Sambit Kumar Barik
NaiveAttention
AI & ML interests
LLM | VLM | Natural Language Processing
Recent Activity
liked
a Space
22 days ago
nanotron/ultrascale-playbook
reacted
to
ImranzamanML's
post
with ๐
8 months ago
Here is how we can calculate the size of any LLM model:
Each parameter in LLM models is typically stored as a floating-point number. The size of each parameter in bytes depends on the precision.
32-bit precision: Each parameter takes 4 bytes.
16-bit precision: Each parameter takes 2 bytes
To calculate the total memory usage of the model:
Memory usage (in bytes) = No. of Parameters ร Size of Each Parameter
For example:
32-bit Precision (FP32)
In 32-bit floating-point precision, each parameter takes 4 bytes.
Memory usage in bytes = 1 billion parameters ร 4 bytes
1,000,000,000 ร 4 = 4,000,000,000 bytes
In gigabytes: โ 3.73 GB
16-bit Precision (FP16)
In 16-bit floating-point precision, each parameter takes 2 bytes.
Memory usage in bytes = 1 billion parameters ร 2 bytes
1,000,000,000 ร 2 = 2,000,000,000 bytes
In gigabytes: โ 1.86 GB
It depends on whether you use 32-bit or 16-bit precision, a model with 1 billion parameters would use approximately 3.73 GB or 1.86 GB of memory, respectively.
updated
a model
8 months ago
NaiveAttention/LeVIT-364-Finetuned