End of training
Browse files- README.md +99 -199
- config.json +82 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,99 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: nvidia/segformer-b5-finetuned-ade-640-640
|
5 |
+
tags:
|
6 |
+
- vision
|
7 |
+
- image-segmentation
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: segformer-b5-finetuned-ade20k-morphpadver1-hgo-coord_40epochs_distortion_global_norm
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# segformer-b5-finetuned-ade20k-morphpadver1-hgo-coord_40epochs_distortion_global_norm
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [nvidia/segformer-b5-finetuned-ade-640-640](https://huggingface.co/nvidia/segformer-b5-finetuned-ade-640-640) on the NICOPOI-9/Morphpad_HGO_1600_coord_global_norm dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.1027
|
22 |
+
- Mean Iou: 0.9780
|
23 |
+
- Mean Accuracy: 0.9889
|
24 |
+
- Overall Accuracy: 0.9886
|
25 |
+
- Accuracy 0-0: 0.9903
|
26 |
+
- Accuracy 0-90: 0.9850
|
27 |
+
- Accuracy 90-0: 0.9874
|
28 |
+
- Accuracy 90-90: 0.9929
|
29 |
+
- Iou 0-0: 0.9819
|
30 |
+
- Iou 0-90: 0.9740
|
31 |
+
- Iou 90-0: 0.9729
|
32 |
+
- Iou 90-90: 0.9831
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 6e-05
|
52 |
+
- train_batch_size: 1
|
53 |
+
- eval_batch_size: 1
|
54 |
+
- seed: 42
|
55 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 40
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
|
62 |
+
|:-------------:|:-------:|:------:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:-------------:|:-------------:|:--------------:|:-------:|:--------:|:--------:|:---------:|
|
63 |
+
| 1.2959 | 1.3680 | 4000 | 1.2209 | 0.2639 | 0.4166 | 0.4247 | 0.2827 | 0.4642 | 0.5298 | 0.3899 | 0.2232 | 0.2838 | 0.2934 | 0.2550 |
|
64 |
+
| 0.8526 | 2.7360 | 8000 | 0.9446 | 0.4145 | 0.5789 | 0.5841 | 0.5010 | 0.6754 | 0.5810 | 0.5582 | 0.4193 | 0.4020 | 0.4076 | 0.4290 |
|
65 |
+
| 0.6552 | 4.1040 | 12000 | 0.7331 | 0.5293 | 0.6854 | 0.6880 | 0.6425 | 0.6769 | 0.7503 | 0.6717 | 0.5626 | 0.4909 | 0.5151 | 0.5485 |
|
66 |
+
| 0.4479 | 5.4720 | 16000 | 0.5873 | 0.6216 | 0.7621 | 0.7634 | 0.7338 | 0.8038 | 0.7429 | 0.7677 | 0.6463 | 0.5867 | 0.6042 | 0.6494 |
|
67 |
+
| 0.3862 | 6.8399 | 20000 | 0.4229 | 0.7262 | 0.8411 | 0.8396 | 0.8751 | 0.8489 | 0.8048 | 0.8354 | 0.7527 | 0.6991 | 0.7079 | 0.7449 |
|
68 |
+
| 1.3206 | 8.2079 | 24000 | 0.2964 | 0.8276 | 0.9031 | 0.9040 | 0.8928 | 0.9069 | 0.9194 | 0.8932 | 0.8544 | 0.8091 | 0.8044 | 0.8427 |
|
69 |
+
| 1.2794 | 9.5759 | 28000 | 0.2393 | 0.8588 | 0.9236 | 0.9229 | 0.9416 | 0.8933 | 0.9435 | 0.9160 | 0.8776 | 0.8406 | 0.8410 | 0.8760 |
|
70 |
+
| 0.1104 | 10.9439 | 32000 | 0.1972 | 0.8876 | 0.9409 | 0.9396 | 0.9546 | 0.9336 | 0.9196 | 0.9559 | 0.9028 | 0.8736 | 0.8700 | 0.9040 |
|
71 |
+
| 0.5852 | 12.3119 | 36000 | 0.1674 | 0.9102 | 0.9536 | 0.9523 | 0.9572 | 0.9438 | 0.9339 | 0.9794 | 0.9167 | 0.9024 | 0.8896 | 0.9320 |
|
72 |
+
| 0.0711 | 13.6799 | 40000 | 0.1398 | 0.9289 | 0.9629 | 0.9625 | 0.9648 | 0.9542 | 0.9641 | 0.9684 | 0.9374 | 0.9178 | 0.9169 | 0.9435 |
|
73 |
+
| 0.5558 | 15.0479 | 44000 | 0.1391 | 0.9337 | 0.9656 | 0.9651 | 0.9677 | 0.9580 | 0.9638 | 0.9728 | 0.9424 | 0.9235 | 0.9227 | 0.9461 |
|
74 |
+
| 1.2811 | 16.4159 | 48000 | 0.1252 | 0.9426 | 0.9706 | 0.9700 | 0.9776 | 0.9681 | 0.9591 | 0.9777 | 0.9521 | 0.9341 | 0.9326 | 0.9516 |
|
75 |
+
| 1.1932 | 17.7839 | 52000 | 0.1162 | 0.9486 | 0.9740 | 0.9733 | 0.9811 | 0.9641 | 0.9690 | 0.9818 | 0.9553 | 0.9404 | 0.9428 | 0.9558 |
|
76 |
+
| 1.2719 | 19.1518 | 56000 | 0.1141 | 0.9533 | 0.9759 | 0.9757 | 0.9744 | 0.9717 | 0.9761 | 0.9814 | 0.9581 | 0.9487 | 0.9428 | 0.9638 |
|
77 |
+
| 0.0857 | 20.5198 | 60000 | 0.1049 | 0.9590 | 0.9790 | 0.9787 | 0.9783 | 0.9746 | 0.9761 | 0.9870 | 0.9655 | 0.9531 | 0.9508 | 0.9665 |
|
78 |
+
| 1.1869 | 21.8878 | 64000 | 0.1069 | 0.9558 | 0.9774 | 0.9770 | 0.9781 | 0.9625 | 0.9826 | 0.9865 | 0.9641 | 0.9494 | 0.9448 | 0.9649 |
|
79 |
+
| 0.0294 | 23.2558 | 68000 | 0.1028 | 0.9641 | 0.9819 | 0.9814 | 0.9840 | 0.9772 | 0.9760 | 0.9903 | 0.9680 | 0.9586 | 0.9564 | 0.9733 |
|
80 |
+
| 0.5373 | 24.6238 | 72000 | 0.1089 | 0.9639 | 0.9815 | 0.9813 | 0.9813 | 0.9771 | 0.9807 | 0.9869 | 0.9696 | 0.9584 | 0.9564 | 0.9711 |
|
81 |
+
| 0.7069 | 25.9918 | 76000 | 0.1026 | 0.9683 | 0.9840 | 0.9836 | 0.9859 | 0.9764 | 0.9842 | 0.9893 | 0.9734 | 0.9630 | 0.9620 | 0.9750 |
|
82 |
+
| 0.0382 | 27.3598 | 80000 | 0.1075 | 0.9647 | 0.9818 | 0.9819 | 0.9748 | 0.9835 | 0.9800 | 0.9890 | 0.9627 | 0.9630 | 0.9591 | 0.9739 |
|
83 |
+
| 0.0143 | 28.7278 | 84000 | 0.1082 | 0.9719 | 0.9858 | 0.9855 | 0.9896 | 0.9804 | 0.9864 | 0.9866 | 0.9778 | 0.9679 | 0.9654 | 0.9766 |
|
84 |
+
| 1.2277 | 30.0958 | 88000 | 0.0961 | 0.9730 | 0.9864 | 0.9861 | 0.9889 | 0.9818 | 0.9829 | 0.9922 | 0.9773 | 0.9685 | 0.9671 | 0.9791 |
|
85 |
+
| 1.1838 | 31.4637 | 92000 | 0.0947 | 0.9739 | 0.9868 | 0.9865 | 0.9899 | 0.9834 | 0.9846 | 0.9893 | 0.9785 | 0.9693 | 0.9679 | 0.9801 |
|
86 |
+
| 1.2587 | 32.8317 | 96000 | 0.0925 | 0.9745 | 0.9871 | 0.9869 | 0.9902 | 0.9827 | 0.9864 | 0.9893 | 0.9792 | 0.9700 | 0.9689 | 0.9801 |
|
87 |
+
| 0.0103 | 34.1997 | 100000 | 0.0988 | 0.9748 | 0.9871 | 0.9870 | 0.9865 | 0.9844 | 0.9869 | 0.9907 | 0.9782 | 0.9713 | 0.9693 | 0.9803 |
|
88 |
+
| 1.2995 | 35.5677 | 104000 | 0.0980 | 0.9763 | 0.9880 | 0.9878 | 0.9887 | 0.9838 | 0.9874 | 0.9921 | 0.9805 | 0.9727 | 0.9708 | 0.9813 |
|
89 |
+
| 0.0678 | 36.9357 | 108000 | 0.1043 | 0.9778 | 0.9888 | 0.9886 | 0.9899 | 0.9857 | 0.9873 | 0.9922 | 0.9812 | 0.9743 | 0.9722 | 0.9835 |
|
90 |
+
| 0.0094 | 38.3037 | 112000 | 0.1031 | 0.9775 | 0.9886 | 0.9884 | 0.9896 | 0.9848 | 0.9884 | 0.9916 | 0.9816 | 0.9742 | 0.9717 | 0.9826 |
|
91 |
+
| 0.1925 | 39.6717 | 116000 | 0.1027 | 0.9780 | 0.9889 | 0.9886 | 0.9903 | 0.9850 | 0.9874 | 0.9929 | 0.9819 | 0.9740 | 0.9729 | 0.9831 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.48.3
|
97 |
+
- Pytorch 2.1.0
|
98 |
+
- Datasets 3.2.0
|
99 |
+
- Tokenizers 0.21.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/segformer-b5-finetuned-ade-640-640",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
6,
|
12 |
+
40,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "0-0",
|
32 |
+
"1": "0-90",
|
33 |
+
"2": "90-0",
|
34 |
+
"3": "90-90"
|
35 |
+
},
|
36 |
+
"image_size": 224,
|
37 |
+
"initializer_range": 0.02,
|
38 |
+
"label2id": {
|
39 |
+
"0-0": 0,
|
40 |
+
"0-90": 1,
|
41 |
+
"90-0": 2,
|
42 |
+
"90-90": 3
|
43 |
+
},
|
44 |
+
"layer_norm_eps": 1e-06,
|
45 |
+
"mlp_ratios": [
|
46 |
+
4,
|
47 |
+
4,
|
48 |
+
4,
|
49 |
+
4
|
50 |
+
],
|
51 |
+
"model_type": "segformer",
|
52 |
+
"num_attention_heads": [
|
53 |
+
1,
|
54 |
+
2,
|
55 |
+
5,
|
56 |
+
8
|
57 |
+
],
|
58 |
+
"num_channels": 3,
|
59 |
+
"num_encoder_blocks": 4,
|
60 |
+
"patch_sizes": [
|
61 |
+
7,
|
62 |
+
3,
|
63 |
+
3,
|
64 |
+
3
|
65 |
+
],
|
66 |
+
"reshape_last_stage": true,
|
67 |
+
"semantic_loss_ignore_index": 255,
|
68 |
+
"sr_ratios": [
|
69 |
+
8,
|
70 |
+
4,
|
71 |
+
2,
|
72 |
+
1
|
73 |
+
],
|
74 |
+
"strides": [
|
75 |
+
4,
|
76 |
+
2,
|
77 |
+
2,
|
78 |
+
2
|
79 |
+
],
|
80 |
+
"torch_dtype": "float32",
|
81 |
+
"transformers_version": "4.48.3"
|
82 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d9db0118762d1deec28bc01567c64cc87e198c96af45b460956b5eccf0f5ecd
|
3 |
+
size 338534592
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8b1cccfdbf9dc70c4cd4b80aaab3348f2a27e2721de099aa690d44b02cf8c86
|
3 |
+
size 5560
|