeddings, document_embeddings) print(similarity) # tensor([[0.7646, 0.1414], # [0.1355, 0.6000]]) ``` ### Transformers Usage ```python # Requires transformers>=4.51.0 import torch import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) if left_padding: return last_hidden_states[:, -1] else: sequence_lengths = attention_mask.sum(dim=1) - 1 batch_size = last_hidden_states.shape[0] return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] def get_detailed_instruct(task_description: str, query: str) -> str: return f'Instruct: {task_description}\nQuery:{query}' # Each query must come with a one-sentence instruction that describes the task task = 'Given a web search query, retrieve relevant passages that answer the query' queries = [ get_detailed_instruct(task, 'What is the capital of China?'), get_detailed_instruct(task, 'Explain gravity') ] # No need to add instruction for retrieval documents documents = [ "The capital of China is Beijing.", "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun." ] input_texts = queries + documents tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen3-Embedding-0.6B', padding_side='left') model = AutoModel.from_pretrained('Qwen/Qwen3-Embedding-0.6B') # We recommend enabling flash_attention_2 for better acceleration and memory saving. # model = AutoModel.from_pretrained('Qwen/Qwen3-Embedding-0.6B', attn_implementation="flash_attention_2", torch_dtype=torch.float16).cuda() max_length = 8192 # Tokenize the input texts batch_dict = tokenizer( input_texts, padding=True, truncation=True, max_length=max_length, return_tensors="pt", ) batch_dict.to(model.device) outputs = model(**batch_dict) embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) print(scores.tolist()) # [[0.7645568251609802, 0.14142508804798126], [0.13549736142158508, 0.5999549627304077]] ``` ### vLLM Usage ```python # Requires vllm>=0.8.5 import torch import vllm from vllm import LLM def get_detailed_instruct(task_description: str, query: str) -> str: return f'Instruct: {task_description}\nQuery:{query}' # Each query must come with a one-sentence instruction that describes the task task = 'Given a web search query, retrieve relevant passages that answer the query' queries = [ get_detailed_instruct(task, 'What is the capital of China?'), get_detailed_instruct(task, 'Explain gravity') ] # No need to add instruction for retrieval documents documents = [ "The capital of China is Beijing.", "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun." ] input_texts = queries + documents model = LLM(model="Qwen/Qwen3-Embedding-0.6B", task="embed") outputs = model.embed(input_texts) embeddings = torch.tensor([o.outputs.embedding for o in outputs]) scores = (embeddings[:2] @ embeddings[2:].T) print(scores.tolist()) # [[0.7620252966880798, 0.14078938961029053], [0.1358368694782257, 0.6013815999031067]] ``` πŸ“Œ **Tip**: We recommend that developers customize the `instruct` according to their specific scenarios, tasks, and languages. Our tests have shown that in most retrieval scenarios, not using an `instruct` on the query side can lead to a drop in retrieval performance by approximately 1% to 5%. ## Evaluation ### MTEB (Multilingual) | Model | Size | Mean (Task) | Mean (Type) | Bitxt Mining | Class. | Clust. | Inst. Retri. | Multi. Class. | Pair. Class. | Rerank | Retri. | STS | |----------------------------------|:-------:|:-------------:|:-------------:|:--------------:|:--------:|:--------:|:--------------:|:---------------:|:--------------:|:--------:|:--------:|:------:| | NV-Embed-v2 | 7B | 56.29 | 49.58 | 57.84 | 57.29 | 40.80 | 1.04 | 18.63 | 78.94 | 63.82 | 56.72 | 71.10| | GritLM-7B | 7B | 60.92 | 53.74 | 70.53 | 61.83 | 49.75 | 3.45 | 22.77 | 79.94 | 63.78 | 58.31 | 73.33| | BGE-M3 | 0.6B | 59.56 | 52.18 | 79.11 | 60.35 | 40.88 | -3.11 | 20.1 | 80.76 | 62.79 | 54.60 | 74.12| | multilingual-e5-large-instruct | 0.6B | 63.22 | 55.08 | 80.13 | 64.94 | 50.75 | -0.40 | 22.91 | 80.86 | 62.61 | 57.12 | 76.81| | gte-Qwen2-1.5B-instruct | 1.5B | 59.45 | 52.69 | 62.51 | 58.32 | 52.05 | 0.74 | 24.02 | 81.58 | 62.58 | 60.78 | 71.61| | gte-Qwen2-7b-Instruct | 7B | 62.51 | 55.93 | 73.92 | 61.55 | 52.77 | 4.94 | 25.48 | 85.13 | 65.55 | 60.08 | 73.98| | text-embedding-3-large | - | 58.93 | 51.41 | 62.17 | 60.27 | 46.89 | -2.68 | 22.03 | 79.17 | 63.89 | 59.27 | 71.68| | Cohere-embed-multilingual-v3.0 | - | 61.12 | 53.23 | 70.50 | 62.95 | 46.89 | -1.89 | 22.74 | 79.88 | 64.07 | 59.16 | 74.80| | Gemini Embedding | - | 68.37 | 59.59 | 79.28 | 71.82 | 54.59 | 5.18 | **29.16** | 83.63 | 65.58 | 67.71 | 79.40| | **Qwen3-Embedding-0.6B** | 0.6B | 64.33 | 56.00 | 72.22 | 66.83 | 52.33 | 5.09 | 24.59 | 80.83 | 61.41 | 64.64 | 76.17| | **Qwen3-Embedding-4B** | 4B | 69.45 | 60.86 | 79.36 | 72.33 | 57.15 | **11.56** | 26.77 | 85.05 | 65.08 | 69.60 | 80.86| | **Qwen3-Embedding-8B** | 8B | **70.58** | **61.69** | **80.89** | **74.00** | **57.65** | 10.06 | 28.66 | **86.40** | **65.63** | **70.88** | **81.08** | > **Note**: For compared models, the scores are retrieved from MTEB online [leaderboard](https://huggingface.co/spaces/mteb/leaderboard) on May 24th, 2025. ### MTEB (Eng v2) | MTEB English / Models | Param. | Mean(Task) | Mean(Type) | Class. | Clust. | Pair Class. | Rerank. | Retri. | STS | Summ. | |--------------------------------|:--------:|:------------:|:------------:|:--------:|:--------:|:-------------:|:---------:|:--------:|:-------:|:-------:| | multilingual-e5-large-instruct | 0.6B | 65.53 | 61.21 | 75.54 | 49.89 | 86.24 | 48.74 | 53.47 | 84.72 | 29.89 | | NV-Embed-v2 | 7.8B | 69.81 | 65.00 | 87.19 | 47.66 | 88.69 | 49.61 | 62.84 | 83.82 | 35.21 | | GritLM-7B | 7.2B | 67.07 | 63.22 | 81.25 | 50.82 | 87.29 | 49.59 | 54.95 | 83.03 | 35.65 | | gte-Qwen2-1.5B-instruct | 1.5B | 67.20 | 63.26 | 85.84 | 53.54 | 87.52 | 49.25 | 50.25 | 82.51 | 33.94 | | stella_en_1.5B_v5 | 1.5B | 69.43 | 65.32 | 89.38 | 57.06 | 88.02 | 50.19 | 52.42 | 83.27 | 36.91 | | gte-Qwen2-7B-instruct | 7.6B | 70.72 | 65.77 | 88.52 | 58.97 | 85.9 | 50.47 | 58.09 | 82.69 | 35.74 | | gemini-embedding-exp-03-07 | - | 73.3 | 67.67 | 90.05 | 59.39 | 87.7 | 48.59 | 64.35 | 85.29 | 38.28 | | **Qwen3-Embedding-0.6B** | 0.6B | 70.70 | 64.88 | 85.76 | 54.05 | 84.37 | 48.18 | 61.83 | 86.57 | 33.43 | | **Qwen3-Embedding-4B** | 4B | 74.60 | 68.10 | 89.84 | 57.51 | 87.01 | 50.76 | 68.46 | 88.72 | 34.39 | | **Qwen3-Embedding-8B** | 8B | 75.22 | 68.71 | 90.43 | 58.57 | 87.52 | 51.56 | 69.44 | 88.58 | 34.83 | ### C-MTEB (MTEB Chinese) | C-MTEB | Param. | Mean(Task) | Mean(Type) | Class. | Clust. | Pair Class. | Rerank. | Retr. | STS | |------------------|--------|------------|------------|--------|--------|-------------|---------|-------|-------| | multilingual-e5-large-instruct | 0.6B | 58.08 | 58.24 | 69.80 | 48.23 | 64.52 | 57.45 | 63.65 | 45.81 | | bge-multilingual-gemma2 | 9B | 67.64 | 75.31 | 59.30 | 86.67 | 68.28 | 73.73 | 55.19 | - | | gte-Qwen2-1.5B-instruct | 1.5B | 67.12 | 67.79 | 72.53 | 54.61 | 79.5 | 68.21 | 71.86 | 60.05 | | gte-Qwen2-7B-instruct | 7.6B | 71.62 | 72.19 | 75.77 | 66.06 | 81.16 | 69.24 | 75.70 | 65.20 | | ritrieve_zh_v1 | 0.3B | 72.71 | 73.85 | 76.88 | 66.5 | 85.98 | 72.86 | 76.97 | 63.92 | | **Qwen3-Embedding-0.6B** | 0.6B | 66.33 | 67.45 | 71.40 | 68.74 | 76.42 | 62.58 | 71.03 | 54.52 | | **Qwen3-Embedding-4B** | 4B | 72.27 | 73.51 | 75.46 | 77.89 | 83.34 | 66.05 | 77.03 | 61.26 | | **Qwen3-Embedding-8B** | 8B | 73.84 | 75.00 | 76.97 | 80.08 | 84.23 | 66.99 | 78.21 | 63.53 | ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen3embedding, title={Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models}, author={Zhang, Yanzhao and Li, Mingxin and Long, Dingkun and Zhang, Xin and Lin, Huan and Yang, Baosong and Xie, Pengjun and Yang, An and Liu, Dayiheng and Lin, Junyang and Huang, Fei and Zhou, Jingren}, journal={arXiv preprint arXiv:2506.05176}, year={2025} } ``` # πŸš€ If you find these models useful Help me test my **AI-Powered Quantum Network Monitor Assistant** with **quantum-ready security checks**: πŸ‘‰ [Quantum Network Monitor](https://readyforquantum.com/?assistant=open&utm_source=huggingface&utm_medium=referral&utm_campaign=huggingface_repo_readme) The full Open Source Code for the Quantum Network Monitor Service available at my github repos ( repos with NetworkMonitor in the name) : [Source Code Quantum Network Monitor](https://github.com/Mungert69). You will also find the code I use to quantize the models if you want to do it yourself [GGUFModelBuilder](https://github.com/Mungert69/GGUFModelBuilder) πŸ’¬ **How to test**: Choose an **AI assistant type**: - `TurboLLM` (GPT-4.1-mini) - `HugLLM` (Hugginface Open-source models) - `TestLLM` (Experimental CPU-only) ### **What I’m Testing** I’m pushing the limits of **small open-source models for AI network monitoring**, specifically: - **Function calling** against live network services - **How small can a model go** while still handling: - Automated **Nmap security scans** - **Quantum-readiness checks** - **Network Monitoring tasks** 🟑 **TestLLM** – Current experimental model (llama.cpp on 2 CPU threads on huggingface docker space): - βœ… **Zero-configuration setup** - ⏳ 30s load time (slow inference but **no API costs**) . No token limited as the cost is low. - πŸ”§ **Help wanted!** If you’re into **edge-device AI**, let’s collaborate! ### **Other Assistants** 🟒 **TurboLLM** – Uses **gpt-4.1-mini** : - **It performs very well but unfortunatly OpenAI charges per token. For this reason tokens usage is limited. - **Create custom cmd processors to run .net code on Quantum Network Monitor Agents** - **Real-time network diagnostics and monitoring** - **Security Audits** - **Penetration testing** (Nmap/Metasploit) πŸ”΅ **HugLLM** – Latest Open-source models: - 🌐 Runs on Hugging Face Inference API. Performs pretty well using the lastest models hosted on Novita. ### πŸ’‘ **Example commands you could test**: 1. `"Give me info on my websites SSL certificate"` 2. `"Check if my server is using quantum safe encyption for communication"` 3. `"Run a comprehensive security audit on my server"` 4. '"Create a cmd processor to .. (what ever you want)" Note you need to install a Quantum Network Monitor Agent to run the .net code from. This is a very flexible and powerful feature. Use with caution! ### Final Word I fund the servers used to create these model files, run the Quantum Network Monitor service, and pay for inference from Novita and OpenAIβ€”all out of my own pocket. All the code behind the model creation and the Quantum Network Monitor project is [open source](https://github.com/Mungert69). Feel free to use whatever you find helpful. If you appreciate the work, please consider [buying me a coffee](https://www.buymeacoffee.com/mahadeva) β˜•. Your support helps cover service costs and allows me to raise token limits for everyone. I'm also open to job opportunities or sponsorship. Thank you! 😊