Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
|
3 |
+
language:
|
4 |
+
- hu
|
5 |
+
tags:
|
6 |
+
- text-classification
|
7 |
+
license: gpl
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
widget:
|
11 |
+
- text: "Jó reggelt! majd küldöm az élményhozókat:)."
|
12 |
+
|
13 |
+
---
|
14 |
+
|
15 |
+
# Hungarian Sentence-level Sentiment Analysis model with huBERT
|
16 |
+
|
17 |
+
- Pretrained model used: huBERT
|
18 |
+
- Finetuned on Hungarian Twitter Sentiment (HTS) Corpus
|
19 |
+
|
20 |
+
## Limitations
|
21 |
+
|
22 |
+
- max_seq_length = 128
|
23 |
+
|
24 |
+
## Results
|
25 |
+
|
26 |
+
| Model | HTS2 | HTS5 |
|
27 |
+
| ------------- | ------------- | ------------- |
|
28 |
+
| huBERT | **85.55** | 68.99 |
|
29 |
+
| XLM-RoBERTa| 85.56 | 85.56 |
|
30 |
+
|
31 |
+
## Citation
|
32 |
+
If you use this model, please cite the following paper:
|
33 |
+
|
34 |
+
```
|
35 |
+
@inproceedings {yang-bart,
|
36 |
+
title = {Improving Performance of Sentence-level Sentiment Analysis with Data Augmentation Methods},
|
37 |
+
booktitle = {Proceedings of 12th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2021)},
|
38 |
+
year = {2021},
|
39 |
+
publisher = {IEEE},
|
40 |
+
address = {Online},
|
41 |
+
author = {{Laki, László and Yang, Zijian Győző}}
|
42 |
+
pages = {417--422}
|
43 |
+
}
|
44 |
+
|
45 |
+
```
|