NICOPOI-9 commited on
Commit
cbd94bb
·
verified ·
1 Parent(s): 9bf43aa

End of training

Browse files
Files changed (4) hide show
  1. README.md +99 -199
  2. config.json +82 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,99 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
+ ---
2
+ library_name: transformers
3
+ license: other
4
+ base_model: nvidia/mit-b5
5
+ tags:
6
+ - vision
7
+ - image-segmentation
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: segformer-b5-finetuned-morphpadver1-hgo-coord-v9_mix_resample_40epochs
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # segformer-b5-finetuned-morphpadver1-hgo-coord-v9_mix_resample_40epochs
18
+
19
+ This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the NICOPOI-9/morphpad_coord_hgo_512_4class_v2 dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.6422
22
+ - Mean Iou: 0.7347
23
+ - Mean Accuracy: 0.8436
24
+ - Overall Accuracy: 0.8478
25
+ - Accuracy 0-0: 0.7840
26
+ - Accuracy 0-90: 0.8932
27
+ - Accuracy 90-0: 0.8779
28
+ - Accuracy 90-90: 0.8194
29
+ - Iou 0-0: 0.7200
30
+ - Iou 0-90: 0.7429
31
+ - Iou 90-0: 0.7413
32
+ - Iou 90-90: 0.7348
33
+
34
+ ## Model description
35
+
36
+ More information needed
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 6e-05
52
+ - train_batch_size: 1
53
+ - eval_batch_size: 1
54
+ - seed: 42
55
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
56
+ - lr_scheduler_type: linear
57
+ - num_epochs: 40
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
62
+ |:-------------:|:-------:|:------:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:-------------:|:-------------:|:--------------:|:-------:|:--------:|:--------:|:---------:|
63
+ | 1.3684 | 1.3638 | 4000 | 1.3355 | 0.1756 | 0.3310 | 0.3524 | 0.1001 | 0.3549 | 0.7755 | 0.0937 | 0.0866 | 0.2432 | 0.2910 | 0.0815 |
64
+ | 0.6699 | 2.7276 | 8000 | 1.1446 | 0.3199 | 0.4833 | 0.4927 | 0.3842 | 0.5642 | 0.5994 | 0.3853 | 0.2808 | 0.3636 | 0.3545 | 0.2808 |
65
+ | 0.7075 | 4.0914 | 12000 | 1.0016 | 0.4314 | 0.6036 | 0.6040 | 0.6056 | 0.5476 | 0.6773 | 0.5840 | 0.4196 | 0.4287 | 0.4540 | 0.4233 |
66
+ | 0.4978 | 5.4552 | 16000 | 0.8600 | 0.5036 | 0.6641 | 0.6709 | 0.5657 | 0.7738 | 0.6865 | 0.6305 | 0.4895 | 0.5093 | 0.5085 | 0.5071 |
67
+ | 0.6194 | 6.8190 | 20000 | 0.8307 | 0.5419 | 0.7019 | 0.7030 | 0.6992 | 0.7035 | 0.7266 | 0.6782 | 0.5500 | 0.5426 | 0.5441 | 0.5311 |
68
+ | 0.2622 | 8.1827 | 24000 | 0.7177 | 0.5987 | 0.7469 | 0.7491 | 0.7321 | 0.7660 | 0.7749 | 0.7148 | 0.5962 | 0.5985 | 0.6019 | 0.5984 |
69
+ | 0.9683 | 9.5465 | 28000 | 0.7541 | 0.5951 | 0.7409 | 0.7474 | 0.6970 | 0.7901 | 0.8298 | 0.6467 | 0.5996 | 0.6063 | 0.6010 | 0.5736 |
70
+ | 0.2542 | 10.9103 | 32000 | 0.7039 | 0.6381 | 0.7768 | 0.7791 | 0.7554 | 0.7818 | 0.8233 | 0.7465 | 0.6333 | 0.6498 | 0.6295 | 0.6400 |
71
+ | 0.1691 | 12.2741 | 36000 | 0.6232 | 0.6632 | 0.7959 | 0.7978 | 0.7673 | 0.8280 | 0.8005 | 0.7877 | 0.6636 | 0.6778 | 0.6536 | 0.6580 |
72
+ | 0.1883 | 13.6379 | 40000 | 0.6711 | 0.6649 | 0.7948 | 0.7996 | 0.7315 | 0.8565 | 0.8291 | 0.7622 | 0.6514 | 0.6774 | 0.6675 | 0.6632 |
73
+ | 0.164 | 15.0017 | 44000 | 0.6627 | 0.6688 | 0.7980 | 0.8022 | 0.7670 | 0.8227 | 0.8637 | 0.7386 | 0.6740 | 0.6846 | 0.6687 | 0.6479 |
74
+ | 0.2406 | 16.3655 | 48000 | 0.6364 | 0.6930 | 0.8159 | 0.8194 | 0.7843 | 0.8565 | 0.8466 | 0.7763 | 0.6894 | 0.7005 | 0.7017 | 0.6805 |
75
+ | 0.109 | 17.7293 | 52000 | 0.6087 | 0.6872 | 0.8119 | 0.8153 | 0.7622 | 0.8473 | 0.8443 | 0.7940 | 0.6733 | 0.7055 | 0.6834 | 0.6868 |
76
+ | 0.1262 | 19.0931 | 56000 | 0.6101 | 0.6999 | 0.8202 | 0.8240 | 0.7795 | 0.8572 | 0.8619 | 0.7823 | 0.6912 | 0.7071 | 0.7041 | 0.6972 |
77
+ | 0.1633 | 20.4569 | 60000 | 0.6434 | 0.7056 | 0.8239 | 0.8280 | 0.7832 | 0.8548 | 0.8795 | 0.7781 | 0.7006 | 0.7194 | 0.7056 | 0.6969 |
78
+ | 8.0069 | 21.8207 | 64000 | 0.5640 | 0.7111 | 0.8286 | 0.8319 | 0.8192 | 0.8718 | 0.8567 | 0.7666 | 0.7149 | 0.7267 | 0.7119 | 0.6909 |
79
+ | 0.0335 | 23.1845 | 68000 | 0.5820 | 0.7215 | 0.8348 | 0.8388 | 0.7894 | 0.8701 | 0.8828 | 0.7967 | 0.7085 | 0.7253 | 0.7293 | 0.7230 |
80
+ | 0.3274 | 24.5482 | 72000 | 0.6041 | 0.7210 | 0.8346 | 0.8386 | 0.7929 | 0.8767 | 0.8754 | 0.7933 | 0.7157 | 0.7344 | 0.7223 | 0.7117 |
81
+ | 0.137 | 25.9120 | 76000 | 0.6174 | 0.7000 | 0.8197 | 0.8246 | 0.7584 | 0.8768 | 0.8609 | 0.7829 | 0.6897 | 0.7138 | 0.7079 | 0.6886 |
82
+ | 0.0973 | 27.2758 | 80000 | 0.6329 | 0.7039 | 0.8208 | 0.8276 | 0.7483 | 0.9023 | 0.8783 | 0.7542 | 0.6896 | 0.7184 | 0.7139 | 0.6936 |
83
+ | 0.0938 | 28.6396 | 84000 | 0.5952 | 0.7273 | 0.8412 | 0.8421 | 0.8351 | 0.8486 | 0.8535 | 0.8276 | 0.7316 | 0.7346 | 0.7211 | 0.7218 |
84
+ | 0.0558 | 30.0034 | 88000 | 0.6204 | 0.7017 | 0.8193 | 0.8260 | 0.7578 | 0.8958 | 0.8822 | 0.7412 | 0.6987 | 0.7170 | 0.7090 | 0.6822 |
85
+ | 0.0048 | 31.3672 | 92000 | 0.6403 | 0.7057 | 0.8219 | 0.8289 | 0.7465 | 0.8980 | 0.8915 | 0.7514 | 0.6933 | 0.7244 | 0.7130 | 0.6920 |
86
+ | 0.0134 | 32.7310 | 96000 | 0.6758 | 0.7192 | 0.8333 | 0.8375 | 0.8073 | 0.8800 | 0.8754 | 0.7704 | 0.7150 | 0.7309 | 0.7256 | 0.7052 |
87
+ | 0.0326 | 34.0948 | 100000 | 0.6023 | 0.7256 | 0.8362 | 0.8419 | 0.7617 | 0.9030 | 0.8856 | 0.7944 | 0.7094 | 0.7337 | 0.7341 | 0.7254 |
88
+ | 0.0379 | 35.4586 | 104000 | 0.6208 | 0.7342 | 0.8436 | 0.8472 | 0.7932 | 0.8949 | 0.8641 | 0.8220 | 0.7245 | 0.7368 | 0.7419 | 0.7334 |
89
+ | 0.0676 | 36.8224 | 108000 | 0.6448 | 0.7298 | 0.8401 | 0.8446 | 0.7877 | 0.8896 | 0.8831 | 0.8001 | 0.7180 | 0.7440 | 0.7336 | 0.7236 |
90
+ | 0.0604 | 38.1862 | 112000 | 0.6608 | 0.7334 | 0.8426 | 0.8468 | 0.7867 | 0.8845 | 0.8869 | 0.8124 | 0.7214 | 0.7441 | 0.7364 | 0.7315 |
91
+ | 0.018 | 39.5499 | 116000 | 0.6422 | 0.7347 | 0.8436 | 0.8478 | 0.7840 | 0.8932 | 0.8779 | 0.8194 | 0.7200 | 0.7429 | 0.7413 | 0.7348 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.48.3
97
+ - Pytorch 2.1.0
98
+ - Datasets 3.2.0
99
+ - Tokenizers 0.21.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nvidia/mit-b5",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 768,
9
+ "depths": [
10
+ 3,
11
+ 6,
12
+ 40,
13
+ 3
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "0-0",
32
+ "1": "0-90",
33
+ "2": "90-0",
34
+ "3": "90-90"
35
+ },
36
+ "image_size": 224,
37
+ "initializer_range": 0.02,
38
+ "label2id": {
39
+ "0-0": 0,
40
+ "0-90": 1,
41
+ "90-0": 2,
42
+ "90-90": 3
43
+ },
44
+ "layer_norm_eps": 1e-06,
45
+ "mlp_ratios": [
46
+ 4,
47
+ 4,
48
+ 4,
49
+ 4
50
+ ],
51
+ "model_type": "segformer",
52
+ "num_attention_heads": [
53
+ 1,
54
+ 2,
55
+ 5,
56
+ 8
57
+ ],
58
+ "num_channels": 3,
59
+ "num_encoder_blocks": 4,
60
+ "patch_sizes": [
61
+ 7,
62
+ 3,
63
+ 3,
64
+ 3
65
+ ],
66
+ "reshape_last_stage": true,
67
+ "semantic_loss_ignore_index": 255,
68
+ "sr_ratios": [
69
+ 8,
70
+ 4,
71
+ 2,
72
+ 1
73
+ ],
74
+ "strides": [
75
+ 4,
76
+ 2,
77
+ 2,
78
+ 2
79
+ ],
80
+ "torch_dtype": "float32",
81
+ "transformers_version": "4.48.3"
82
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33c4d06316d3b3f0f6dcc872ff924bcb0eeffb0bb82e9f811129de27d93a7ef2
3
+ size 338534592
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:441027a174582cc7b6b5c5ad85686a6e2c46459d8c1ca37ad5e444a49695a956
3
+ size 5496