NICOPOI-9 commited on
Commit
ffc7027
·
verified ·
1 Parent(s): 9f5a14c

End of training

Browse files
Files changed (4) hide show
  1. README.md +88 -199
  2. config.json +82 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,88 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: nvidia/mit-b3
5
+ tags:
6
+ - vision
7
+ - image-segmentation
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: segformer-b3-finetuned-morphpadver1-hgo-coord-v4
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # segformer-b3-finetuned-morphpadver1-hgo-coord-v4
18
+
19
+ This model is a fine-tuned version of [nvidia/mit-b3](https://huggingface.co/nvidia/mit-b3) on the NICOPOI-9/morphpad_coord_hgo_512_4class_v2 dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.0105
22
+ - Mean Iou: 0.9978
23
+ - Mean Accuracy: 0.9989
24
+ - Overall Accuracy: 0.9989
25
+ - Accuracy 0-0: 0.9991
26
+ - Accuracy 0-90: 0.9988
27
+ - Accuracy 90-0: 0.9988
28
+ - Accuracy 90-90: 0.9989
29
+ - Iou 0-0: 0.9983
30
+ - Iou 0-90: 0.9977
31
+ - Iou 90-0: 0.9978
32
+ - Iou 90-90: 0.9974
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 6e-05
52
+ - train_batch_size: 1
53
+ - eval_batch_size: 1
54
+ - seed: 42
55
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
56
+ - lr_scheduler_type: linear
57
+ - num_epochs: 50
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
62
+ |:-------------:|:-------:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:-------------:|:-------------:|:--------------:|:-------:|:--------:|:--------:|:---------:|
63
+ | 1.0526 | 2.6525 | 4000 | 1.0174 | 0.3366 | 0.5028 | 0.5035 | 0.5781 | 0.3249 | 0.6323 | 0.4758 | 0.3780 | 0.2714 | 0.3136 | 0.3836 |
64
+ | 0.7543 | 5.3050 | 8000 | 0.5721 | 0.5952 | 0.7459 | 0.7458 | 0.7487 | 0.7334 | 0.6962 | 0.8051 | 0.6389 | 0.5638 | 0.5555 | 0.6227 |
65
+ | 0.1714 | 7.9576 | 12000 | 0.1845 | 0.8808 | 0.9366 | 0.9366 | 0.9416 | 0.9454 | 0.9140 | 0.9455 | 0.8984 | 0.8681 | 0.8613 | 0.8956 |
66
+ | 0.2092 | 10.6101 | 16000 | 0.0953 | 0.9378 | 0.9679 | 0.9679 | 0.9719 | 0.9663 | 0.9730 | 0.9602 | 0.9466 | 0.9322 | 0.9312 | 0.9412 |
67
+ | 0.0773 | 13.2626 | 20000 | 0.1115 | 0.9348 | 0.9663 | 0.9663 | 0.9665 | 0.9728 | 0.9588 | 0.9672 | 0.9450 | 0.9220 | 0.9319 | 0.9405 |
68
+ | 0.1 | 15.9151 | 24000 | 0.0842 | 0.9597 | 0.9794 | 0.9794 | 0.9792 | 0.9743 | 0.9802 | 0.9840 | 0.9642 | 0.9559 | 0.9539 | 0.9649 |
69
+ | 0.0297 | 18.5676 | 28000 | 0.0524 | 0.9706 | 0.9851 | 0.9851 | 0.9855 | 0.9868 | 0.9886 | 0.9794 | 0.9753 | 0.9676 | 0.9666 | 0.9728 |
70
+ | 0.0188 | 21.2202 | 32000 | 0.0463 | 0.9813 | 0.9906 | 0.9906 | 0.9911 | 0.9884 | 0.9899 | 0.9930 | 0.9828 | 0.9804 | 0.9787 | 0.9834 |
71
+ | 0.0987 | 23.8727 | 36000 | 0.0377 | 0.9849 | 0.9924 | 0.9924 | 0.9913 | 0.9967 | 0.9885 | 0.9932 | 0.9866 | 0.9816 | 0.9844 | 0.9871 |
72
+ | 0.1753 | 26.5252 | 40000 | 0.0367 | 0.9878 | 0.9939 | 0.9938 | 0.9922 | 0.9929 | 0.9947 | 0.9957 | 0.9876 | 0.9879 | 0.9853 | 0.9903 |
73
+ | 0.0536 | 29.1777 | 44000 | 0.0392 | 0.9880 | 0.9939 | 0.9939 | 0.9946 | 0.9945 | 0.9933 | 0.9934 | 0.9891 | 0.9875 | 0.9859 | 0.9893 |
74
+ | 0.0273 | 31.8302 | 48000 | 0.0450 | 0.9879 | 0.9939 | 0.9939 | 0.9946 | 0.9922 | 0.9937 | 0.9952 | 0.9897 | 0.9850 | 0.9872 | 0.9898 |
75
+ | 0.006 | 34.4828 | 52000 | 0.0272 | 0.9936 | 0.9968 | 0.9968 | 0.9972 | 0.9968 | 0.9966 | 0.9965 | 0.9940 | 0.9938 | 0.9927 | 0.9937 |
76
+ | 0.005 | 37.1353 | 56000 | 0.0240 | 0.9948 | 0.9974 | 0.9974 | 0.9981 | 0.9961 | 0.9975 | 0.9980 | 0.9965 | 0.9936 | 0.9951 | 0.9941 |
77
+ | 0.0039 | 39.7878 | 60000 | 0.0244 | 0.9954 | 0.9977 | 0.9977 | 0.9967 | 0.9981 | 0.9980 | 0.9981 | 0.9953 | 0.9949 | 0.9951 | 0.9965 |
78
+ | 0.0042 | 42.4403 | 64000 | 0.0203 | 0.9961 | 0.9980 | 0.9980 | 0.9982 | 0.9979 | 0.9982 | 0.9979 | 0.9972 | 0.9956 | 0.9954 | 0.9962 |
79
+ | 0.0034 | 45.0928 | 68000 | 0.0165 | 0.9970 | 0.9985 | 0.9985 | 0.9984 | 0.9984 | 0.9984 | 0.9987 | 0.9976 | 0.9966 | 0.9962 | 0.9975 |
80
+ | 0.0033 | 47.7454 | 72000 | 0.0105 | 0.9978 | 0.9989 | 0.9989 | 0.9991 | 0.9988 | 0.9988 | 0.9989 | 0.9983 | 0.9977 | 0.9978 | 0.9974 |
81
+
82
+
83
+ ### Framework versions
84
+
85
+ - Transformers 4.48.3
86
+ - Pytorch 2.1.0
87
+ - Datasets 3.2.0
88
+ - Tokenizers 0.21.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b3",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 768,
9
+ "depths": [
10
+ 3,
11
+ 4,
12
+ 18,
13
+ 3
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "0-0",
32
+ "1": "0-90",
33
+ "2": "90-0",
34
+ "3": "90-90"
35
+ },
36
+ "image_size": 224,
37
+ "initializer_range": 0.02,
38
+ "label2id": {
39
+ "0-0": 0,
40
+ "0-90": 1,
41
+ "90-0": 2,
42
+ "90-90": 3
43
+ },
44
+ "layer_norm_eps": 1e-06,
45
+ "mlp_ratios": [
46
+ 4,
47
+ 4,
48
+ 4,
49
+ 4
50
+ ],
51
+ "model_type": "segformer",
52
+ "num_attention_heads": [
53
+ 1,
54
+ 2,
55
+ 5,
56
+ 8
57
+ ],
58
+ "num_channels": 3,
59
+ "num_encoder_blocks": 4,
60
+ "patch_sizes": [
61
+ 7,
62
+ 3,
63
+ 3,
64
+ 3
65
+ ],
66
+ "reshape_last_stage": true,
67
+ "semantic_loss_ignore_index": 255,
68
+ "sr_ratios": [
69
+ 8,
70
+ 4,
71
+ 2,
72
+ 1
73
+ ],
74
+ "strides": [
75
+ 4,
76
+ 2,
77
+ 2,
78
+ 2
79
+ ],
80
+ "torch_dtype": "float32",
81
+ "transformers_version": "4.48.3"
82
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17706bf2ea17d0c6dc672dc3c67eef8e84d82e5e809a10b7b4b351917f374fb4
3
+ size 188985928
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46fe4c4f86f23edc19b2180bbde117d5f8ef53881f6f4c0802ed5fd06b7f0f7c
3
+ size 5432