End of training
Browse files- README.md +99 -199
- config.json +82 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,99 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: nvidia/mit-b0
|
5 |
+
tags:
|
6 |
+
- vision
|
7 |
+
- image-segmentation
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: segformer-b0-finetuned-morphpadver1-hgo-coord-v9_mix_resample_40epochs
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# segformer-b0-finetuned-morphpadver1-hgo-coord-v9_mix_resample_40epochs
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the NICOPOI-9/morphpad_coord_hgo_512_4class_v2 dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.8517
|
22 |
+
- Mean Iou: 0.5269
|
23 |
+
- Mean Accuracy: 0.6857
|
24 |
+
- Overall Accuracy: 0.6922
|
25 |
+
- Accuracy 0-0: 0.5774
|
26 |
+
- Accuracy 0-90: 0.7340
|
27 |
+
- Accuracy 90-0: 0.7692
|
28 |
+
- Accuracy 90-90: 0.6625
|
29 |
+
- Iou 0-0: 0.4919
|
30 |
+
- Iou 0-90: 0.5434
|
31 |
+
- Iou 90-0: 0.5346
|
32 |
+
- Iou 90-90: 0.5380
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 6e-05
|
52 |
+
- train_batch_size: 1
|
53 |
+
- eval_batch_size: 1
|
54 |
+
- seed: 42
|
55 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 40
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
|
62 |
+
|:-------------:|:-------:|:------:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:-------------:|:-------------:|:--------------:|:-------:|:--------:|:--------:|:---------:|
|
63 |
+
| 1.4178 | 1.3638 | 4000 | 1.4017 | 0.0915 | 0.2543 | 0.2763 | 0.0012 | 0.1224 | 0.8886 | 0.0052 | 0.0012 | 0.0995 | 0.2601 | 0.0052 |
|
64 |
+
| 1.1726 | 2.7276 | 8000 | 1.3327 | 0.2022 | 0.3465 | 0.3633 | 0.1781 | 0.4945 | 0.5489 | 0.1646 | 0.1323 | 0.2709 | 0.2783 | 0.1273 |
|
65 |
+
| 1.3111 | 4.0914 | 12000 | 1.3034 | 0.2235 | 0.3684 | 0.3811 | 0.2368 | 0.5790 | 0.4089 | 0.2489 | 0.1621 | 0.3039 | 0.2584 | 0.1694 |
|
66 |
+
| 1.033 | 5.4552 | 16000 | 1.2837 | 0.2340 | 0.3853 | 0.4006 | 0.1897 | 0.5159 | 0.5735 | 0.2619 | 0.1526 | 0.2965 | 0.3101 | 0.1769 |
|
67 |
+
| 1.3103 | 6.8190 | 20000 | 1.2502 | 0.2593 | 0.4171 | 0.4339 | 0.2446 | 0.6314 | 0.5467 | 0.2456 | 0.1839 | 0.3469 | 0.3212 | 0.1851 |
|
68 |
+
| 0.6831 | 8.1827 | 24000 | 1.2405 | 0.2655 | 0.4238 | 0.4336 | 0.2449 | 0.3989 | 0.6621 | 0.3893 | 0.1849 | 0.2957 | 0.3333 | 0.2482 |
|
69 |
+
| 1.1638 | 9.5465 | 28000 | 1.1866 | 0.2955 | 0.4566 | 0.4696 | 0.3300 | 0.6108 | 0.5695 | 0.3160 | 0.2396 | 0.3484 | 0.3479 | 0.2463 |
|
70 |
+
| 1.2145 | 10.9103 | 32000 | 1.1129 | 0.3356 | 0.5008 | 0.5092 | 0.4052 | 0.5818 | 0.5926 | 0.4236 | 0.2913 | 0.3764 | 0.3705 | 0.3042 |
|
71 |
+
| 0.767 | 12.2741 | 36000 | 1.1059 | 0.3423 | 0.5078 | 0.5144 | 0.4463 | 0.5576 | 0.5978 | 0.4295 | 0.3098 | 0.3613 | 0.3732 | 0.3250 |
|
72 |
+
| 1.0089 | 13.6379 | 40000 | 1.0832 | 0.3500 | 0.5157 | 0.5252 | 0.4129 | 0.6431 | 0.5790 | 0.4280 | 0.3054 | 0.3812 | 0.3870 | 0.3263 |
|
73 |
+
| 1.0757 | 15.0017 | 44000 | 1.0207 | 0.3866 | 0.5553 | 0.5626 | 0.4802 | 0.6133 | 0.6502 | 0.4776 | 0.3529 | 0.4112 | 0.4246 | 0.3577 |
|
74 |
+
| 0.8842 | 16.3655 | 48000 | 1.0716 | 0.3737 | 0.5417 | 0.5529 | 0.4372 | 0.6738 | 0.6390 | 0.4169 | 0.3371 | 0.4152 | 0.4191 | 0.3234 |
|
75 |
+
| 0.8464 | 17.7293 | 52000 | 1.0188 | 0.4101 | 0.5795 | 0.5884 | 0.4262 | 0.6296 | 0.7147 | 0.5474 | 0.3467 | 0.4325 | 0.4543 | 0.4069 |
|
76 |
+
| 0.8371 | 19.0931 | 56000 | 0.9905 | 0.4260 | 0.5942 | 0.6027 | 0.4614 | 0.6846 | 0.6765 | 0.5542 | 0.3766 | 0.4455 | 0.4655 | 0.4166 |
|
77 |
+
| 0.7882 | 20.4569 | 60000 | 0.9542 | 0.4454 | 0.6126 | 0.6216 | 0.4838 | 0.6737 | 0.7397 | 0.5530 | 0.3925 | 0.4665 | 0.4815 | 0.4411 |
|
78 |
+
| 2.4763 | 21.8207 | 64000 | 0.9188 | 0.4671 | 0.6330 | 0.6402 | 0.5338 | 0.6708 | 0.7484 | 0.5788 | 0.4359 | 0.4820 | 0.4932 | 0.4572 |
|
79 |
+
| 0.3528 | 23.1845 | 68000 | 0.8817 | 0.4725 | 0.6381 | 0.6450 | 0.5270 | 0.6813 | 0.7379 | 0.6063 | 0.4314 | 0.4937 | 0.4905 | 0.4745 |
|
80 |
+
| 0.8088 | 24.5482 | 72000 | 0.9115 | 0.4800 | 0.6458 | 0.6500 | 0.5807 | 0.6461 | 0.7349 | 0.6217 | 0.4507 | 0.4844 | 0.4938 | 0.4912 |
|
81 |
+
| 0.8153 | 25.9120 | 76000 | 0.9558 | 0.4531 | 0.6215 | 0.6342 | 0.3715 | 0.7059 | 0.7951 | 0.6135 | 0.3382 | 0.5023 | 0.4889 | 0.4829 |
|
82 |
+
| 0.9085 | 27.2758 | 80000 | 0.9089 | 0.4777 | 0.6415 | 0.6542 | 0.4936 | 0.7556 | 0.7928 | 0.5238 | 0.4312 | 0.5149 | 0.5148 | 0.4500 |
|
83 |
+
| 0.3666 | 28.6396 | 84000 | 1.0426 | 0.4467 | 0.6141 | 0.6270 | 0.3862 | 0.6873 | 0.8064 | 0.5767 | 0.3460 | 0.5000 | 0.4754 | 0.4654 |
|
84 |
+
| 0.6065 | 30.0034 | 88000 | 0.9086 | 0.4850 | 0.6497 | 0.6557 | 0.5433 | 0.6885 | 0.7346 | 0.6323 | 0.4404 | 0.5002 | 0.5009 | 0.4985 |
|
85 |
+
| 0.1385 | 31.3672 | 92000 | 0.9247 | 0.4688 | 0.6343 | 0.6469 | 0.4228 | 0.7420 | 0.7832 | 0.5892 | 0.3792 | 0.5132 | 0.4999 | 0.4829 |
|
86 |
+
| 0.4116 | 32.7310 | 96000 | 0.8724 | 0.5014 | 0.6628 | 0.6707 | 0.5288 | 0.6729 | 0.8213 | 0.6281 | 0.4585 | 0.5268 | 0.5094 | 0.5112 |
|
87 |
+
| 0.4991 | 34.0948 | 100000 | 0.8752 | 0.5078 | 0.6693 | 0.6766 | 0.5435 | 0.7342 | 0.7515 | 0.6480 | 0.4584 | 0.5274 | 0.5232 | 0.5225 |
|
88 |
+
| 0.5235 | 35.4586 | 104000 | 0.8312 | 0.5135 | 0.6736 | 0.6814 | 0.6179 | 0.7514 | 0.7598 | 0.5651 | 0.5060 | 0.5362 | 0.5256 | 0.4861 |
|
89 |
+
| 0.6378 | 36.8224 | 108000 | 0.8729 | 0.5102 | 0.6705 | 0.6784 | 0.5636 | 0.7161 | 0.7926 | 0.6097 | 0.4781 | 0.5335 | 0.5216 | 0.5076 |
|
90 |
+
| 0.6895 | 38.1862 | 112000 | 0.9258 | 0.4833 | 0.6466 | 0.6600 | 0.4375 | 0.7335 | 0.8392 | 0.5761 | 0.3990 | 0.5343 | 0.5097 | 0.4903 |
|
91 |
+
| 0.5259 | 39.5499 | 116000 | 0.8517 | 0.5269 | 0.6857 | 0.6922 | 0.5774 | 0.7340 | 0.7692 | 0.6625 | 0.4919 | 0.5434 | 0.5346 | 0.5380 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.48.3
|
97 |
+
- Pytorch 2.1.0
|
98 |
+
- Datasets 3.2.0
|
99 |
+
- Tokenizers 0.21.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b0",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 256,
|
9 |
+
"depths": [
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
32,
|
26 |
+
64,
|
27 |
+
160,
|
28 |
+
256
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "0-0",
|
32 |
+
"1": "0-90",
|
33 |
+
"2": "90-0",
|
34 |
+
"3": "90-90"
|
35 |
+
},
|
36 |
+
"image_size": 224,
|
37 |
+
"initializer_range": 0.02,
|
38 |
+
"label2id": {
|
39 |
+
"0-0": 0,
|
40 |
+
"0-90": 1,
|
41 |
+
"90-0": 2,
|
42 |
+
"90-90": 3
|
43 |
+
},
|
44 |
+
"layer_norm_eps": 1e-06,
|
45 |
+
"mlp_ratios": [
|
46 |
+
4,
|
47 |
+
4,
|
48 |
+
4,
|
49 |
+
4
|
50 |
+
],
|
51 |
+
"model_type": "segformer",
|
52 |
+
"num_attention_heads": [
|
53 |
+
1,
|
54 |
+
2,
|
55 |
+
5,
|
56 |
+
8
|
57 |
+
],
|
58 |
+
"num_channels": 3,
|
59 |
+
"num_encoder_blocks": 4,
|
60 |
+
"patch_sizes": [
|
61 |
+
7,
|
62 |
+
3,
|
63 |
+
3,
|
64 |
+
3
|
65 |
+
],
|
66 |
+
"reshape_last_stage": true,
|
67 |
+
"semantic_loss_ignore_index": 255,
|
68 |
+
"sr_ratios": [
|
69 |
+
8,
|
70 |
+
4,
|
71 |
+
2,
|
72 |
+
1
|
73 |
+
],
|
74 |
+
"strides": [
|
75 |
+
4,
|
76 |
+
2,
|
77 |
+
2,
|
78 |
+
2
|
79 |
+
],
|
80 |
+
"torch_dtype": "float32",
|
81 |
+
"transformers_version": "4.48.3"
|
82 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:def7d30e2d1bf4aaeeafca74903dd86742fb15b54a6f69c14f527efeb577b2a4
|
3 |
+
size 14886832
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:975b66c05b75df0a62715f40b49a937a4033f10a3e099d3c3d3e798f90363509
|
3 |
+
size 5496
|