--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - loss:MultipleNegativesRankingLoss - mteb base_model: NAMAA-Space/AraModernBert-Base-V1.0 widget: - source_sentence: الذكاء الاصطناعي يغير طريقة تفاعلنا مع التكنولوجيا. sentences: - التكنولوجيا تتطور بسرعة بفضل الذكاء الاصطناعي. - الذكاء الاصطناعي يسهم في تطوير التطبيقات الذكية. - تحديات الذكاء الاصطناعي تشمل الحفاظ على الأمان والأخلاقيات. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine model-index: - name: NAMAA-Space/AraModernBert-Base-V1.0 results: - dataset: config: ar-ar name: MTEB STS17 (ar-ar) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 82.4888 - type: spearman value: 83.0981 - type: cosine_pearson value: 82.4888 - type: cosine_spearman value: 83.1109 - type: manhattan_pearson value: 81.2051 - type: manhattan_spearman value: 83.0197 - type: euclidean_pearson value: 81.1013 - type: euclidean_spearman value: 82.8922 - type: main_score value: 83.1109 task: type: STS - dataset: config: ar name: MTEB STS22.v2 (ar) revision: d31f33a128469b20e357535c39b82fb3c3f6f2bd split: test type: mteb/sts22-crosslingual-sts metrics: - type: pearson value: 52.58540000000001 - type: spearman value: 61.7371 - type: cosine_pearson value: 52.58540000000001 - type: cosine_spearman value: 61.7371 - type: manhattan_pearson value: 55.887299999999996 - type: manhattan_spearman value: 61.3654 - type: euclidean_pearson value: 55.633500000000005 - type: euclidean_spearman value: 61.2124 - type: main_score value: 61.7371 task: type: STS license: apache-2.0 language: - ar --- # SentenceTransformer based on NAMAA-Space/AraModernBert-Base-V1.0 This SentenceTransformer is fine-tuned from [NAMAA-Space/AraModernBert-Base-V1.0](https://huggingface.co/NAMAA-Space/AraModernBert-Base-V1.0), bringing strong arabic embeddings useful for a multiple of use cases. 🔹 **768-dimensional dense vectors** 🎯 🔹 **Excels in**: Semantic Similarity, Search, Paraphrase Mining, Clustering, Text Classification & More! 🔹 **Optimized for speed & efficiency** without sacrificing performance Whether you're building intelligent search engines, chatbots, or AI-powered knowledge graphs, this model delivers meaningful representations of Arabic text with precision and depth. Try it out & bring Arabic NLP to the next level! 🔥✨ ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("NAMAA-Space/AraModernBert-Base-STS") # Run inference sentences = [ 'الذكاء الاصطناعي يغير طريقة تفاعلنا مع التكنولوجيا.', 'التكنولوجيا تتطور بسرعة بفضل الذكاء الاصطناعي.', 'الذكاء الاصطناعي يسهم في تطوير التطبيقات الذكية.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Datasets: ` STS17` and `STS22.v2` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | STS17 | STS22.v2 | |:--------------------|:----------|:-----------| | pearson_cosine | 0.8249 | 0.5259 | | **spearman_cosine** | **0.831** | **0.6169** | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.4.1 - Transformers: 4.49.0 - PyTorch: 2.1.0+cu118 - Accelerate: 1.4.0 - Datasets: 2.21.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```