End of training
Browse files- README.md +99 -199
- config.json +82 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,99 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
-
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: other
|
4 |
+
base_model: nvidia/mit-b5
|
5 |
+
tags:
|
6 |
+
- vision
|
7 |
+
- image-segmentation
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: segformer-b5-finetuned-morphpadver1-hgo-coord-v9_mix_resample_40epochs
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# segformer-b5-finetuned-morphpadver1-hgo-coord-v9_mix_resample_40epochs
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the NICOPOI-9/morphpad_coord_hgo_512_4class_v2 dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.6422
|
22 |
+
- Mean Iou: 0.7347
|
23 |
+
- Mean Accuracy: 0.8436
|
24 |
+
- Overall Accuracy: 0.8478
|
25 |
+
- Accuracy 0-0: 0.7840
|
26 |
+
- Accuracy 0-90: 0.8932
|
27 |
+
- Accuracy 90-0: 0.8779
|
28 |
+
- Accuracy 90-90: 0.8194
|
29 |
+
- Iou 0-0: 0.7200
|
30 |
+
- Iou 0-90: 0.7429
|
31 |
+
- Iou 90-0: 0.7413
|
32 |
+
- Iou 90-90: 0.7348
|
33 |
+
|
34 |
+
## Model description
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Intended uses & limitations
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training and evaluation data
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training procedure
|
47 |
+
|
48 |
+
### Training hyperparameters
|
49 |
+
|
50 |
+
The following hyperparameters were used during training:
|
51 |
+
- learning_rate: 6e-05
|
52 |
+
- train_batch_size: 1
|
53 |
+
- eval_batch_size: 1
|
54 |
+
- seed: 42
|
55 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
56 |
+
- lr_scheduler_type: linear
|
57 |
+
- num_epochs: 40
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy 0-0 | Accuracy 0-90 | Accuracy 90-0 | Accuracy 90-90 | Iou 0-0 | Iou 0-90 | Iou 90-0 | Iou 90-90 |
|
62 |
+
|:-------------:|:-------:|:------:|:---------------:|:--------:|:-------------:|:----------------:|:------------:|:-------------:|:-------------:|:--------------:|:-------:|:--------:|:--------:|:---------:|
|
63 |
+
| 1.3684 | 1.3638 | 4000 | 1.3355 | 0.1756 | 0.3310 | 0.3524 | 0.1001 | 0.3549 | 0.7755 | 0.0937 | 0.0866 | 0.2432 | 0.2910 | 0.0815 |
|
64 |
+
| 0.6699 | 2.7276 | 8000 | 1.1446 | 0.3199 | 0.4833 | 0.4927 | 0.3842 | 0.5642 | 0.5994 | 0.3853 | 0.2808 | 0.3636 | 0.3545 | 0.2808 |
|
65 |
+
| 0.7075 | 4.0914 | 12000 | 1.0016 | 0.4314 | 0.6036 | 0.6040 | 0.6056 | 0.5476 | 0.6773 | 0.5840 | 0.4196 | 0.4287 | 0.4540 | 0.4233 |
|
66 |
+
| 0.4978 | 5.4552 | 16000 | 0.8600 | 0.5036 | 0.6641 | 0.6709 | 0.5657 | 0.7738 | 0.6865 | 0.6305 | 0.4895 | 0.5093 | 0.5085 | 0.5071 |
|
67 |
+
| 0.6194 | 6.8190 | 20000 | 0.8307 | 0.5419 | 0.7019 | 0.7030 | 0.6992 | 0.7035 | 0.7266 | 0.6782 | 0.5500 | 0.5426 | 0.5441 | 0.5311 |
|
68 |
+
| 0.2622 | 8.1827 | 24000 | 0.7177 | 0.5987 | 0.7469 | 0.7491 | 0.7321 | 0.7660 | 0.7749 | 0.7148 | 0.5962 | 0.5985 | 0.6019 | 0.5984 |
|
69 |
+
| 0.9683 | 9.5465 | 28000 | 0.7541 | 0.5951 | 0.7409 | 0.7474 | 0.6970 | 0.7901 | 0.8298 | 0.6467 | 0.5996 | 0.6063 | 0.6010 | 0.5736 |
|
70 |
+
| 0.2542 | 10.9103 | 32000 | 0.7039 | 0.6381 | 0.7768 | 0.7791 | 0.7554 | 0.7818 | 0.8233 | 0.7465 | 0.6333 | 0.6498 | 0.6295 | 0.6400 |
|
71 |
+
| 0.1691 | 12.2741 | 36000 | 0.6232 | 0.6632 | 0.7959 | 0.7978 | 0.7673 | 0.8280 | 0.8005 | 0.7877 | 0.6636 | 0.6778 | 0.6536 | 0.6580 |
|
72 |
+
| 0.1883 | 13.6379 | 40000 | 0.6711 | 0.6649 | 0.7948 | 0.7996 | 0.7315 | 0.8565 | 0.8291 | 0.7622 | 0.6514 | 0.6774 | 0.6675 | 0.6632 |
|
73 |
+
| 0.164 | 15.0017 | 44000 | 0.6627 | 0.6688 | 0.7980 | 0.8022 | 0.7670 | 0.8227 | 0.8637 | 0.7386 | 0.6740 | 0.6846 | 0.6687 | 0.6479 |
|
74 |
+
| 0.2406 | 16.3655 | 48000 | 0.6364 | 0.6930 | 0.8159 | 0.8194 | 0.7843 | 0.8565 | 0.8466 | 0.7763 | 0.6894 | 0.7005 | 0.7017 | 0.6805 |
|
75 |
+
| 0.109 | 17.7293 | 52000 | 0.6087 | 0.6872 | 0.8119 | 0.8153 | 0.7622 | 0.8473 | 0.8443 | 0.7940 | 0.6733 | 0.7055 | 0.6834 | 0.6868 |
|
76 |
+
| 0.1262 | 19.0931 | 56000 | 0.6101 | 0.6999 | 0.8202 | 0.8240 | 0.7795 | 0.8572 | 0.8619 | 0.7823 | 0.6912 | 0.7071 | 0.7041 | 0.6972 |
|
77 |
+
| 0.1633 | 20.4569 | 60000 | 0.6434 | 0.7056 | 0.8239 | 0.8280 | 0.7832 | 0.8548 | 0.8795 | 0.7781 | 0.7006 | 0.7194 | 0.7056 | 0.6969 |
|
78 |
+
| 8.0069 | 21.8207 | 64000 | 0.5640 | 0.7111 | 0.8286 | 0.8319 | 0.8192 | 0.8718 | 0.8567 | 0.7666 | 0.7149 | 0.7267 | 0.7119 | 0.6909 |
|
79 |
+
| 0.0335 | 23.1845 | 68000 | 0.5820 | 0.7215 | 0.8348 | 0.8388 | 0.7894 | 0.8701 | 0.8828 | 0.7967 | 0.7085 | 0.7253 | 0.7293 | 0.7230 |
|
80 |
+
| 0.3274 | 24.5482 | 72000 | 0.6041 | 0.7210 | 0.8346 | 0.8386 | 0.7929 | 0.8767 | 0.8754 | 0.7933 | 0.7157 | 0.7344 | 0.7223 | 0.7117 |
|
81 |
+
| 0.137 | 25.9120 | 76000 | 0.6174 | 0.7000 | 0.8197 | 0.8246 | 0.7584 | 0.8768 | 0.8609 | 0.7829 | 0.6897 | 0.7138 | 0.7079 | 0.6886 |
|
82 |
+
| 0.0973 | 27.2758 | 80000 | 0.6329 | 0.7039 | 0.8208 | 0.8276 | 0.7483 | 0.9023 | 0.8783 | 0.7542 | 0.6896 | 0.7184 | 0.7139 | 0.6936 |
|
83 |
+
| 0.0938 | 28.6396 | 84000 | 0.5952 | 0.7273 | 0.8412 | 0.8421 | 0.8351 | 0.8486 | 0.8535 | 0.8276 | 0.7316 | 0.7346 | 0.7211 | 0.7218 |
|
84 |
+
| 0.0558 | 30.0034 | 88000 | 0.6204 | 0.7017 | 0.8193 | 0.8260 | 0.7578 | 0.8958 | 0.8822 | 0.7412 | 0.6987 | 0.7170 | 0.7090 | 0.6822 |
|
85 |
+
| 0.0048 | 31.3672 | 92000 | 0.6403 | 0.7057 | 0.8219 | 0.8289 | 0.7465 | 0.8980 | 0.8915 | 0.7514 | 0.6933 | 0.7244 | 0.7130 | 0.6920 |
|
86 |
+
| 0.0134 | 32.7310 | 96000 | 0.6758 | 0.7192 | 0.8333 | 0.8375 | 0.8073 | 0.8800 | 0.8754 | 0.7704 | 0.7150 | 0.7309 | 0.7256 | 0.7052 |
|
87 |
+
| 0.0326 | 34.0948 | 100000 | 0.6023 | 0.7256 | 0.8362 | 0.8419 | 0.7617 | 0.9030 | 0.8856 | 0.7944 | 0.7094 | 0.7337 | 0.7341 | 0.7254 |
|
88 |
+
| 0.0379 | 35.4586 | 104000 | 0.6208 | 0.7342 | 0.8436 | 0.8472 | 0.7932 | 0.8949 | 0.8641 | 0.8220 | 0.7245 | 0.7368 | 0.7419 | 0.7334 |
|
89 |
+
| 0.0676 | 36.8224 | 108000 | 0.6448 | 0.7298 | 0.8401 | 0.8446 | 0.7877 | 0.8896 | 0.8831 | 0.8001 | 0.7180 | 0.7440 | 0.7336 | 0.7236 |
|
90 |
+
| 0.0604 | 38.1862 | 112000 | 0.6608 | 0.7334 | 0.8426 | 0.8468 | 0.7867 | 0.8845 | 0.8869 | 0.8124 | 0.7214 | 0.7441 | 0.7364 | 0.7315 |
|
91 |
+
| 0.018 | 39.5499 | 116000 | 0.6422 | 0.7347 | 0.8436 | 0.8478 | 0.7840 | 0.8932 | 0.8779 | 0.8194 | 0.7200 | 0.7429 | 0.7413 | 0.7348 |
|
92 |
+
|
93 |
+
|
94 |
+
### Framework versions
|
95 |
+
|
96 |
+
- Transformers 4.48.3
|
97 |
+
- Pytorch 2.1.0
|
98 |
+
- Datasets 3.2.0
|
99 |
+
- Tokenizers 0.21.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b5",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
6,
|
12 |
+
40,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "0-0",
|
32 |
+
"1": "0-90",
|
33 |
+
"2": "90-0",
|
34 |
+
"3": "90-90"
|
35 |
+
},
|
36 |
+
"image_size": 224,
|
37 |
+
"initializer_range": 0.02,
|
38 |
+
"label2id": {
|
39 |
+
"0-0": 0,
|
40 |
+
"0-90": 1,
|
41 |
+
"90-0": 2,
|
42 |
+
"90-90": 3
|
43 |
+
},
|
44 |
+
"layer_norm_eps": 1e-06,
|
45 |
+
"mlp_ratios": [
|
46 |
+
4,
|
47 |
+
4,
|
48 |
+
4,
|
49 |
+
4
|
50 |
+
],
|
51 |
+
"model_type": "segformer",
|
52 |
+
"num_attention_heads": [
|
53 |
+
1,
|
54 |
+
2,
|
55 |
+
5,
|
56 |
+
8
|
57 |
+
],
|
58 |
+
"num_channels": 3,
|
59 |
+
"num_encoder_blocks": 4,
|
60 |
+
"patch_sizes": [
|
61 |
+
7,
|
62 |
+
3,
|
63 |
+
3,
|
64 |
+
3
|
65 |
+
],
|
66 |
+
"reshape_last_stage": true,
|
67 |
+
"semantic_loss_ignore_index": 255,
|
68 |
+
"sr_ratios": [
|
69 |
+
8,
|
70 |
+
4,
|
71 |
+
2,
|
72 |
+
1
|
73 |
+
],
|
74 |
+
"strides": [
|
75 |
+
4,
|
76 |
+
2,
|
77 |
+
2,
|
78 |
+
2
|
79 |
+
],
|
80 |
+
"torch_dtype": "float32",
|
81 |
+
"transformers_version": "4.48.3"
|
82 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33c4d06316d3b3f0f6dcc872ff924bcb0eeffb0bb82e9f811129de27d93a7ef2
|
3 |
+
size 338534592
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:441027a174582cc7b6b5c5ad85686a6e2c46459d8c1ca37ad5e444a49695a956
|
3 |
+
size 5496
|