Commit
·
37471f2
1
Parent(s):
2375ad5
fix misc2
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ar_model.py +5 -5
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/00514ee36fc535c00c979a7802492538d9886fae +0 -76
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/00be0b18e2e656c0d69d8d74298a45195530e8c4 +0 -102
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/05f6f3e548bab062b6f46c0f12377a502bde0dbf +0 -606
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/072076fb853aec819a7298df83e26338e0cb4c3a +0 -187
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/09440b34a95b1708d2154376f2a0202a533cb3b2 +0 -46
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/0c2f9c6280ccfa60e1ba8a38e3062e0caf99e71e +0 -560
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/148897d5cae9165673cb74e336548c71adb261b1 +0 -78
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/184d60dec6f9b0326dc0aa1a3d9b89c06fa7566e +0 -283
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/1e300540d3a022a74d708a0df0f04204a895b189 +0 -903
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/1f41a4225dcea325c5ea283e51e09477ee1d0e6d +0 -149
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/2464bc5e1892a3541ce439c0ea36347f43647224 +0 -305
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/2984b57e08440bd3117de9e25e4f3cfabd619e80 +0 -195
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/29be4d33e5dfb6255b5db0b99bcbc4311a3faa82 +0 -63
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/2a19d3b8e2a1cf29c182f7b25a25d4c1e10089da +0 -491
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/2c584c7c9a5e03bcb3b808d053f89e7c2aeaf9cf +0 -119
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/39dca42a0a71383de919b750cedf2606faae206d +0 -65
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/3c5a1dbe30558d9e7e97ad64304161c4e61a00f5 +0 -60
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/4146fad65c365a8c4fd6903a0ea33860142f64f5 +0 -323
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/45a2ac6c32e8df9e6836ed55973912b8730c0749 +0 -50
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/46385211d438d1953e9ba21376680dc2c42db01c +0 -219
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/4a13a8fde58e7852b683112be63eaed44e1f143f +0 -596
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/4c860c42a1c3d8adc417e9593892491d0803fe51 +0 -113
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/4de12fae686821ebf94aec3420719e6432856cf4 +0 -421
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/53dea6ed871052e987bf5094f869778412202323 +0 -360
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/54ff4d48b535d2a1f27bbcc75c20ef16821b11e1 +0 -341
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/578cd9ecfca36e5376fef8da5106652c6ca85b68 +0 -262
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/5877aa166d1d946b98ce604e2bd1a4284b884ae6 +0 -318
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/5d1bc4c8a22a942736ae6b73a4ebb21da4980adc +0 -117
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/5e5a5244c87516121f3e7686c924f8b1c66cd772 +0 -360
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/602ea1cb383d8263be06829a466cfb3ba9f97856 +0 -52
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/61f10fe07227a01d582e17f89a9b5089aa506006 +0 -88
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/68e9cbb58aa1a39cd62c15a01b3e6526a49b66b0 +0 -728
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/69f477ced9dfe59deda742bc507addf7d7268bdf +0 -223
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/6bb055d8b2ddd78f626f08bb78f9434de5aef511 +0 -276
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/73755631ed6b97ebf773b3941fc0f6d1621761f7 +0 -231
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/77c3f88ca85134e689203e9ac157673c42edb0b3 +0 -131
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/7b5c6e553583e8047a37aea5e4925df659426ea2 +0 -196
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/7bebf08cef2869c85553980bf81851635dd74f7e +0 -108
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/7c09eb428a97927d5f0407e2328a3f43afbf38fc +0 -72
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/859eb6498143e5b063dbc888dca7748a07cfda9d +0 -45
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/8929f3a211707ad09f7c25b6b6e305360a42d6be +0 -358
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/9586934f8c1949d734b4ea3080135d2769ec481a +0 -333
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/9861ef45253f4932a362923bdb6f07fd1b39666b +0 -322
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/9918ab7cc8f55dc0c159b58c158d3556b6819acd +0 -317
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/9bd252316a4bd6fb3a8f8a1c29a8e9ac44ac76fe +0 -60
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/9d565d078fbe37e1d31cf8a445a460e2bae291f1 +0 -224
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/a209db0eba28a8d8bcb527bfbaca6f5e361ace14 +0 -28
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/a2496a4fa280586b62c846c54cfbbc9f8adc0331 +0 -211
- cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/a24d1a0cbbe184ab0a2bfb5cbee13bfd327810ae +0 -165
ar_model.py
CHANGED
|
@@ -19,7 +19,7 @@ import time
|
|
| 19 |
from pathlib import Path
|
| 20 |
from typing import Any, Dict, List, Optional, Set
|
| 21 |
|
| 22 |
-
from .misc import misc
|
| 23 |
import torch
|
| 24 |
from safetensors.torch import load_file
|
| 25 |
from torch.nn.modules.module import _IncompatibleKeys
|
|
@@ -96,7 +96,7 @@ class AutoRegressiveModel(torch.nn.Module):
|
|
| 96 |
"""
|
| 97 |
model_config = self.config
|
| 98 |
ckpt_path = model_config.ckpt_path
|
| 99 |
-
with
|
| 100 |
if ckpt_path.endswith("safetensors"):
|
| 101 |
# Load with safetensors API
|
| 102 |
checkpoint = load_file(ckpt_path, device="cpu")
|
|
@@ -142,7 +142,7 @@ class AutoRegressiveModel(torch.nn.Module):
|
|
| 142 |
)
|
| 143 |
# Remove the "model." prefix in the state_dict
|
| 144 |
llm_checkpoint = process_state_dict(llm_checkpoint, prefix_to_remove="model.")
|
| 145 |
-
with
|
| 146 |
missing_keys, _ = model.load_state_dict(llm_checkpoint, strict=True)
|
| 147 |
# Remove keys with "_extra_state" suffix in missing_keys (defined by TransformerEngine for FP8 usage)
|
| 148 |
missing_keys = [k for k in missing_keys if not k.endswith("_extra_state")]
|
|
@@ -217,7 +217,7 @@ class AutoRegressiveModel(torch.nn.Module):
|
|
| 217 |
# Override the default model configuration with the parameters from the checkpoint
|
| 218 |
setattr(model_config, key, value)
|
| 219 |
|
| 220 |
-
with
|
| 221 |
if ckpt_path.endswith("safetensors"):
|
| 222 |
# Load with safetensors API
|
| 223 |
checkpoint = load_file(ckpt_path, device="cpu")
|
|
@@ -293,7 +293,7 @@ class AutoRegressiveModel(torch.nn.Module):
|
|
| 293 |
|
| 294 |
# Remove the "model." prefix in the state_dict
|
| 295 |
llm_checkpoint = process_state_dict(llm_checkpoint, prefix_to_remove="model.")
|
| 296 |
-
with
|
| 297 |
missing_keys, unexpected_keys = model.load_state_dict(llm_checkpoint, strict=True)
|
| 298 |
# Remove keys with "_extra_state" suffix in missing_keys (defined by TransformerEngine for FP8 usage)
|
| 299 |
missing_keys = [k for k in missing_keys if not k.endswith("_extra_state")]
|
|
|
|
| 19 |
from pathlib import Path
|
| 20 |
from typing import Any, Dict, List, Optional, Set
|
| 21 |
|
| 22 |
+
from .misc import misc, Color, timer
|
| 23 |
import torch
|
| 24 |
from safetensors.torch import load_file
|
| 25 |
from torch.nn.modules.module import _IncompatibleKeys
|
|
|
|
| 96 |
"""
|
| 97 |
model_config = self.config
|
| 98 |
ckpt_path = model_config.ckpt_path
|
| 99 |
+
with timer(f"loading checkpoint from {ckpt_path}"):
|
| 100 |
if ckpt_path.endswith("safetensors"):
|
| 101 |
# Load with safetensors API
|
| 102 |
checkpoint = load_file(ckpt_path, device="cpu")
|
|
|
|
| 142 |
)
|
| 143 |
# Remove the "model." prefix in the state_dict
|
| 144 |
llm_checkpoint = process_state_dict(llm_checkpoint, prefix_to_remove="model.")
|
| 145 |
+
with timer("loading state_dict into model"):
|
| 146 |
missing_keys, _ = model.load_state_dict(llm_checkpoint, strict=True)
|
| 147 |
# Remove keys with "_extra_state" suffix in missing_keys (defined by TransformerEngine for FP8 usage)
|
| 148 |
missing_keys = [k for k in missing_keys if not k.endswith("_extra_state")]
|
|
|
|
| 217 |
# Override the default model configuration with the parameters from the checkpoint
|
| 218 |
setattr(model_config, key, value)
|
| 219 |
|
| 220 |
+
with timer(f"loading checkpoint from {ckpt_path}"):
|
| 221 |
if ckpt_path.endswith("safetensors"):
|
| 222 |
# Load with safetensors API
|
| 223 |
checkpoint = load_file(ckpt_path, device="cpu")
|
|
|
|
| 293 |
|
| 294 |
# Remove the "model." prefix in the state_dict
|
| 295 |
llm_checkpoint = process_state_dict(llm_checkpoint, prefix_to_remove="model.")
|
| 296 |
+
with timer("loading state_dict into model"):
|
| 297 |
missing_keys, unexpected_keys = model.load_state_dict(llm_checkpoint, strict=True)
|
| 298 |
# Remove keys with "_extra_state" suffix in missing_keys (defined by TransformerEngine for FP8 usage)
|
| 299 |
missing_keys = [k for k in missing_keys if not k.endswith("_extra_state")]
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/00514ee36fc535c00c979a7802492538d9886fae
DELETED
|
@@ -1,76 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from typing import Dict, Optional
|
| 17 |
-
|
| 18 |
-
import torch
|
| 19 |
-
|
| 20 |
-
# Substrings to ignore when processing state dicts
|
| 21 |
-
substrings_to_ignore = [
|
| 22 |
-
"_extra_state", # Extra states (BytesIO type) added by TransformerEngine for FP8 handling
|
| 23 |
-
]
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def get_partial_state_dict(
|
| 27 |
-
state_dict: Dict[str, torch.Tensor],
|
| 28 |
-
prefix: str,
|
| 29 |
-
) -> Dict[str, torch.Tensor]:
|
| 30 |
-
"""
|
| 31 |
-
Get a partial state dict with keys starting with the given prefix
|
| 32 |
-
"""
|
| 33 |
-
return {k: v for k, v in state_dict.items() if k.startswith(prefix)}
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
def process_state_dict(
|
| 37 |
-
state_dict: Dict[str, torch.Tensor],
|
| 38 |
-
device: str = None,
|
| 39 |
-
dtype: torch.dtype = None,
|
| 40 |
-
prefix_to_remove: Optional[str] = None,
|
| 41 |
-
) -> Dict[str, torch.Tensor]:
|
| 42 |
-
"""
|
| 43 |
-
- Remove items with substring "_extra_state" in keys (TransformerEngine adds these for FP8)
|
| 44 |
-
- Move tensors to specified device and dtype if provided
|
| 45 |
-
|
| 46 |
-
Args:
|
| 47 |
-
state_dict (Dict[str, torch.Tensor]): The state dict to process
|
| 48 |
-
device (str, optional): The device to move tensors to. Defaults to None.
|
| 49 |
-
dtype (torch.dtype, optional): The dtype to move tensors to. Defaults to None.
|
| 50 |
-
prefix_to_remove (str, optional): The prefix to remove from the keys of the state dict. Defaults to None.
|
| 51 |
-
|
| 52 |
-
Returns:
|
| 53 |
-
Dict[str, torch.Tensor]: The processed state dict
|
| 54 |
-
"""
|
| 55 |
-
new_state_dict = {}
|
| 56 |
-
tensor_kwargs = {}
|
| 57 |
-
if device is not None:
|
| 58 |
-
tensor_kwargs["device"] = device
|
| 59 |
-
if dtype is not None:
|
| 60 |
-
tensor_kwargs["dtype"] = dtype
|
| 61 |
-
|
| 62 |
-
for key, value in state_dict.items():
|
| 63 |
-
# Check if any of the substrings to ignore are in the key
|
| 64 |
-
skip = False
|
| 65 |
-
for substr in substrings_to_ignore:
|
| 66 |
-
if substr in key:
|
| 67 |
-
skip = True
|
| 68 |
-
break
|
| 69 |
-
if skip:
|
| 70 |
-
continue
|
| 71 |
-
if len(tensor_kwargs) > 0:
|
| 72 |
-
value = value.to(**tensor_kwargs)
|
| 73 |
-
if prefix_to_remove is not None and key.startswith(prefix_to_remove):
|
| 74 |
-
key = key[len(prefix_to_remove) :]
|
| 75 |
-
new_state_dict[key] = value
|
| 76 |
-
return new_state_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/00be0b18e2e656c0d69d8d74298a45195530e8c4
DELETED
|
@@ -1,102 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from typing import Any, List, Union
|
| 17 |
-
|
| 18 |
-
import attrs
|
| 19 |
-
|
| 20 |
-
from .ar_config_base_model import ModelConfig, TokenizerConfig
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
@attrs.define(slots=False)
|
| 24 |
-
class DataShapeConfig:
|
| 25 |
-
latent_shape: list = []
|
| 26 |
-
num_video_frames: Union[None, int] = None
|
| 27 |
-
height: Union[None, int] = None
|
| 28 |
-
width: Union[None, int] = None
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
@attrs.define(slots=False)
|
| 32 |
-
class SamplingConfig:
|
| 33 |
-
"""
|
| 34 |
-
Sampling config
|
| 35 |
-
Args:
|
| 36 |
-
temperature (float): Temperature value for controlling randomness in sampling. Defaults to 0.6.
|
| 37 |
-
top_p (float): Top-p probability threshold for nucleus sampling. Defaults to 0.9.
|
| 38 |
-
logprobs (bool): Flag indicating whether to compute token log probabilities. Defaults to False.
|
| 39 |
-
echo (bool): Flag indicating whether to include prompt tokens in the generated output. Defaults to False.
|
| 40 |
-
|
| 41 |
-
"""
|
| 42 |
-
|
| 43 |
-
temperature: float = 0.6
|
| 44 |
-
top_k: int = None
|
| 45 |
-
top_p: float = 0.9
|
| 46 |
-
compile_prefill: bool = False
|
| 47 |
-
compile_sampling: bool = True
|
| 48 |
-
logprobs: bool = False
|
| 49 |
-
echo: bool = False
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
@attrs.define(slots=False)
|
| 53 |
-
class DiffusionDecoderSamplingConfig:
|
| 54 |
-
"""
|
| 55 |
-
Diffusion decoder sampling config
|
| 56 |
-
Args:
|
| 57 |
-
guidance (float): Guidance scale for the diffusion process. Controls how much the model follows the conditioning. Defaults to 0.8.
|
| 58 |
-
sigma_min (float): Minimum noise level for the diffusion process. Defaults to 0.02.
|
| 59 |
-
sigma (float): Initial noise level for the diffusion process. Defaults to 8.
|
| 60 |
-
num_steps (int): Number of denoising steps to perform. Defaults to 35.
|
| 61 |
-
overlap (int): Number of overlapping frames between video chunks during processing. Defaults to 2.
|
| 62 |
-
continuous_tokenizer_channel (int): Number of channels in the continuous tokenizer of diffusion decoder. Defaults to 16.
|
| 63 |
-
continuous_tokenizer_spatial_compression_ratio (int): Spatial compression ratio for the continuous tokenizer of diffusion decoder. Defaults to 8.
|
| 64 |
-
dd_train_num_video_frames (int): Number of video frames used during training for diffusion decoder. Defaults to 57.
|
| 65 |
-
"""
|
| 66 |
-
|
| 67 |
-
guidance: float = 1.8
|
| 68 |
-
sigma_min: float = 0.02
|
| 69 |
-
sigma: float = 8
|
| 70 |
-
num_steps: int = 15
|
| 71 |
-
overlap: int = 2
|
| 72 |
-
continuous_tokenizer_channel = 16
|
| 73 |
-
continuous_tokenizer_spatial_compression_ratio = 8
|
| 74 |
-
dd_train_num_video_frames: int = 57
|
| 75 |
-
max_iter: int = 99
|
| 76 |
-
fps: int = 24
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
@attrs.define(slots=False)
|
| 80 |
-
class InferenceConfig:
|
| 81 |
-
"""
|
| 82 |
-
Inference config
|
| 83 |
-
Args:
|
| 84 |
-
model_config (ModelConfig): Model config
|
| 85 |
-
tokenizer_config (TokenizerConfig): Tokenizer config
|
| 86 |
-
ckpt_path (str): Path to the checkpoint
|
| 87 |
-
latent_shape (list): Shape of the latent
|
| 88 |
-
"""
|
| 89 |
-
|
| 90 |
-
model_config: ModelConfig = None
|
| 91 |
-
tokenizer_config: TokenizerConfig = None
|
| 92 |
-
ckpt_path: str = ""
|
| 93 |
-
data_shape_config: DataShapeConfig = None
|
| 94 |
-
|
| 95 |
-
defaults: List[Any] = attrs.field(
|
| 96 |
-
factory=lambda: [
|
| 97 |
-
"_self_",
|
| 98 |
-
{"data_val": None},
|
| 99 |
-
{"data_shape_config": "video_shape_as_model_config"},
|
| 100 |
-
{"eval_job": None},
|
| 101 |
-
]
|
| 102 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/05f6f3e548bab062b6f46c0f12377a502bde0dbf
DELETED
|
@@ -1,606 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import os
|
| 17 |
-
from abc import ABC, abstractmethod
|
| 18 |
-
|
| 19 |
-
import torch
|
| 20 |
-
from einops import rearrange
|
| 21 |
-
from torch.nn.modules import Module
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
class BaseVAE(torch.nn.Module, ABC):
|
| 25 |
-
"""
|
| 26 |
-
Abstract base class for a Variational Autoencoder (VAE).
|
| 27 |
-
|
| 28 |
-
All subclasses should implement the methods to define the behavior for encoding
|
| 29 |
-
and decoding, along with specifying the latent channel size.
|
| 30 |
-
"""
|
| 31 |
-
|
| 32 |
-
def __init__(self, channel: int = 3, name: str = "vae"):
|
| 33 |
-
super().__init__()
|
| 34 |
-
self.channel = channel
|
| 35 |
-
self.name = name
|
| 36 |
-
|
| 37 |
-
@property
|
| 38 |
-
def latent_ch(self) -> int:
|
| 39 |
-
"""
|
| 40 |
-
Returns the number of latent channels in the VAE.
|
| 41 |
-
"""
|
| 42 |
-
return self.channel
|
| 43 |
-
|
| 44 |
-
@abstractmethod
|
| 45 |
-
def encode(self, state: torch.Tensor) -> torch.Tensor:
|
| 46 |
-
"""
|
| 47 |
-
Encodes the input tensor into a latent representation.
|
| 48 |
-
|
| 49 |
-
Args:
|
| 50 |
-
- state (torch.Tensor): The input tensor to encode.
|
| 51 |
-
|
| 52 |
-
Returns:
|
| 53 |
-
- torch.Tensor: The encoded latent tensor.
|
| 54 |
-
"""
|
| 55 |
-
pass
|
| 56 |
-
|
| 57 |
-
@abstractmethod
|
| 58 |
-
def decode(self, latent: torch.Tensor) -> torch.Tensor:
|
| 59 |
-
"""
|
| 60 |
-
Decodes the latent representation back to the original space.
|
| 61 |
-
|
| 62 |
-
Args:
|
| 63 |
-
- latent (torch.Tensor): The latent tensor to decode.
|
| 64 |
-
|
| 65 |
-
Returns:
|
| 66 |
-
- torch.Tensor: The decoded tensor.
|
| 67 |
-
"""
|
| 68 |
-
pass
|
| 69 |
-
|
| 70 |
-
@property
|
| 71 |
-
def spatial_compression_factor(self) -> int:
|
| 72 |
-
"""
|
| 73 |
-
Returns the spatial reduction factor for the VAE.
|
| 74 |
-
"""
|
| 75 |
-
raise NotImplementedError("The spatial_compression_factor property must be implemented in the derived class.")
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
class BasePretrainedImageVAE(BaseVAE):
|
| 79 |
-
"""
|
| 80 |
-
A base class for pretrained Variational Autoencoder (VAE) that loads mean and standard deviation values
|
| 81 |
-
from a remote store, handles data type conversions, and normalization
|
| 82 |
-
using provided mean and standard deviation values for latent space representation.
|
| 83 |
-
Derived classes should load pre-trained encoder and decoder components from a remote store
|
| 84 |
-
|
| 85 |
-
Attributes:
|
| 86 |
-
latent_mean (Tensor): The mean used for normalizing the latent representation.
|
| 87 |
-
latent_std (Tensor): The standard deviation used for normalizing the latent representation.
|
| 88 |
-
dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.
|
| 89 |
-
|
| 90 |
-
Args:
|
| 91 |
-
mean_std_fp (str): File path to the pickle file containing mean and std of the latent space.
|
| 92 |
-
latent_ch (int, optional): Number of latent channels (default is 16).
|
| 93 |
-
is_image (bool, optional): Flag to indicate whether the output is an image (default is True).
|
| 94 |
-
is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
|
| 95 |
-
"""
|
| 96 |
-
|
| 97 |
-
def __init__(
|
| 98 |
-
self,
|
| 99 |
-
name: str,
|
| 100 |
-
latent_ch: int = 16,
|
| 101 |
-
is_image: bool = True,
|
| 102 |
-
is_bf16: bool = True,
|
| 103 |
-
) -> None:
|
| 104 |
-
super().__init__(latent_ch, name)
|
| 105 |
-
dtype = torch.bfloat16 if is_bf16 else torch.float32
|
| 106 |
-
self.dtype = dtype
|
| 107 |
-
self.is_image = is_image
|
| 108 |
-
self.name = name
|
| 109 |
-
|
| 110 |
-
def register_mean_std(self, vae_dir: str) -> None:
|
| 111 |
-
latent_mean, latent_std = torch.load(os.path.join(vae_dir, "image_mean_std.pt"), weights_only=True)
|
| 112 |
-
|
| 113 |
-
target_shape = [1, self.latent_ch, 1, 1] if self.is_image else [1, self.latent_ch, 1, 1, 1]
|
| 114 |
-
|
| 115 |
-
self.register_buffer(
|
| 116 |
-
"latent_mean",
|
| 117 |
-
latent_mean.to(self.dtype).reshape(*target_shape),
|
| 118 |
-
persistent=False,
|
| 119 |
-
)
|
| 120 |
-
self.register_buffer(
|
| 121 |
-
"latent_std",
|
| 122 |
-
latent_std.to(self.dtype).reshape(*target_shape),
|
| 123 |
-
persistent=False,
|
| 124 |
-
)
|
| 125 |
-
|
| 126 |
-
@torch.no_grad()
|
| 127 |
-
def encode(self, state: torch.Tensor) -> torch.Tensor:
|
| 128 |
-
"""
|
| 129 |
-
Encode the input state to latent space; also handle the dtype conversion, mean and std scaling
|
| 130 |
-
"""
|
| 131 |
-
in_dtype = state.dtype
|
| 132 |
-
latent_mean = self.latent_mean.to(in_dtype)
|
| 133 |
-
latent_std = self.latent_std.to(in_dtype)
|
| 134 |
-
encoded_state = self.encoder(state.to(self.dtype))
|
| 135 |
-
if isinstance(encoded_state, torch.Tensor):
|
| 136 |
-
pass
|
| 137 |
-
elif isinstance(encoded_state, tuple):
|
| 138 |
-
assert isinstance(encoded_state[0], torch.Tensor)
|
| 139 |
-
encoded_state = encoded_state[0]
|
| 140 |
-
else:
|
| 141 |
-
raise ValueError("Invalid type of encoded state")
|
| 142 |
-
return (encoded_state.to(in_dtype) - latent_mean) / latent_std
|
| 143 |
-
|
| 144 |
-
@torch.no_grad()
|
| 145 |
-
def decode(self, latent: torch.Tensor) -> torch.Tensor:
|
| 146 |
-
"""
|
| 147 |
-
Decode the input latent to state; also handle the dtype conversion, mean and std scaling
|
| 148 |
-
"""
|
| 149 |
-
in_dtype = latent.dtype
|
| 150 |
-
latent = latent * self.latent_std.to(in_dtype) + self.latent_mean.to(in_dtype)
|
| 151 |
-
return self.decoder(latent.to(self.dtype)).to(in_dtype)
|
| 152 |
-
|
| 153 |
-
def reset_dtype(self, *args, **kwargs):
|
| 154 |
-
"""
|
| 155 |
-
Resets the data type of the encoder and decoder to the model's default data type.
|
| 156 |
-
|
| 157 |
-
Args:
|
| 158 |
-
*args, **kwargs: Unused, present to allow flexibility in method calls.
|
| 159 |
-
"""
|
| 160 |
-
del args, kwargs
|
| 161 |
-
self.decoder.to(self.dtype)
|
| 162 |
-
self.encoder.to(self.dtype)
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
class JITVAE(BasePretrainedImageVAE):
|
| 166 |
-
"""
|
| 167 |
-
A JIT compiled Variational Autoencoder (VAE) that loads pre-trained encoder
|
| 168 |
-
and decoder components from a remote store, handles data type conversions, and normalization
|
| 169 |
-
using provided mean and standard deviation values for latent space representation.
|
| 170 |
-
|
| 171 |
-
Attributes:
|
| 172 |
-
encoder (Module): The JIT compiled encoder loaded from storage.
|
| 173 |
-
decoder (Module): The JIT compiled decoder loaded from storage.
|
| 174 |
-
latent_mean (Tensor): The mean used for normalizing the latent representation.
|
| 175 |
-
latent_std (Tensor): The standard deviation used for normalizing the latent representation.
|
| 176 |
-
dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.
|
| 177 |
-
|
| 178 |
-
Args:
|
| 179 |
-
name (str): Name of the model, used for differentiating cache file paths.
|
| 180 |
-
latent_ch (int, optional): Number of latent channels (default is 16).
|
| 181 |
-
is_image (bool, optional): Flag to indicate whether the output is an image (default is True).
|
| 182 |
-
is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
|
| 183 |
-
"""
|
| 184 |
-
|
| 185 |
-
def __init__(
|
| 186 |
-
self,
|
| 187 |
-
name: str,
|
| 188 |
-
latent_ch: int = 16,
|
| 189 |
-
is_image: bool = True,
|
| 190 |
-
is_bf16: bool = True,
|
| 191 |
-
):
|
| 192 |
-
super().__init__(name, latent_ch, is_image, is_bf16)
|
| 193 |
-
|
| 194 |
-
def load_encoder(self, vae_dir: str) -> None:
|
| 195 |
-
"""
|
| 196 |
-
Load the encoder from the remote store.
|
| 197 |
-
"""
|
| 198 |
-
self.encoder = torch.load(os.path.join(vae_dir, "encoder.jit"), weights_only=True)
|
| 199 |
-
|
| 200 |
-
self.encoder.eval()
|
| 201 |
-
for param in self.encoder.parameters():
|
| 202 |
-
param.requires_grad = False
|
| 203 |
-
self.encoder.to(self.dtype)
|
| 204 |
-
|
| 205 |
-
def load_decoder(self, vae_dir: str) -> None:
|
| 206 |
-
"""
|
| 207 |
-
Load the decoder from the remote store.
|
| 208 |
-
"""
|
| 209 |
-
self.decoder = torch.load(os.path.join(vae_dir, "decoder.jit"), weights_only=True)
|
| 210 |
-
|
| 211 |
-
self.decoder.eval()
|
| 212 |
-
for param in self.decoder.parameters():
|
| 213 |
-
param.requires_grad = False
|
| 214 |
-
self.decoder.to(self.dtype)
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
class BaseVAE(torch.nn.Module, ABC):
|
| 218 |
-
"""
|
| 219 |
-
Abstract base class for a Variational Autoencoder (VAE).
|
| 220 |
-
|
| 221 |
-
All subclasses should implement the methods to define the behavior for encoding
|
| 222 |
-
and decoding, along with specifying the latent channel size.
|
| 223 |
-
"""
|
| 224 |
-
|
| 225 |
-
def __init__(self, channel: int = 3, name: str = "vae"):
|
| 226 |
-
super().__init__()
|
| 227 |
-
self.channel = channel
|
| 228 |
-
self.name = name
|
| 229 |
-
|
| 230 |
-
@property
|
| 231 |
-
def latent_ch(self) -> int:
|
| 232 |
-
"""
|
| 233 |
-
Returns the number of latent channels in the VAE.
|
| 234 |
-
"""
|
| 235 |
-
return self.channel
|
| 236 |
-
|
| 237 |
-
@abstractmethod
|
| 238 |
-
def encode(self, state: torch.Tensor) -> torch.Tensor:
|
| 239 |
-
"""
|
| 240 |
-
Encodes the input tensor into a latent representation.
|
| 241 |
-
|
| 242 |
-
Args:
|
| 243 |
-
- state (torch.Tensor): The input tensor to encode.
|
| 244 |
-
|
| 245 |
-
Returns:
|
| 246 |
-
- torch.Tensor: The encoded latent tensor.
|
| 247 |
-
"""
|
| 248 |
-
pass
|
| 249 |
-
|
| 250 |
-
@abstractmethod
|
| 251 |
-
def decode(self, latent: torch.Tensor) -> torch.Tensor:
|
| 252 |
-
"""
|
| 253 |
-
Decodes the latent representation back to the original space.
|
| 254 |
-
|
| 255 |
-
Args:
|
| 256 |
-
- latent (torch.Tensor): The latent tensor to decode.
|
| 257 |
-
|
| 258 |
-
Returns:
|
| 259 |
-
- torch.Tensor: The decoded tensor.
|
| 260 |
-
"""
|
| 261 |
-
pass
|
| 262 |
-
|
| 263 |
-
@property
|
| 264 |
-
def spatial_compression_factor(self) -> int:
|
| 265 |
-
"""
|
| 266 |
-
Returns the spatial reduction factor for the VAE.
|
| 267 |
-
"""
|
| 268 |
-
raise NotImplementedError("The spatial_compression_factor property must be implemented in the derived class.")
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
class VideoTokenizerInterface(ABC):
|
| 272 |
-
@abstractmethod
|
| 273 |
-
def encode(self, state: torch.Tensor) -> torch.Tensor:
|
| 274 |
-
pass
|
| 275 |
-
|
| 276 |
-
@abstractmethod
|
| 277 |
-
def decode(self, latent: torch.Tensor) -> torch.Tensor:
|
| 278 |
-
pass
|
| 279 |
-
|
| 280 |
-
@abstractmethod
|
| 281 |
-
def get_latent_num_frames(self, num_pixel_frames: int) -> int:
|
| 282 |
-
pass
|
| 283 |
-
|
| 284 |
-
@abstractmethod
|
| 285 |
-
def get_pixel_num_frames(self, num_latent_frames: int) -> int:
|
| 286 |
-
pass
|
| 287 |
-
|
| 288 |
-
@property
|
| 289 |
-
@abstractmethod
|
| 290 |
-
def spatial_compression_factor(self):
|
| 291 |
-
pass
|
| 292 |
-
|
| 293 |
-
@property
|
| 294 |
-
@abstractmethod
|
| 295 |
-
def temporal_compression_factor(self):
|
| 296 |
-
pass
|
| 297 |
-
|
| 298 |
-
@property
|
| 299 |
-
@abstractmethod
|
| 300 |
-
def spatial_resolution(self):
|
| 301 |
-
pass
|
| 302 |
-
|
| 303 |
-
@property
|
| 304 |
-
@abstractmethod
|
| 305 |
-
def pixel_chunk_duration(self):
|
| 306 |
-
pass
|
| 307 |
-
|
| 308 |
-
@property
|
| 309 |
-
@abstractmethod
|
| 310 |
-
def latent_chunk_duration(self):
|
| 311 |
-
pass
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
class BasePretrainedVideoTokenizer(ABC):
|
| 315 |
-
"""
|
| 316 |
-
Base class for a pretrained video tokenizer that handles chunking of video data for efficient processing.
|
| 317 |
-
|
| 318 |
-
Args:
|
| 319 |
-
pixel_chunk_duration (int): The duration (in number of frames) of each chunk of video data at the pixel level.
|
| 320 |
-
temporal_compress_factor (int): The factor by which the video data is temporally compressed during processing.
|
| 321 |
-
max_enc_batch_size (int): The maximum batch size to process in one go during encoding to avoid memory overflow.
|
| 322 |
-
max_dec_batch_size (int): The maximum batch size to process in one go during decoding to avoid memory overflow.
|
| 323 |
-
|
| 324 |
-
The class introduces parameters for managing temporal chunks (`pixel_chunk_duration` and `temporal_compress_factor`)
|
| 325 |
-
which define how video data is subdivided and compressed during the encoding and decoding processes. The
|
| 326 |
-
`max_enc_batch_size` and `max_dec_batch_size` parameters allow processing in smaller batches to handle memory
|
| 327 |
-
constraints.
|
| 328 |
-
"""
|
| 329 |
-
|
| 330 |
-
def __init__(
|
| 331 |
-
self,
|
| 332 |
-
pixel_chunk_duration: int = 17,
|
| 333 |
-
temporal_compress_factor: int = 8,
|
| 334 |
-
max_enc_batch_size: int = 8,
|
| 335 |
-
max_dec_batch_size: int = 4,
|
| 336 |
-
):
|
| 337 |
-
self._pixel_chunk_duration = pixel_chunk_duration
|
| 338 |
-
self._temporal_compress_factor = temporal_compress_factor
|
| 339 |
-
self.max_enc_batch_size = max_enc_batch_size
|
| 340 |
-
self.max_dec_batch_size = max_dec_batch_size
|
| 341 |
-
|
| 342 |
-
def register_mean_std(self, vae_dir: str) -> None:
|
| 343 |
-
latent_mean, latent_std = torch.load(os.path.join(vae_dir, "mean_std.pt"), weights_only=True)
|
| 344 |
-
|
| 345 |
-
latent_mean = latent_mean.view(self.latent_ch, -1)[:, : self.latent_chunk_duration]
|
| 346 |
-
latent_std = latent_std.view(self.latent_ch, -1)[:, : self.latent_chunk_duration]
|
| 347 |
-
|
| 348 |
-
target_shape = [1, self.latent_ch, self.latent_chunk_duration, 1, 1]
|
| 349 |
-
|
| 350 |
-
self.register_buffer(
|
| 351 |
-
"latent_mean",
|
| 352 |
-
latent_mean.to(self.dtype).reshape(*target_shape),
|
| 353 |
-
persistent=False,
|
| 354 |
-
)
|
| 355 |
-
self.register_buffer(
|
| 356 |
-
"latent_std",
|
| 357 |
-
latent_std.to(self.dtype).reshape(*target_shape),
|
| 358 |
-
persistent=False,
|
| 359 |
-
)
|
| 360 |
-
|
| 361 |
-
def transform_encode_state_shape(self, state: torch.Tensor) -> torch.Tensor:
|
| 362 |
-
"""
|
| 363 |
-
Rearranges the input state tensor to the required shape for encoding video data. Mainly for chunk based encoding
|
| 364 |
-
"""
|
| 365 |
-
B, C, T, H, W = state.shape
|
| 366 |
-
assert (
|
| 367 |
-
T % self.pixel_chunk_duration == 0
|
| 368 |
-
), f"Temporal dimension {T} is not divisible by chunk_length {self.pixel_chunk_duration}"
|
| 369 |
-
return rearrange(state, "b c (n t) h w -> (b n) c t h w", t=self.pixel_chunk_duration)
|
| 370 |
-
|
| 371 |
-
def transform_decode_state_shape(self, latent: torch.Tensor) -> torch.Tensor:
|
| 372 |
-
B, _, T, _, _ = latent.shape
|
| 373 |
-
assert (
|
| 374 |
-
T % self.latent_chunk_duration == 0
|
| 375 |
-
), f"Temporal dimension {T} is not divisible by chunk_length {self.latent_chunk_duration}"
|
| 376 |
-
return rearrange(latent, "b c (n t) h w -> (b n) c t h w", t=self.latent_chunk_duration)
|
| 377 |
-
|
| 378 |
-
@torch.no_grad()
|
| 379 |
-
def encode(self, state: torch.Tensor) -> torch.Tensor:
|
| 380 |
-
if self._temporal_compress_factor == 1:
|
| 381 |
-
_, _, origin_T, _, _ = state.shape
|
| 382 |
-
state = rearrange(state, "b c t h w -> (b t) c 1 h w")
|
| 383 |
-
B, C, T, H, W = state.shape
|
| 384 |
-
state = self.transform_encode_state_shape(state)
|
| 385 |
-
# use max_enc_batch_size to avoid OOM
|
| 386 |
-
if state.shape[0] > self.max_enc_batch_size:
|
| 387 |
-
latent = []
|
| 388 |
-
for i in range(0, state.shape[0], self.max_enc_batch_size):
|
| 389 |
-
latent.append(super().encode(state[i : i + self.max_enc_batch_size]))
|
| 390 |
-
latent = torch.cat(latent, dim=0)
|
| 391 |
-
else:
|
| 392 |
-
latent = super().encode(state)
|
| 393 |
-
|
| 394 |
-
latent = rearrange(latent, "(b n) c t h w -> b c (n t) h w", b=B)
|
| 395 |
-
if self._temporal_compress_factor == 1:
|
| 396 |
-
latent = rearrange(latent, "(b t) c 1 h w -> b c t h w", t=origin_T)
|
| 397 |
-
return latent
|
| 398 |
-
|
| 399 |
-
@torch.no_grad()
|
| 400 |
-
def decode(self, latent: torch.Tensor) -> torch.Tensor:
|
| 401 |
-
"""
|
| 402 |
-
Decodes a batch of latent representations into video frames by applying temporal chunking. Similar to encode,
|
| 403 |
-
it handles video data by processing smaller temporal chunks to reconstruct the original video dimensions.
|
| 404 |
-
|
| 405 |
-
It can also decode single frame image data.
|
| 406 |
-
|
| 407 |
-
Args:
|
| 408 |
-
latent (torch.Tensor): The latent space tensor containing encoded video data.
|
| 409 |
-
|
| 410 |
-
Returns:
|
| 411 |
-
torch.Tensor: The decoded video tensor reconstructed from latent space.
|
| 412 |
-
"""
|
| 413 |
-
if self._temporal_compress_factor == 1:
|
| 414 |
-
_, _, origin_T, _, _ = latent.shape
|
| 415 |
-
latent = rearrange(latent, "b c t h w -> (b t) c 1 h w")
|
| 416 |
-
B, _, T, _, _ = latent.shape
|
| 417 |
-
latent = self.transform_decode_state_shape(latent)
|
| 418 |
-
# use max_enc_batch_size to avoid OOM
|
| 419 |
-
if latent.shape[0] > self.max_dec_batch_size:
|
| 420 |
-
state = []
|
| 421 |
-
for i in range(0, latent.shape[0], self.max_dec_batch_size):
|
| 422 |
-
state.append(super().decode(latent[i : i + self.max_dec_batch_size]))
|
| 423 |
-
state = torch.cat(state, dim=0)
|
| 424 |
-
else:
|
| 425 |
-
state = super().decode(latent)
|
| 426 |
-
assert state.shape[2] == self.pixel_chunk_duration
|
| 427 |
-
state = rearrange(state, "(b n) c t h w -> b c (n t) h w", b=B)
|
| 428 |
-
if self._temporal_compress_factor == 1:
|
| 429 |
-
return rearrange(state, "(b t) c 1 h w -> b c t h w", t=origin_T)
|
| 430 |
-
return state
|
| 431 |
-
|
| 432 |
-
@property
|
| 433 |
-
def pixel_chunk_duration(self) -> int:
|
| 434 |
-
return self._pixel_chunk_duration
|
| 435 |
-
|
| 436 |
-
@property
|
| 437 |
-
def latent_chunk_duration(self) -> int:
|
| 438 |
-
# return self._latent_chunk_duration
|
| 439 |
-
assert (self.pixel_chunk_duration - 1) % self.temporal_compression_factor == 0, (
|
| 440 |
-
f"Pixel chunk duration {self.pixel_chunk_duration} is not divisible by latent chunk duration "
|
| 441 |
-
f"{self.latent_chunk_duration}"
|
| 442 |
-
)
|
| 443 |
-
return (self.pixel_chunk_duration - 1) // self.temporal_compression_factor + 1
|
| 444 |
-
|
| 445 |
-
@property
|
| 446 |
-
def temporal_compression_factor(self):
|
| 447 |
-
return self._temporal_compress_factor
|
| 448 |
-
|
| 449 |
-
def get_latent_num_frames(self, num_pixel_frames: int) -> int:
|
| 450 |
-
if num_pixel_frames == 1:
|
| 451 |
-
return 1
|
| 452 |
-
assert (
|
| 453 |
-
num_pixel_frames % self.pixel_chunk_duration == 0
|
| 454 |
-
), f"Temporal dimension {num_pixel_frames} is not divisible by chunk_length {self.pixel_chunk_duration}"
|
| 455 |
-
return num_pixel_frames // self.pixel_chunk_duration * self.latent_chunk_duration
|
| 456 |
-
|
| 457 |
-
def get_pixel_num_frames(self, num_latent_frames: int) -> int:
|
| 458 |
-
if num_latent_frames == 1:
|
| 459 |
-
return 1
|
| 460 |
-
assert (
|
| 461 |
-
num_latent_frames % self.latent_chunk_duration == 0
|
| 462 |
-
), f"Temporal dimension {num_latent_frames} is not divisible by chunk_length {self.latent_chunk_duration}"
|
| 463 |
-
return num_latent_frames // self.latent_chunk_duration * self.pixel_chunk_duration
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
class VideoJITTokenizer(BasePretrainedVideoTokenizer, JITVAE, VideoTokenizerInterface):
|
| 467 |
-
"""
|
| 468 |
-
Instance of BasePretrainedVideoVAE that loads encoder and decoder from JIT scripted module file
|
| 469 |
-
"""
|
| 470 |
-
|
| 471 |
-
def __init__(
|
| 472 |
-
self,
|
| 473 |
-
name: str,
|
| 474 |
-
latent_ch: int = 16,
|
| 475 |
-
is_bf16: bool = True,
|
| 476 |
-
spatial_compression_factor: int = 16,
|
| 477 |
-
temporal_compression_factor: int = 8,
|
| 478 |
-
pixel_chunk_duration: int = 17,
|
| 479 |
-
max_enc_batch_size: int = 8,
|
| 480 |
-
max_dec_batch_size: int = 4,
|
| 481 |
-
spatial_resolution: str = "720",
|
| 482 |
-
):
|
| 483 |
-
super().__init__(
|
| 484 |
-
pixel_chunk_duration,
|
| 485 |
-
temporal_compression_factor,
|
| 486 |
-
max_enc_batch_size,
|
| 487 |
-
max_dec_batch_size,
|
| 488 |
-
)
|
| 489 |
-
super(BasePretrainedVideoTokenizer, self).__init__(
|
| 490 |
-
name,
|
| 491 |
-
latent_ch,
|
| 492 |
-
False,
|
| 493 |
-
is_bf16,
|
| 494 |
-
)
|
| 495 |
-
|
| 496 |
-
self._spatial_compression_factor = spatial_compression_factor
|
| 497 |
-
self._spatial_resolution = spatial_resolution
|
| 498 |
-
|
| 499 |
-
@property
|
| 500 |
-
def spatial_compression_factor(self):
|
| 501 |
-
return self._spatial_compression_factor
|
| 502 |
-
|
| 503 |
-
@property
|
| 504 |
-
def spatial_resolution(self) -> str:
|
| 505 |
-
return self._spatial_resolution
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
class JointImageVideoTokenizer(BaseVAE, VideoTokenizerInterface):
|
| 509 |
-
def __init__(
|
| 510 |
-
self,
|
| 511 |
-
image_vae: torch.nn.Module,
|
| 512 |
-
video_vae: torch.nn.Module,
|
| 513 |
-
name: str,
|
| 514 |
-
latent_ch: int = 16,
|
| 515 |
-
squeeze_for_image: bool = True,
|
| 516 |
-
):
|
| 517 |
-
super().__init__(latent_ch, name)
|
| 518 |
-
self.image_vae = image_vae
|
| 519 |
-
self.video_vae = video_vae
|
| 520 |
-
self.squeeze_for_image = squeeze_for_image
|
| 521 |
-
|
| 522 |
-
def encode_image(self, state: torch.Tensor) -> torch.Tensor:
|
| 523 |
-
if self.squeeze_for_image:
|
| 524 |
-
return self.image_vae.encode(state.squeeze(2)).unsqueeze(2)
|
| 525 |
-
return self.image_vae.encode(state)
|
| 526 |
-
|
| 527 |
-
def decode_image(self, latent: torch.Tensor) -> torch.Tensor:
|
| 528 |
-
if self.squeeze_for_image:
|
| 529 |
-
return self.image_vae.decode(latent.squeeze(2)).unsqueeze(2)
|
| 530 |
-
return self.image_vae.decode(latent)
|
| 531 |
-
|
| 532 |
-
@torch.no_grad()
|
| 533 |
-
def encode(self, state: torch.Tensor) -> torch.Tensor:
|
| 534 |
-
B, C, T, H, W = state.shape
|
| 535 |
-
if T == 1:
|
| 536 |
-
return self.encode_image(state)
|
| 537 |
-
|
| 538 |
-
return self.video_vae.encode(state)
|
| 539 |
-
|
| 540 |
-
@torch.no_grad()
|
| 541 |
-
def decode(self, latent: torch.Tensor) -> torch.Tensor:
|
| 542 |
-
B, C, T, H, W = latent.shape
|
| 543 |
-
if T == 1:
|
| 544 |
-
return self.decode_image(latent)
|
| 545 |
-
return self.video_vae.decode(latent)
|
| 546 |
-
|
| 547 |
-
def reset_dtype(self, *args, **kwargs):
|
| 548 |
-
"""
|
| 549 |
-
Resets the data type of the encoder and decoder to the model's default data type.
|
| 550 |
-
|
| 551 |
-
Args:
|
| 552 |
-
*args, **kwargs: Unused, present to allow flexibility in method calls.
|
| 553 |
-
"""
|
| 554 |
-
del args, kwargs
|
| 555 |
-
self.video_vae.reset_dtype()
|
| 556 |
-
|
| 557 |
-
def get_latent_num_frames(self, num_pixel_frames: int) -> int:
|
| 558 |
-
if num_pixel_frames == 1:
|
| 559 |
-
return 1
|
| 560 |
-
return self.video_vae.get_latent_num_frames(num_pixel_frames)
|
| 561 |
-
|
| 562 |
-
def get_pixel_num_frames(self, num_latent_frames: int) -> int:
|
| 563 |
-
if num_latent_frames == 1:
|
| 564 |
-
return 1
|
| 565 |
-
return self.video_vae.get_pixel_num_frames(num_latent_frames)
|
| 566 |
-
|
| 567 |
-
@property
|
| 568 |
-
def spatial_compression_factor(self):
|
| 569 |
-
return self.video_vae.spatial_compression_factor
|
| 570 |
-
|
| 571 |
-
@property
|
| 572 |
-
def temporal_compression_factor(self):
|
| 573 |
-
return self.video_vae.temporal_compression_factor
|
| 574 |
-
|
| 575 |
-
@property
|
| 576 |
-
def spatial_resolution(self) -> str:
|
| 577 |
-
return self.video_vae.spatial_resolution
|
| 578 |
-
|
| 579 |
-
@property
|
| 580 |
-
def pixel_chunk_duration(self) -> int:
|
| 581 |
-
return self.video_vae.pixel_chunk_duration
|
| 582 |
-
|
| 583 |
-
@property
|
| 584 |
-
def latent_chunk_duration(self) -> int:
|
| 585 |
-
return self.video_vae.latent_chunk_duration
|
| 586 |
-
|
| 587 |
-
|
| 588 |
-
class JointImageVideoSharedJITTokenizer(JointImageVideoTokenizer):
|
| 589 |
-
"""
|
| 590 |
-
First version of the ImageVideoVAE trained with Fitsum.
|
| 591 |
-
We have to use seperate mean and std for image and video due to non-causal nature of the model.
|
| 592 |
-
"""
|
| 593 |
-
|
| 594 |
-
def __init__(self, image_vae: Module, video_vae: Module, name: str, latent_ch: int = 16):
|
| 595 |
-
super().__init__(image_vae, video_vae, name, latent_ch, squeeze_for_image=False)
|
| 596 |
-
assert isinstance(image_vae, JITVAE)
|
| 597 |
-
assert isinstance(
|
| 598 |
-
video_vae, VideoJITTokenizer
|
| 599 |
-
), f"video_vae should be an instance of VideoJITVAE, got {type(video_vae)}"
|
| 600 |
-
# a hack to make the image_vae and video_vae share the same encoder and decoder
|
| 601 |
-
|
| 602 |
-
def load_weights(self, vae_dir: str):
|
| 603 |
-
self.video_vae.register_mean_std(vae_dir)
|
| 604 |
-
|
| 605 |
-
self.video_vae.load_decoder(vae_dir)
|
| 606 |
-
self.video_vae.load_encoder(vae_dir)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/072076fb853aec819a7298df83e26338e0cb4c3a
DELETED
|
@@ -1,187 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import argparse
|
| 17 |
-
import json
|
| 18 |
-
import os
|
| 19 |
-
from typing import Iterable, Tuple, Union
|
| 20 |
-
|
| 21 |
-
from .misc import misc
|
| 22 |
-
import torch
|
| 23 |
-
from PIL import Image
|
| 24 |
-
|
| 25 |
-
from .guardrail_common_core import ContentSafetyGuardrail, GuardrailRunner
|
| 26 |
-
from .guardrail_common_io_utils import get_video_filepaths, read_video
|
| 27 |
-
from .guardrail_video_content_safety_filter_model import ModelConfig, VideoSafetyModel
|
| 28 |
-
from .guardrail_video_content_safety_filter_vision_encoder import SigLIPEncoder
|
| 29 |
-
from .log import log
|
| 30 |
-
|
| 31 |
-
DEFAULT_CHECKPOINT_DIR = "checkpoints/Cosmos-1.0-Guardrail/video_content_safety_filter"
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
# Define the class index to class name mapping for multi-class classification
|
| 35 |
-
CLASS_IDX_TO_NAME = {
|
| 36 |
-
0: "Safe",
|
| 37 |
-
1: "Sexual_Content",
|
| 38 |
-
2: "Violence",
|
| 39 |
-
3: "Drugs",
|
| 40 |
-
4: "Child_Abuse",
|
| 41 |
-
5: "Hate_and_Harassment",
|
| 42 |
-
6: "Self-Harm",
|
| 43 |
-
}
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
class VideoContentSafetyFilter(ContentSafetyGuardrail):
|
| 47 |
-
def __init__(
|
| 48 |
-
self,
|
| 49 |
-
checkpoint_dir: str = DEFAULT_CHECKPOINT_DIR,
|
| 50 |
-
device="cuda" if torch.cuda.is_available() else "cpu",
|
| 51 |
-
) -> None:
|
| 52 |
-
self.device = device
|
| 53 |
-
self.dtype = torch.float32
|
| 54 |
-
|
| 55 |
-
# Initialize the SigLIP encoder
|
| 56 |
-
self.encoder = SigLIPEncoder(checkpoint_dir=checkpoint_dir, device=device, dtype=self.dtype)
|
| 57 |
-
|
| 58 |
-
# Use ModelConfig directly for inference configuration
|
| 59 |
-
model_config = ModelConfig(input_size=1152, num_classes=7)
|
| 60 |
-
|
| 61 |
-
# Load the multi-class classifier
|
| 62 |
-
self.model = VideoSafetyModel(model_config)
|
| 63 |
-
safety_filter_local_path = os.path.join(checkpoint_dir, "safety_filter.pt")
|
| 64 |
-
checkpoint = torch.load(safety_filter_local_path, map_location=torch.device("cpu"), weights_only=True)
|
| 65 |
-
self.model.load_state_dict(checkpoint["model"])
|
| 66 |
-
self.model.to(self.device, dtype=self.dtype).eval()
|
| 67 |
-
|
| 68 |
-
@torch.inference_mode()
|
| 69 |
-
def __infer(self, pil_image: Image.Image) -> int:
|
| 70 |
-
"""Infer the class of the image."""
|
| 71 |
-
image_embs = self.encoder.encode_image(pil_image)
|
| 72 |
-
logits = self.model.network(image_embs)
|
| 73 |
-
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
| 74 |
-
predicted_class = torch.argmax(probabilities, dim=-1).item()
|
| 75 |
-
return predicted_class
|
| 76 |
-
|
| 77 |
-
def is_safe_file(self, filepath: str) -> bool:
|
| 78 |
-
"""Check if the video file is safe."""
|
| 79 |
-
video_data = read_video(filepath)
|
| 80 |
-
|
| 81 |
-
# Sample frames at 2 FPS
|
| 82 |
-
sample_rate = 2 # frames per second
|
| 83 |
-
frame_interval = int(video_data.fps / sample_rate)
|
| 84 |
-
frame_numbers = list(range(0, int(video_data.fps * video_data.duration), frame_interval))
|
| 85 |
-
|
| 86 |
-
is_safe = True
|
| 87 |
-
frame_scores = []
|
| 88 |
-
|
| 89 |
-
for frame_number in frame_numbers:
|
| 90 |
-
try:
|
| 91 |
-
frame = video_data.frames[frame_number]
|
| 92 |
-
pil_image = Image.fromarray(frame)
|
| 93 |
-
predicted_class = self.__infer(pil_image)
|
| 94 |
-
class_name = CLASS_IDX_TO_NAME.get(predicted_class, "Unknown")
|
| 95 |
-
frame_scores.append({"frame_number": frame_number, "class": class_name})
|
| 96 |
-
|
| 97 |
-
# If any frame is not "Safe", mark the video as unsafe
|
| 98 |
-
if predicted_class != 0:
|
| 99 |
-
is_safe = False
|
| 100 |
-
break
|
| 101 |
-
|
| 102 |
-
except Exception as e:
|
| 103 |
-
log.warning(f"Warning: Failed to run safety classifier on frame_number {frame_number}. Exception: {e}")
|
| 104 |
-
continue
|
| 105 |
-
|
| 106 |
-
# Prepare data for JSON
|
| 107 |
-
video_data = {
|
| 108 |
-
"filepath": filepath,
|
| 109 |
-
"is_safe": is_safe,
|
| 110 |
-
"video_length": video_data.duration,
|
| 111 |
-
"fps": video_data.fps,
|
| 112 |
-
"frame_scores": frame_scores,
|
| 113 |
-
}
|
| 114 |
-
|
| 115 |
-
log.info(f"Video {filepath} is {'SAFE' if is_safe else 'UNSAFE'}.")
|
| 116 |
-
log.debug(f"Video data: {json.dumps(video_data, indent=4)}")
|
| 117 |
-
return is_safe
|
| 118 |
-
|
| 119 |
-
def is_safe_frames(self, frames: Iterable) -> bool:
|
| 120 |
-
"""Check if the video frames are safe."""
|
| 121 |
-
is_safe = True
|
| 122 |
-
frame_scores = []
|
| 123 |
-
|
| 124 |
-
for frame_number, frame in enumerate(frames):
|
| 125 |
-
try:
|
| 126 |
-
pil_image = Image.fromarray(frame)
|
| 127 |
-
predicted_class = self.__infer(pil_image)
|
| 128 |
-
class_name = CLASS_IDX_TO_NAME.get(predicted_class, "Unknown")
|
| 129 |
-
frame_scores.append({"frame_number": frame_number, "class": class_name})
|
| 130 |
-
|
| 131 |
-
# If any frame is not "Safe", mark as not safe
|
| 132 |
-
if predicted_class != 0:
|
| 133 |
-
is_safe = False
|
| 134 |
-
break
|
| 135 |
-
|
| 136 |
-
except Exception as e:
|
| 137 |
-
log.warning(f"Warning: Failed to run safety classifier on frame_number {frame_number}. Exception: {e}")
|
| 138 |
-
continue
|
| 139 |
-
|
| 140 |
-
video_data = {
|
| 141 |
-
"is_safe": is_safe,
|
| 142 |
-
"frame_scores": frame_scores,
|
| 143 |
-
}
|
| 144 |
-
|
| 145 |
-
log.debug(f"Frames data: {json.dumps(video_data, indent=4)}")
|
| 146 |
-
return is_safe
|
| 147 |
-
|
| 148 |
-
def is_safe(self, input: Union[str, Iterable]) -> Tuple[bool, str]:
|
| 149 |
-
if isinstance(input, str):
|
| 150 |
-
is_safe = self.is_safe_file(input)
|
| 151 |
-
return is_safe, "safe video detected" if is_safe else "unsafe video detected"
|
| 152 |
-
elif isinstance(input, Iterable):
|
| 153 |
-
is_safe = self.is_safe_frames(input)
|
| 154 |
-
return is_safe, "safe frames detected" if is_safe else "unsafe frames detected"
|
| 155 |
-
else:
|
| 156 |
-
raise ValueError(f"Input type {type(input)} not supported.")
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
def parse_args():
|
| 160 |
-
parser = argparse.ArgumentParser()
|
| 161 |
-
parser.add_argument("--input_dir", type=str, required=True, help="Path containing input videos")
|
| 162 |
-
parser.add_argument(
|
| 163 |
-
"--checkpoint_dir",
|
| 164 |
-
type=str,
|
| 165 |
-
help="Path to the Video Content Safety Filter checkpoint folder",
|
| 166 |
-
default=DEFAULT_CHECKPOINT_DIR,
|
| 167 |
-
)
|
| 168 |
-
return parser.parse_args()
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
def main(args):
|
| 172 |
-
filepaths = get_video_filepaths(args.input_dir)
|
| 173 |
-
if not filepaths:
|
| 174 |
-
log.error(f"No video files found in directory: {args.input_dir}")
|
| 175 |
-
return
|
| 176 |
-
|
| 177 |
-
video_filter = VideoContentSafetyFilter(checkpoint_dir=args.checkpoint_dir)
|
| 178 |
-
runner = GuardrailRunner(safety_models=[video_filter], generic_safe_msg="Video is safe")
|
| 179 |
-
|
| 180 |
-
for filepath in filepaths:
|
| 181 |
-
with misc.timer("video content safety filter"):
|
| 182 |
-
_ = runner.run_safety_check(filepath)
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
if __name__ == "__main__":
|
| 186 |
-
args = parse_args()
|
| 187 |
-
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/09440b34a95b1708d2154376f2a0202a533cb3b2
DELETED
|
@@ -1,46 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
# Functions for performing operations with broadcasting to the right axis
|
| 17 |
-
#
|
| 18 |
-
# Example
|
| 19 |
-
# input1: tensor of size (N1, N2)
|
| 20 |
-
# input2: tensor of size (N1, N2, N3, N4)
|
| 21 |
-
# batch_mul(input1, input2) = input1[:, :, None, None] * input2
|
| 22 |
-
#
|
| 23 |
-
# If the common dimensions don't match, we raise an assertion error.
|
| 24 |
-
|
| 25 |
-
from torch import Tensor
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def common_broadcast(x: Tensor, y: Tensor) -> tuple[Tensor, Tensor]:
|
| 29 |
-
ndims1 = x.ndim
|
| 30 |
-
ndims2 = y.ndim
|
| 31 |
-
|
| 32 |
-
common_ndims = min(ndims1, ndims2)
|
| 33 |
-
for axis in range(common_ndims):
|
| 34 |
-
assert x.shape[axis] == y.shape[axis], "Dimensions not equal at axis {}".format(axis)
|
| 35 |
-
|
| 36 |
-
if ndims1 < ndims2:
|
| 37 |
-
x = x.reshape(x.shape + (1,) * (ndims2 - ndims1))
|
| 38 |
-
elif ndims2 < ndims1:
|
| 39 |
-
y = y.reshape(y.shape + (1,) * (ndims1 - ndims2))
|
| 40 |
-
|
| 41 |
-
return x, y
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def batch_mul(x: Tensor, y: Tensor) -> Tensor:
|
| 45 |
-
x, y = common_broadcast(x, y)
|
| 46 |
-
return x * y
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/0c2f9c6280ccfa60e1ba8a38e3062e0caf99e71e
DELETED
|
@@ -1,560 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
"""The model definition for 3D layers
|
| 17 |
-
|
| 18 |
-
Adapted from: https://github.com/lucidrains/magvit2-pytorch/blob/9f49074179c912736e617d61b32be367eb5f993a/
|
| 19 |
-
magvit2_pytorch/magvit2_pytorch.py#L889
|
| 20 |
-
|
| 21 |
-
[MIT License Copyright (c) 2023 Phil Wang]
|
| 22 |
-
https://github.com/lucidrains/magvit2-pytorch/blob/9f49074179c912736e617d61b32be367eb5f993a/LICENSE
|
| 23 |
-
"""
|
| 24 |
-
import math
|
| 25 |
-
from typing import Tuple, Union
|
| 26 |
-
|
| 27 |
-
import numpy as np
|
| 28 |
-
import torch
|
| 29 |
-
import torch.nn as nn
|
| 30 |
-
import torch.nn.functional as F
|
| 31 |
-
|
| 32 |
-
from .ar_tokenizer_patching import Patcher3D, UnPatcher3D
|
| 33 |
-
from .ar_tokenizer_utils import (
|
| 34 |
-
CausalNormalize,
|
| 35 |
-
batch2space,
|
| 36 |
-
batch2time,
|
| 37 |
-
cast_tuple,
|
| 38 |
-
is_odd,
|
| 39 |
-
nonlinearity,
|
| 40 |
-
replication_pad,
|
| 41 |
-
space2batch,
|
| 42 |
-
time2batch,
|
| 43 |
-
)
|
| 44 |
-
from .log import log
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
class CausalConv3d(nn.Module):
|
| 48 |
-
def __init__(
|
| 49 |
-
self,
|
| 50 |
-
chan_in: int = 1,
|
| 51 |
-
chan_out: int = 1,
|
| 52 |
-
kernel_size: Union[int, Tuple[int, int, int]] = 3,
|
| 53 |
-
pad_mode: str = "constant",
|
| 54 |
-
**kwargs,
|
| 55 |
-
):
|
| 56 |
-
super().__init__()
|
| 57 |
-
kernel_size = cast_tuple(kernel_size, 3)
|
| 58 |
-
|
| 59 |
-
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size
|
| 60 |
-
|
| 61 |
-
assert is_odd(height_kernel_size) and is_odd(width_kernel_size)
|
| 62 |
-
|
| 63 |
-
dilation = kwargs.pop("dilation", 1)
|
| 64 |
-
stride = kwargs.pop("stride", 1)
|
| 65 |
-
time_stride = kwargs.pop("time_stride", 1)
|
| 66 |
-
time_dilation = kwargs.pop("time_dilation", 1)
|
| 67 |
-
padding = kwargs.pop("padding", 1)
|
| 68 |
-
|
| 69 |
-
self.pad_mode = pad_mode
|
| 70 |
-
time_pad = time_dilation * (time_kernel_size - 1) + (1 - time_stride)
|
| 71 |
-
self.time_pad = time_pad
|
| 72 |
-
|
| 73 |
-
self.spatial_pad = (padding, padding, padding, padding)
|
| 74 |
-
|
| 75 |
-
stride = (time_stride, stride, stride)
|
| 76 |
-
dilation = (time_dilation, dilation, dilation)
|
| 77 |
-
self.conv3d = nn.Conv3d(chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs)
|
| 78 |
-
|
| 79 |
-
def _replication_pad(self, x: torch.Tensor) -> torch.Tensor:
|
| 80 |
-
x_prev = x[:, :, :1, ...].repeat(1, 1, self.time_pad, 1, 1)
|
| 81 |
-
x = torch.cat([x_prev, x], dim=2)
|
| 82 |
-
padding = self.spatial_pad + (0, 0)
|
| 83 |
-
return F.pad(x, padding, mode=self.pad_mode, value=0.0)
|
| 84 |
-
|
| 85 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 86 |
-
x = self._replication_pad(x)
|
| 87 |
-
return self.conv3d(x)
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
class CausalHybridUpsample3d(nn.Module):
|
| 91 |
-
def __init__(self, in_channels: int, spatial_up: bool = True, temporal_up: bool = True, **ignore_kwargs) -> None:
|
| 92 |
-
super().__init__()
|
| 93 |
-
self.conv1 = (
|
| 94 |
-
CausalConv3d(in_channels, in_channels, kernel_size=(3, 1, 1), stride=1, time_stride=1, padding=0)
|
| 95 |
-
if temporal_up
|
| 96 |
-
else nn.Identity()
|
| 97 |
-
)
|
| 98 |
-
self.conv2 = (
|
| 99 |
-
CausalConv3d(in_channels, in_channels, kernel_size=(1, 3, 3), stride=1, time_stride=1, padding=1)
|
| 100 |
-
if spatial_up
|
| 101 |
-
else nn.Identity()
|
| 102 |
-
)
|
| 103 |
-
self.conv3 = (
|
| 104 |
-
CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1, time_stride=1, padding=0)
|
| 105 |
-
if spatial_up or temporal_up
|
| 106 |
-
else nn.Identity()
|
| 107 |
-
)
|
| 108 |
-
self.spatial_up = spatial_up
|
| 109 |
-
self.temporal_up = temporal_up
|
| 110 |
-
|
| 111 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 112 |
-
if not self.spatial_up and not self.temporal_up:
|
| 113 |
-
return x
|
| 114 |
-
|
| 115 |
-
# hybrid upsample temporally.
|
| 116 |
-
if self.temporal_up:
|
| 117 |
-
time_factor = 1.0 + 1.0 * (x.shape[2] > 1)
|
| 118 |
-
if isinstance(time_factor, torch.Tensor):
|
| 119 |
-
time_factor = time_factor.item()
|
| 120 |
-
x = x.repeat_interleave(int(time_factor), dim=2)
|
| 121 |
-
x = x[..., int(time_factor - 1) :, :, :]
|
| 122 |
-
x = self.conv1(x) + x
|
| 123 |
-
|
| 124 |
-
# hybrid upsample spatially.
|
| 125 |
-
if self.spatial_up:
|
| 126 |
-
x = x.repeat_interleave(2, dim=3).repeat_interleave(2, dim=4)
|
| 127 |
-
x = self.conv2(x) + x
|
| 128 |
-
|
| 129 |
-
# final 1x1x1 conv.
|
| 130 |
-
x = self.conv3(x)
|
| 131 |
-
return x
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
class CausalHybridDownsample3d(nn.Module):
|
| 135 |
-
def __init__(
|
| 136 |
-
self, in_channels: int, spatial_down: bool = True, temporal_down: bool = True, **ignore_kwargs
|
| 137 |
-
) -> None:
|
| 138 |
-
super().__init__()
|
| 139 |
-
self.conv1 = (
|
| 140 |
-
CausalConv3d(in_channels, in_channels, kernel_size=(1, 3, 3), stride=2, time_stride=1, padding=0)
|
| 141 |
-
if spatial_down
|
| 142 |
-
else nn.Identity()
|
| 143 |
-
)
|
| 144 |
-
self.conv2 = (
|
| 145 |
-
CausalConv3d(in_channels, in_channels, kernel_size=(3, 1, 1), stride=1, time_stride=2, padding=0)
|
| 146 |
-
if temporal_down
|
| 147 |
-
else nn.Identity()
|
| 148 |
-
)
|
| 149 |
-
self.conv3 = (
|
| 150 |
-
CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1, time_stride=1, padding=0)
|
| 151 |
-
if spatial_down or temporal_down
|
| 152 |
-
else nn.Identity()
|
| 153 |
-
)
|
| 154 |
-
self.spatial_down = spatial_down
|
| 155 |
-
self.temporal_down = temporal_down
|
| 156 |
-
|
| 157 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 158 |
-
if not self.spatial_down and not self.temporal_down:
|
| 159 |
-
return x
|
| 160 |
-
|
| 161 |
-
# hybrid downsample spatially.
|
| 162 |
-
if self.spatial_down:
|
| 163 |
-
pad = (0, 1, 0, 1, 0, 0)
|
| 164 |
-
x = F.pad(x, pad, mode="constant", value=0)
|
| 165 |
-
x1 = self.conv1(x)
|
| 166 |
-
x2 = F.avg_pool3d(x, kernel_size=(1, 2, 2), stride=(1, 2, 2))
|
| 167 |
-
x = x1 + x2
|
| 168 |
-
|
| 169 |
-
# hybrid downsample temporally.
|
| 170 |
-
if self.temporal_down:
|
| 171 |
-
x = replication_pad(x)
|
| 172 |
-
x1 = self.conv2(x)
|
| 173 |
-
x2 = F.avg_pool3d(x, kernel_size=(2, 1, 1), stride=(2, 1, 1))
|
| 174 |
-
x = x1 + x2
|
| 175 |
-
|
| 176 |
-
# final 1x1x1 conv.
|
| 177 |
-
x = self.conv3(x)
|
| 178 |
-
return x
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
class CausalResnetBlockFactorized3d(nn.Module):
|
| 182 |
-
def __init__(self, *, in_channels: int, out_channels: int = None, dropout: float, num_groups: int) -> None:
|
| 183 |
-
super().__init__()
|
| 184 |
-
self.in_channels = in_channels
|
| 185 |
-
out_channels = in_channels if out_channels is None else out_channels
|
| 186 |
-
|
| 187 |
-
self.norm1 = CausalNormalize(in_channels, num_groups=1)
|
| 188 |
-
self.conv1 = nn.Sequential(
|
| 189 |
-
CausalConv3d(in_channels, out_channels, kernel_size=(1, 3, 3), stride=1, padding=1),
|
| 190 |
-
CausalConv3d(out_channels, out_channels, kernel_size=(3, 1, 1), stride=1, padding=0),
|
| 191 |
-
)
|
| 192 |
-
self.norm2 = CausalNormalize(out_channels, num_groups=num_groups)
|
| 193 |
-
self.dropout = torch.nn.Dropout(dropout)
|
| 194 |
-
self.conv2 = nn.Sequential(
|
| 195 |
-
CausalConv3d(out_channels, out_channels, kernel_size=(1, 3, 3), stride=1, padding=1),
|
| 196 |
-
CausalConv3d(out_channels, out_channels, kernel_size=(3, 1, 1), stride=1, padding=0),
|
| 197 |
-
)
|
| 198 |
-
self.nin_shortcut = (
|
| 199 |
-
CausalConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
| 200 |
-
if in_channels != out_channels
|
| 201 |
-
else nn.Identity()
|
| 202 |
-
)
|
| 203 |
-
|
| 204 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 205 |
-
h = x
|
| 206 |
-
h = self.norm1(h)
|
| 207 |
-
h = nonlinearity(h)
|
| 208 |
-
h = self.conv1(h)
|
| 209 |
-
|
| 210 |
-
h = self.norm2(h)
|
| 211 |
-
h = nonlinearity(h)
|
| 212 |
-
h = self.dropout(h)
|
| 213 |
-
h = self.conv2(h)
|
| 214 |
-
x = self.nin_shortcut(x)
|
| 215 |
-
|
| 216 |
-
return x + h
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
class CausalAttnBlock(nn.Module):
|
| 220 |
-
def __init__(self, in_channels: int, num_groups: int) -> None:
|
| 221 |
-
super().__init__()
|
| 222 |
-
|
| 223 |
-
self.norm = CausalNormalize(in_channels, num_groups=num_groups)
|
| 224 |
-
self.q = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 225 |
-
self.k = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 226 |
-
self.v = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 227 |
-
self.proj_out = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 228 |
-
|
| 229 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 230 |
-
h_ = x
|
| 231 |
-
h_ = self.norm(h_)
|
| 232 |
-
q = self.q(h_)
|
| 233 |
-
k = self.k(h_)
|
| 234 |
-
v = self.v(h_)
|
| 235 |
-
|
| 236 |
-
# compute attention
|
| 237 |
-
q, batch_size = time2batch(q)
|
| 238 |
-
k, batch_size = time2batch(k)
|
| 239 |
-
v, batch_size = time2batch(v)
|
| 240 |
-
|
| 241 |
-
b, c, h, w = q.shape
|
| 242 |
-
q = q.reshape(b, c, h * w)
|
| 243 |
-
q = q.permute(0, 2, 1)
|
| 244 |
-
k = k.reshape(b, c, h * w)
|
| 245 |
-
w_ = torch.bmm(q, k)
|
| 246 |
-
w_ = w_ * (int(c) ** (-0.5))
|
| 247 |
-
w_ = F.softmax(w_, dim=2)
|
| 248 |
-
|
| 249 |
-
# attend to values
|
| 250 |
-
v = v.reshape(b, c, h * w)
|
| 251 |
-
w_ = w_.permute(0, 2, 1)
|
| 252 |
-
h_ = torch.bmm(v, w_)
|
| 253 |
-
h_ = h_.reshape(b, c, h, w)
|
| 254 |
-
|
| 255 |
-
h_ = batch2time(h_, batch_size)
|
| 256 |
-
h_ = self.proj_out(h_)
|
| 257 |
-
return x + h_
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
class CausalTemporalAttnBlock(nn.Module):
|
| 261 |
-
def __init__(self, in_channels: int, num_groups: int) -> None:
|
| 262 |
-
super().__init__()
|
| 263 |
-
|
| 264 |
-
self.norm = CausalNormalize(in_channels, num_groups=num_groups)
|
| 265 |
-
self.q = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 266 |
-
self.k = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 267 |
-
self.v = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 268 |
-
self.proj_out = CausalConv3d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
| 269 |
-
|
| 270 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 271 |
-
h_ = x
|
| 272 |
-
h_ = self.norm(h_)
|
| 273 |
-
q = self.q(h_)
|
| 274 |
-
k = self.k(h_)
|
| 275 |
-
v = self.v(h_)
|
| 276 |
-
|
| 277 |
-
# compute attention
|
| 278 |
-
q, batch_size, height = space2batch(q)
|
| 279 |
-
k, _, _ = space2batch(k)
|
| 280 |
-
v, _, _ = space2batch(v)
|
| 281 |
-
|
| 282 |
-
bhw, c, t = q.shape
|
| 283 |
-
q = q.permute(0, 2, 1) # (bhw, t, c)
|
| 284 |
-
k = k.permute(0, 2, 1) # (bhw, t, c)
|
| 285 |
-
v = v.permute(0, 2, 1) # (bhw, t, c)
|
| 286 |
-
|
| 287 |
-
w_ = torch.bmm(q, k.permute(0, 2, 1)) # (bhw, t, t)
|
| 288 |
-
w_ = w_ * (int(c) ** (-0.5))
|
| 289 |
-
|
| 290 |
-
# Apply causal mask
|
| 291 |
-
mask = torch.tril(torch.ones_like(w_))
|
| 292 |
-
w_ = w_.masked_fill(mask == 0, float("-inf"))
|
| 293 |
-
w_ = F.softmax(w_, dim=2)
|
| 294 |
-
|
| 295 |
-
# attend to values
|
| 296 |
-
h_ = torch.bmm(w_, v) # (bhw, t, c)
|
| 297 |
-
h_ = h_.permute(0, 2, 1).reshape(bhw, c, t) # (bhw, c, t)
|
| 298 |
-
|
| 299 |
-
h_ = batch2space(h_, batch_size, height)
|
| 300 |
-
h_ = self.proj_out(h_)
|
| 301 |
-
return x + h_
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
class EncoderFactorized(nn.Module):
|
| 305 |
-
def __init__(
|
| 306 |
-
self,
|
| 307 |
-
in_channels: int,
|
| 308 |
-
channels: int,
|
| 309 |
-
channels_mult: list[int],
|
| 310 |
-
num_res_blocks: int,
|
| 311 |
-
attn_resolutions: list[int],
|
| 312 |
-
dropout: float,
|
| 313 |
-
resolution: int,
|
| 314 |
-
z_channels: int,
|
| 315 |
-
spatial_compression: int,
|
| 316 |
-
temporal_compression: int,
|
| 317 |
-
**ignore_kwargs,
|
| 318 |
-
) -> None:
|
| 319 |
-
super().__init__()
|
| 320 |
-
self.num_resolutions = len(channels_mult)
|
| 321 |
-
self.num_res_blocks = num_res_blocks
|
| 322 |
-
|
| 323 |
-
# Patcher.
|
| 324 |
-
patch_size = ignore_kwargs.get("patch_size", 1)
|
| 325 |
-
self.patcher3d = Patcher3D(patch_size, ignore_kwargs.get("patch_method", "rearrange"))
|
| 326 |
-
in_channels = in_channels * patch_size * patch_size * patch_size
|
| 327 |
-
|
| 328 |
-
# calculate the number of downsample operations
|
| 329 |
-
self.num_spatial_downs = int(math.log2(spatial_compression)) - int(math.log2(patch_size))
|
| 330 |
-
assert (
|
| 331 |
-
self.num_spatial_downs <= self.num_resolutions
|
| 332 |
-
), f"Spatially downsample {self.num_resolutions} times at most"
|
| 333 |
-
|
| 334 |
-
self.num_temporal_downs = int(math.log2(temporal_compression)) - int(math.log2(patch_size))
|
| 335 |
-
assert (
|
| 336 |
-
self.num_temporal_downs <= self.num_resolutions
|
| 337 |
-
), f"Temporally downsample {self.num_resolutions} times at most"
|
| 338 |
-
|
| 339 |
-
# downsampling
|
| 340 |
-
self.conv_in = nn.Sequential(
|
| 341 |
-
CausalConv3d(in_channels, channels, kernel_size=(1, 3, 3), stride=1, padding=1),
|
| 342 |
-
CausalConv3d(channels, channels, kernel_size=(3, 1, 1), stride=1, padding=0),
|
| 343 |
-
)
|
| 344 |
-
|
| 345 |
-
curr_res = resolution // patch_size
|
| 346 |
-
in_ch_mult = (1,) + tuple(channels_mult)
|
| 347 |
-
self.in_ch_mult = in_ch_mult
|
| 348 |
-
self.down = nn.ModuleList()
|
| 349 |
-
for i_level in range(self.num_resolutions):
|
| 350 |
-
block = nn.ModuleList()
|
| 351 |
-
attn = nn.ModuleList()
|
| 352 |
-
block_in = channels * in_ch_mult[i_level]
|
| 353 |
-
block_out = channels * channels_mult[i_level]
|
| 354 |
-
for _ in range(self.num_res_blocks):
|
| 355 |
-
block.append(
|
| 356 |
-
CausalResnetBlockFactorized3d(
|
| 357 |
-
in_channels=block_in, out_channels=block_out, dropout=dropout, num_groups=1
|
| 358 |
-
)
|
| 359 |
-
)
|
| 360 |
-
block_in = block_out
|
| 361 |
-
if curr_res in attn_resolutions:
|
| 362 |
-
attn.append(
|
| 363 |
-
nn.Sequential(
|
| 364 |
-
CausalAttnBlock(block_in, num_groups=1), CausalTemporalAttnBlock(block_in, num_groups=1)
|
| 365 |
-
)
|
| 366 |
-
)
|
| 367 |
-
down = nn.Module()
|
| 368 |
-
down.block = block
|
| 369 |
-
down.attn = attn
|
| 370 |
-
if i_level != self.num_resolutions - 1:
|
| 371 |
-
spatial_down = i_level < self.num_spatial_downs
|
| 372 |
-
temporal_down = i_level < self.num_temporal_downs
|
| 373 |
-
down.downsample = CausalHybridDownsample3d(
|
| 374 |
-
block_in, spatial_down=spatial_down, temporal_down=temporal_down
|
| 375 |
-
)
|
| 376 |
-
curr_res = curr_res // 2
|
| 377 |
-
self.down.append(down)
|
| 378 |
-
|
| 379 |
-
# middle
|
| 380 |
-
self.mid = nn.Module()
|
| 381 |
-
self.mid.block_1 = CausalResnetBlockFactorized3d(
|
| 382 |
-
in_channels=block_in, out_channels=block_in, dropout=dropout, num_groups=1
|
| 383 |
-
)
|
| 384 |
-
self.mid.attn_1 = nn.Sequential(
|
| 385 |
-
CausalAttnBlock(block_in, num_groups=1), CausalTemporalAttnBlock(block_in, num_groups=1)
|
| 386 |
-
)
|
| 387 |
-
self.mid.block_2 = CausalResnetBlockFactorized3d(
|
| 388 |
-
in_channels=block_in, out_channels=block_in, dropout=dropout, num_groups=1
|
| 389 |
-
)
|
| 390 |
-
|
| 391 |
-
# end
|
| 392 |
-
self.norm_out = CausalNormalize(block_in, num_groups=1)
|
| 393 |
-
self.conv_out = nn.Sequential(
|
| 394 |
-
CausalConv3d(block_in, z_channels, kernel_size=(1, 3, 3), stride=1, padding=1),
|
| 395 |
-
CausalConv3d(z_channels, z_channels, kernel_size=(3, 1, 1), stride=1, padding=0),
|
| 396 |
-
)
|
| 397 |
-
|
| 398 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 399 |
-
x = self.patcher3d(x)
|
| 400 |
-
|
| 401 |
-
# downsampling
|
| 402 |
-
h = self.conv_in(x)
|
| 403 |
-
for i_level in range(self.num_resolutions):
|
| 404 |
-
for i_block in range(self.num_res_blocks):
|
| 405 |
-
h = self.down[i_level].block[i_block](h)
|
| 406 |
-
if len(self.down[i_level].attn) > 0:
|
| 407 |
-
h = self.down[i_level].attn[i_block](h)
|
| 408 |
-
if i_level != self.num_resolutions - 1:
|
| 409 |
-
h = self.down[i_level].downsample(h)
|
| 410 |
-
|
| 411 |
-
# middle
|
| 412 |
-
h = self.mid.block_1(h)
|
| 413 |
-
h = self.mid.attn_1(h)
|
| 414 |
-
h = self.mid.block_2(h)
|
| 415 |
-
|
| 416 |
-
# end
|
| 417 |
-
h = self.norm_out(h)
|
| 418 |
-
h = nonlinearity(h)
|
| 419 |
-
h = self.conv_out(h)
|
| 420 |
-
return h
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
class DecoderFactorized(nn.Module):
|
| 424 |
-
def __init__(
|
| 425 |
-
self,
|
| 426 |
-
out_channels: int,
|
| 427 |
-
channels: int,
|
| 428 |
-
channels_mult: list[int],
|
| 429 |
-
num_res_blocks: int,
|
| 430 |
-
attn_resolutions: list[int],
|
| 431 |
-
dropout: float,
|
| 432 |
-
resolution: int,
|
| 433 |
-
z_channels: int,
|
| 434 |
-
spatial_compression: int,
|
| 435 |
-
temporal_compression: int,
|
| 436 |
-
**ignore_kwargs,
|
| 437 |
-
):
|
| 438 |
-
super().__init__()
|
| 439 |
-
self.num_resolutions = len(channels_mult)
|
| 440 |
-
self.num_res_blocks = num_res_blocks
|
| 441 |
-
|
| 442 |
-
# UnPatcher.
|
| 443 |
-
patch_size = ignore_kwargs.get("patch_size", 1)
|
| 444 |
-
self.unpatcher3d = UnPatcher3D(patch_size, ignore_kwargs.get("patch_method", "rearrange"))
|
| 445 |
-
out_ch = out_channels * patch_size * patch_size * patch_size
|
| 446 |
-
|
| 447 |
-
# calculate the number of upsample operations
|
| 448 |
-
self.num_spatial_ups = int(math.log2(spatial_compression)) - int(math.log2(patch_size))
|
| 449 |
-
assert self.num_spatial_ups <= self.num_resolutions, f"Spatially upsample {self.num_resolutions} times at most"
|
| 450 |
-
self.num_temporal_ups = int(math.log2(temporal_compression)) - int(math.log2(patch_size))
|
| 451 |
-
assert (
|
| 452 |
-
self.num_temporal_ups <= self.num_resolutions
|
| 453 |
-
), f"Temporally upsample {self.num_resolutions} times at most"
|
| 454 |
-
|
| 455 |
-
block_in = channels * channels_mult[self.num_resolutions - 1]
|
| 456 |
-
curr_res = (resolution // patch_size) // 2 ** (self.num_resolutions - 1)
|
| 457 |
-
self.z_shape = (1, z_channels, curr_res, curr_res)
|
| 458 |
-
log.debug("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape)))
|
| 459 |
-
|
| 460 |
-
# z to block_in
|
| 461 |
-
self.conv_in = nn.Sequential(
|
| 462 |
-
CausalConv3d(z_channels, block_in, kernel_size=(1, 3, 3), stride=1, padding=1),
|
| 463 |
-
CausalConv3d(block_in, block_in, kernel_size=(3, 1, 1), stride=1, padding=0),
|
| 464 |
-
)
|
| 465 |
-
|
| 466 |
-
# middle
|
| 467 |
-
self.mid = nn.Module()
|
| 468 |
-
self.mid.block_1 = CausalResnetBlockFactorized3d(
|
| 469 |
-
in_channels=block_in, out_channels=block_in, dropout=dropout, num_groups=1
|
| 470 |
-
)
|
| 471 |
-
self.mid.attn_1 = nn.Sequential(
|
| 472 |
-
CausalAttnBlock(block_in, num_groups=1), CausalTemporalAttnBlock(block_in, num_groups=1)
|
| 473 |
-
)
|
| 474 |
-
self.mid.block_2 = CausalResnetBlockFactorized3d(
|
| 475 |
-
in_channels=block_in, out_channels=block_in, dropout=dropout, num_groups=1
|
| 476 |
-
)
|
| 477 |
-
|
| 478 |
-
legacy_mode = ignore_kwargs.get("legacy_mode", False)
|
| 479 |
-
# upsampling
|
| 480 |
-
self.up = nn.ModuleList()
|
| 481 |
-
for i_level in reversed(range(self.num_resolutions)):
|
| 482 |
-
block = nn.ModuleList()
|
| 483 |
-
attn = nn.ModuleList()
|
| 484 |
-
block_out = channels * channels_mult[i_level]
|
| 485 |
-
for _ in range(self.num_res_blocks + 1):
|
| 486 |
-
block.append(
|
| 487 |
-
CausalResnetBlockFactorized3d(
|
| 488 |
-
in_channels=block_in, out_channels=block_out, dropout=dropout, num_groups=1
|
| 489 |
-
)
|
| 490 |
-
)
|
| 491 |
-
block_in = block_out
|
| 492 |
-
if curr_res in attn_resolutions:
|
| 493 |
-
attn.append(
|
| 494 |
-
nn.Sequential(
|
| 495 |
-
CausalAttnBlock(block_in, num_groups=1), CausalTemporalAttnBlock(block_in, num_groups=1)
|
| 496 |
-
)
|
| 497 |
-
)
|
| 498 |
-
up = nn.Module()
|
| 499 |
-
up.block = block
|
| 500 |
-
up.attn = attn
|
| 501 |
-
if i_level != 0:
|
| 502 |
-
# The layer index for temporal/spatial downsampling performed in the encoder should correspond
|
| 503 |
-
# to the layer index, inreverse order, where upsampling is performed in the decoder.
|
| 504 |
-
# If you've a pre-trained model, you can simply finetune.
|
| 505 |
-
# For example:
|
| 506 |
-
# Input tensor = (1, 3, 17, 32, 32)
|
| 507 |
-
# Patch size = 4 for 3D wavelet transform
|
| 508 |
-
# Compression rate = (8x16x16)
|
| 509 |
-
#
|
| 510 |
-
# We expect successive downsampling in the encoder and upsampling in the decoder to be mirrored.
|
| 511 |
-
# ENCODER: `(...,5,8,8) -> (...,3,4,4) -> (...,3,2,2)`
|
| 512 |
-
# DECODER: `(...,3,2,2) -> (...,3,4,4) -> (...,5,8,8)`
|
| 513 |
-
#
|
| 514 |
-
# if legacy_mode is True, the temporal upsampling is not perfectly mirrored.
|
| 515 |
-
# ENCODER: `(...,5,8,8) -> (...,3,4,4) -> (...,3,2,2)`
|
| 516 |
-
# DECODER: `(...,3,2,2) -> (...,5,4,4) -> (...,5,8,8)`
|
| 517 |
-
#
|
| 518 |
-
# Most of the CV and DV tokenizers were trained before 09/01/2024 with upsampling that's not mirrored.
|
| 519 |
-
# Going forward, new CV/DV tokenizers will adopt `legacy_mode=False`, i.e. use mirrored upsampling.
|
| 520 |
-
i_level_reverse = self.num_resolutions - i_level - 1
|
| 521 |
-
if legacy_mode:
|
| 522 |
-
temporal_up = i_level_reverse < self.num_temporal_ups
|
| 523 |
-
else:
|
| 524 |
-
temporal_up = 0 < i_level_reverse < self.num_temporal_ups + 1
|
| 525 |
-
spatial_up = temporal_up or (
|
| 526 |
-
i_level_reverse < self.num_spatial_ups and self.num_spatial_ups > self.num_temporal_ups
|
| 527 |
-
)
|
| 528 |
-
up.upsample = CausalHybridUpsample3d(block_in, spatial_up=spatial_up, temporal_up=temporal_up)
|
| 529 |
-
curr_res = curr_res * 2
|
| 530 |
-
self.up.insert(0, up) # prepend to get consistent order
|
| 531 |
-
|
| 532 |
-
# end
|
| 533 |
-
self.norm_out = CausalNormalize(block_in, num_groups=1)
|
| 534 |
-
self.conv_out = nn.Sequential(
|
| 535 |
-
CausalConv3d(block_in, out_ch, kernel_size=(1, 3, 3), stride=1, padding=1),
|
| 536 |
-
CausalConv3d(out_ch, out_ch, kernel_size=(3, 1, 1), stride=1, padding=0),
|
| 537 |
-
)
|
| 538 |
-
|
| 539 |
-
def forward(self, z):
|
| 540 |
-
h = self.conv_in(z)
|
| 541 |
-
|
| 542 |
-
# middle block.
|
| 543 |
-
h = self.mid.block_1(h)
|
| 544 |
-
h = self.mid.attn_1(h)
|
| 545 |
-
h = self.mid.block_2(h)
|
| 546 |
-
|
| 547 |
-
# decoder blocks.
|
| 548 |
-
for i_level in reversed(range(self.num_resolutions)):
|
| 549 |
-
for i_block in range(self.num_res_blocks + 1):
|
| 550 |
-
h = self.up[i_level].block[i_block](h)
|
| 551 |
-
if len(self.up[i_level].attn) > 0:
|
| 552 |
-
h = self.up[i_level].attn[i_block](h)
|
| 553 |
-
if i_level != 0:
|
| 554 |
-
h = self.up[i_level].upsample(h)
|
| 555 |
-
|
| 556 |
-
h = self.norm_out(h)
|
| 557 |
-
h = nonlinearity(h)
|
| 558 |
-
h = self.conv_out(h)
|
| 559 |
-
h = self.unpatcher3d(h)
|
| 560 |
-
return h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/148897d5cae9165673cb74e336548c71adb261b1
DELETED
|
@@ -1,78 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import glob
|
| 17 |
-
from dataclasses import dataclass
|
| 18 |
-
|
| 19 |
-
import imageio
|
| 20 |
-
import numpy as np
|
| 21 |
-
|
| 22 |
-
from .log import log
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
@dataclass
|
| 26 |
-
class VideoData:
|
| 27 |
-
frames: np.ndarray # Shape: [B, H, W, C]
|
| 28 |
-
fps: int
|
| 29 |
-
duration: int # in seconds
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def get_video_filepaths(input_dir: str) -> list[str]:
|
| 33 |
-
"""Get a list of filepaths for all videos in the input directory."""
|
| 34 |
-
paths = glob.glob(f"{input_dir}/**/*.mp4", recursive=True)
|
| 35 |
-
paths += glob.glob(f"{input_dir}/**/*.avi", recursive=True)
|
| 36 |
-
paths += glob.glob(f"{input_dir}/**/*.mov", recursive=True)
|
| 37 |
-
paths = sorted(paths)
|
| 38 |
-
log.debug(f"Found {len(paths)} videos")
|
| 39 |
-
return paths
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
def read_video(filepath: str) -> VideoData:
|
| 43 |
-
"""Read a video file and extract its frames and metadata."""
|
| 44 |
-
try:
|
| 45 |
-
reader = imageio.get_reader(filepath, "ffmpeg")
|
| 46 |
-
except Exception as e:
|
| 47 |
-
raise ValueError(f"Failed to read video file: {filepath}") from e
|
| 48 |
-
|
| 49 |
-
# Extract metadata from the video file
|
| 50 |
-
try:
|
| 51 |
-
metadata = reader.get_meta_data()
|
| 52 |
-
fps = metadata.get("fps")
|
| 53 |
-
duration = metadata.get("duration")
|
| 54 |
-
except Exception as e:
|
| 55 |
-
reader.close()
|
| 56 |
-
raise ValueError(f"Failed to extract metadata from video file: {filepath}") from e
|
| 57 |
-
|
| 58 |
-
# Extract frames from the video file
|
| 59 |
-
try:
|
| 60 |
-
frames = np.array([frame for frame in reader])
|
| 61 |
-
except Exception as e:
|
| 62 |
-
raise ValueError(f"Failed to extract frames from video file: {filepath}") from e
|
| 63 |
-
finally:
|
| 64 |
-
reader.close()
|
| 65 |
-
|
| 66 |
-
return VideoData(frames=frames, fps=fps, duration=duration)
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
def save_video(filepath: str, frames: np.ndarray, fps: int) -> None:
|
| 70 |
-
"""Save a video file from a sequence of frames."""
|
| 71 |
-
try:
|
| 72 |
-
writer = imageio.get_writer(filepath, fps=fps, macro_block_size=1)
|
| 73 |
-
for frame in frames:
|
| 74 |
-
writer.append_data(frame)
|
| 75 |
-
except Exception as e:
|
| 76 |
-
raise ValueError(f"Failed to save video file to {filepath}") from e
|
| 77 |
-
finally:
|
| 78 |
-
writer.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/184d60dec6f9b0326dc0aa1a3d9b89c06fa7566e
DELETED
|
@@ -1,283 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
"""
|
| 17 |
-
A general framework for various sampling algorithm from a diffusion model.
|
| 18 |
-
Impl based on
|
| 19 |
-
* Refined Exponential Solver (RES) in https://arxiv.org/pdf/2308.02157
|
| 20 |
-
* also clude other impl, DDIM, DEIS, DPM-Solver, EDM sampler.
|
| 21 |
-
Most of sampling algorihtm, Runge-Kutta, Multi-step, etc, can be impl in this framework by \
|
| 22 |
-
adding new step function in get_runge_kutta_fn or get_multi_step_fn.
|
| 23 |
-
"""
|
| 24 |
-
|
| 25 |
-
import math
|
| 26 |
-
from typing import Any, Callable, List, Literal, Optional, Tuple, Union
|
| 27 |
-
|
| 28 |
-
import attrs
|
| 29 |
-
import torch
|
| 30 |
-
|
| 31 |
-
from .df_df_functional_multi_step import get_multi_step_fn, is_multi_step_fn_supported
|
| 32 |
-
from .df_df_functional_runge_kutta import get_runge_kutta_fn, is_runge_kutta_fn_supported
|
| 33 |
-
from .config import make_freezable
|
| 34 |
-
|
| 35 |
-
COMMON_SOLVER_OPTIONS = Literal["2ab", "2mid", "1euler"]
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
@make_freezable
|
| 39 |
-
@attrs.define(slots=False)
|
| 40 |
-
class SolverConfig:
|
| 41 |
-
is_multi: bool = False
|
| 42 |
-
rk: str = "2mid"
|
| 43 |
-
multistep: str = "2ab"
|
| 44 |
-
# following parameters control stochasticity, see EDM paper
|
| 45 |
-
# BY default, we use deterministic with no stochasticity
|
| 46 |
-
s_churn: float = 0.0
|
| 47 |
-
s_t_max: float = float("inf")
|
| 48 |
-
s_t_min: float = 0.05
|
| 49 |
-
s_noise: float = 1.0
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
@make_freezable
|
| 53 |
-
@attrs.define(slots=False)
|
| 54 |
-
class SolverTimestampConfig:
|
| 55 |
-
nfe: int = 50
|
| 56 |
-
t_min: float = 0.002
|
| 57 |
-
t_max: float = 80.0
|
| 58 |
-
order: float = 7.0
|
| 59 |
-
is_forward: bool = False # whether generate forward or backward timestamps
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
@make_freezable
|
| 63 |
-
@attrs.define(slots=False)
|
| 64 |
-
class SamplerConfig:
|
| 65 |
-
solver: SolverConfig = attrs.field(factory=SolverConfig)
|
| 66 |
-
timestamps: SolverTimestampConfig = attrs.field(factory=SolverTimestampConfig)
|
| 67 |
-
sample_clean: bool = True # whether run one last step to generate clean image
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
def get_rev_ts(
|
| 71 |
-
t_min: float, t_max: float, num_steps: int, ts_order: Union[int, float], is_forward: bool = False
|
| 72 |
-
) -> torch.Tensor:
|
| 73 |
-
"""
|
| 74 |
-
Generate a sequence of reverse time steps.
|
| 75 |
-
|
| 76 |
-
Args:
|
| 77 |
-
t_min (float): The minimum time value.
|
| 78 |
-
t_max (float): The maximum time value.
|
| 79 |
-
num_steps (int): The number of time steps to generate.
|
| 80 |
-
ts_order (Union[int, float]): The order of the time step progression.
|
| 81 |
-
is_forward (bool, optional): If True, returns the sequence in forward order. Defaults to False.
|
| 82 |
-
|
| 83 |
-
Returns:
|
| 84 |
-
torch.Tensor: A tensor containing the generated time steps in reverse or forward order.
|
| 85 |
-
|
| 86 |
-
Raises:
|
| 87 |
-
ValueError: If `t_min` is not less than `t_max`.
|
| 88 |
-
TypeError: If `ts_order` is not an integer or float.
|
| 89 |
-
"""
|
| 90 |
-
if t_min >= t_max:
|
| 91 |
-
raise ValueError("t_min must be less than t_max")
|
| 92 |
-
|
| 93 |
-
if not isinstance(ts_order, (int, float)):
|
| 94 |
-
raise TypeError("ts_order must be an integer or float")
|
| 95 |
-
|
| 96 |
-
step_indices = torch.arange(num_steps + 1, dtype=torch.float64)
|
| 97 |
-
time_steps = (
|
| 98 |
-
t_max ** (1 / ts_order) + step_indices / num_steps * (t_min ** (1 / ts_order) - t_max ** (1 / ts_order))
|
| 99 |
-
) ** ts_order
|
| 100 |
-
|
| 101 |
-
if is_forward:
|
| 102 |
-
return time_steps.flip(dims=(0,))
|
| 103 |
-
|
| 104 |
-
return time_steps
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
class Sampler(torch.nn.Module):
|
| 108 |
-
def __init__(self, cfg: Optional[SamplerConfig] = None):
|
| 109 |
-
super().__init__()
|
| 110 |
-
if cfg is None:
|
| 111 |
-
cfg = SamplerConfig()
|
| 112 |
-
self.cfg = cfg
|
| 113 |
-
|
| 114 |
-
@torch.no_grad()
|
| 115 |
-
def forward(
|
| 116 |
-
self,
|
| 117 |
-
x0_fn: Callable,
|
| 118 |
-
x_sigma_max: torch.Tensor,
|
| 119 |
-
num_steps: int = 35,
|
| 120 |
-
sigma_min: float = 0.002,
|
| 121 |
-
sigma_max: float = 80,
|
| 122 |
-
rho: float = 7,
|
| 123 |
-
S_churn: float = 0,
|
| 124 |
-
S_min: float = 0,
|
| 125 |
-
S_max: float = float("inf"),
|
| 126 |
-
S_noise: float = 1,
|
| 127 |
-
solver_option: str = "2ab",
|
| 128 |
-
) -> torch.Tensor:
|
| 129 |
-
in_dtype = x_sigma_max.dtype
|
| 130 |
-
|
| 131 |
-
def float64_x0_fn(x_B_StateShape: torch.Tensor, t_B: torch.Tensor) -> torch.Tensor:
|
| 132 |
-
return x0_fn(x_B_StateShape.to(in_dtype), t_B.to(in_dtype)).to(torch.float64)
|
| 133 |
-
|
| 134 |
-
is_multistep = is_multi_step_fn_supported(solver_option)
|
| 135 |
-
is_rk = is_runge_kutta_fn_supported(solver_option)
|
| 136 |
-
assert is_multistep or is_rk, f"Only support multistep or Runge-Kutta method, got {solver_option}"
|
| 137 |
-
|
| 138 |
-
solver_cfg = SolverConfig(
|
| 139 |
-
s_churn=S_churn,
|
| 140 |
-
s_t_max=S_max,
|
| 141 |
-
s_t_min=S_min,
|
| 142 |
-
s_noise=S_noise,
|
| 143 |
-
is_multi=is_multistep,
|
| 144 |
-
rk=solver_option,
|
| 145 |
-
multistep=solver_option,
|
| 146 |
-
)
|
| 147 |
-
timestamps_cfg = SolverTimestampConfig(nfe=num_steps, t_min=sigma_min, t_max=sigma_max, order=rho)
|
| 148 |
-
sampler_cfg = SamplerConfig(solver=solver_cfg, timestamps=timestamps_cfg, sample_clean=True)
|
| 149 |
-
|
| 150 |
-
return self._forward_impl(float64_x0_fn, x_sigma_max, sampler_cfg).to(in_dtype)
|
| 151 |
-
|
| 152 |
-
@torch.no_grad()
|
| 153 |
-
def _forward_impl(
|
| 154 |
-
self,
|
| 155 |
-
denoiser_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
|
| 156 |
-
noisy_input_B_StateShape: torch.Tensor,
|
| 157 |
-
sampler_cfg: Optional[SamplerConfig] = None,
|
| 158 |
-
callback_fns: Optional[List[Callable]] = None,
|
| 159 |
-
) -> torch.Tensor:
|
| 160 |
-
"""
|
| 161 |
-
Internal implementation of the forward pass.
|
| 162 |
-
|
| 163 |
-
Args:
|
| 164 |
-
denoiser_fn: Function to denoise the input.
|
| 165 |
-
noisy_input_B_StateShape: Input tensor with noise.
|
| 166 |
-
sampler_cfg: Configuration for the sampler.
|
| 167 |
-
callback_fns: List of callback functions to be called during sampling.
|
| 168 |
-
|
| 169 |
-
Returns:
|
| 170 |
-
torch.Tensor: Denoised output tensor.
|
| 171 |
-
"""
|
| 172 |
-
sampler_cfg = self.cfg if sampler_cfg is None else sampler_cfg
|
| 173 |
-
solver_order = 1 if sampler_cfg.solver.is_multi else int(sampler_cfg.solver.rk[0])
|
| 174 |
-
num_timestamps = sampler_cfg.timestamps.nfe // solver_order
|
| 175 |
-
|
| 176 |
-
sigmas_L = get_rev_ts(
|
| 177 |
-
sampler_cfg.timestamps.t_min, sampler_cfg.timestamps.t_max, num_timestamps, sampler_cfg.timestamps.order
|
| 178 |
-
).to(noisy_input_B_StateShape.device)
|
| 179 |
-
|
| 180 |
-
denoised_output = differential_equation_solver(
|
| 181 |
-
denoiser_fn, sigmas_L, sampler_cfg.solver, callback_fns=callback_fns
|
| 182 |
-
)(noisy_input_B_StateShape)
|
| 183 |
-
|
| 184 |
-
if sampler_cfg.sample_clean:
|
| 185 |
-
# Override denoised_output with fully denoised version
|
| 186 |
-
ones = torch.ones(denoised_output.size(0), device=denoised_output.device, dtype=denoised_output.dtype)
|
| 187 |
-
denoised_output = denoiser_fn(denoised_output, sigmas_L[-1] * ones)
|
| 188 |
-
|
| 189 |
-
return denoised_output
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
def fori_loop(lower: int, upper: int, body_fun: Callable[[int, Any], Any], init_val: Any) -> Any:
|
| 193 |
-
"""
|
| 194 |
-
Implements a for loop with a function.
|
| 195 |
-
|
| 196 |
-
Args:
|
| 197 |
-
lower: Lower bound of the loop (inclusive).
|
| 198 |
-
upper: Upper bound of the loop (exclusive).
|
| 199 |
-
body_fun: Function to be applied in each iteration.
|
| 200 |
-
init_val: Initial value for the loop.
|
| 201 |
-
|
| 202 |
-
Returns:
|
| 203 |
-
The final result after all iterations.
|
| 204 |
-
"""
|
| 205 |
-
val = init_val
|
| 206 |
-
for i in range(lower, upper):
|
| 207 |
-
val = body_fun(i, val)
|
| 208 |
-
return val
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
def differential_equation_solver(
|
| 212 |
-
x0_fn: Callable[[torch.Tensor, torch.Tensor], torch.Tensor],
|
| 213 |
-
sigmas_L: torch.Tensor,
|
| 214 |
-
solver_cfg: SolverConfig,
|
| 215 |
-
callback_fns: Optional[List[Callable]] = None,
|
| 216 |
-
) -> Callable[[torch.Tensor], torch.Tensor]:
|
| 217 |
-
"""
|
| 218 |
-
Creates a differential equation solver function.
|
| 219 |
-
|
| 220 |
-
Args:
|
| 221 |
-
x0_fn: Function to compute x0 prediction.
|
| 222 |
-
sigmas_L: Tensor of sigma values with shape [L,].
|
| 223 |
-
solver_cfg: Configuration for the solver.
|
| 224 |
-
callback_fns: Optional list of callback functions.
|
| 225 |
-
|
| 226 |
-
Returns:
|
| 227 |
-
A function that solves the differential equation.
|
| 228 |
-
"""
|
| 229 |
-
num_step = len(sigmas_L) - 1
|
| 230 |
-
|
| 231 |
-
if solver_cfg.is_multi:
|
| 232 |
-
update_step_fn = get_multi_step_fn(solver_cfg.multistep)
|
| 233 |
-
else:
|
| 234 |
-
update_step_fn = get_runge_kutta_fn(solver_cfg.rk)
|
| 235 |
-
|
| 236 |
-
eta = min(solver_cfg.s_churn / (num_step + 1), math.sqrt(1.2) - 1)
|
| 237 |
-
|
| 238 |
-
def sample_fn(input_xT_B_StateShape: torch.Tensor) -> torch.Tensor:
|
| 239 |
-
"""
|
| 240 |
-
Samples from the differential equation.
|
| 241 |
-
|
| 242 |
-
Args:
|
| 243 |
-
input_xT_B_StateShape: Input tensor with shape [B, StateShape].
|
| 244 |
-
|
| 245 |
-
Returns:
|
| 246 |
-
Output tensor with shape [B, StateShape].
|
| 247 |
-
"""
|
| 248 |
-
ones_B = torch.ones(input_xT_B_StateShape.size(0), device=input_xT_B_StateShape.device, dtype=torch.float64)
|
| 249 |
-
|
| 250 |
-
def step_fn(
|
| 251 |
-
i_th: int, state: Tuple[torch.Tensor, Optional[List[torch.Tensor]]]
|
| 252 |
-
) -> Tuple[torch.Tensor, Optional[List[torch.Tensor]]]:
|
| 253 |
-
input_x_B_StateShape, x0_preds = state
|
| 254 |
-
sigma_cur_0, sigma_next_0 = sigmas_L[i_th], sigmas_L[i_th + 1]
|
| 255 |
-
|
| 256 |
-
# algorithm 2: line 4-6
|
| 257 |
-
if solver_cfg.s_t_min < sigma_cur_0 < solver_cfg.s_t_max:
|
| 258 |
-
hat_sigma_cur_0 = sigma_cur_0 + eta * sigma_cur_0
|
| 259 |
-
input_x_B_StateShape = input_x_B_StateShape + (
|
| 260 |
-
hat_sigma_cur_0**2 - sigma_cur_0**2
|
| 261 |
-
).sqrt() * solver_cfg.s_noise * torch.randn_like(input_x_B_StateShape)
|
| 262 |
-
sigma_cur_0 = hat_sigma_cur_0
|
| 263 |
-
|
| 264 |
-
if solver_cfg.is_multi:
|
| 265 |
-
x0_pred_B_StateShape = x0_fn(input_x_B_StateShape, sigma_cur_0 * ones_B)
|
| 266 |
-
output_x_B_StateShape, x0_preds = update_step_fn(
|
| 267 |
-
input_x_B_StateShape, sigma_cur_0 * ones_B, sigma_next_0 * ones_B, x0_pred_B_StateShape, x0_preds
|
| 268 |
-
)
|
| 269 |
-
else:
|
| 270 |
-
output_x_B_StateShape, x0_preds = update_step_fn(
|
| 271 |
-
input_x_B_StateShape, sigma_cur_0 * ones_B, sigma_next_0 * ones_B, x0_fn
|
| 272 |
-
)
|
| 273 |
-
|
| 274 |
-
if callback_fns:
|
| 275 |
-
for callback_fn in callback_fns:
|
| 276 |
-
callback_fn(**locals())
|
| 277 |
-
|
| 278 |
-
return output_x_B_StateShape, x0_preds
|
| 279 |
-
|
| 280 |
-
x_at_eps, _ = fori_loop(0, num_step, step_fn, [input_xT_B_StateShape, None])
|
| 281 |
-
return x_at_eps
|
| 282 |
-
|
| 283 |
-
return sample_fn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/1e300540d3a022a74d708a0df0f04204a895b189
DELETED
|
@@ -1,903 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import gc
|
| 17 |
-
import os
|
| 18 |
-
from typing import List, Optional, Tuple
|
| 19 |
-
|
| 20 |
-
from .misc import misc
|
| 21 |
-
import numpy as np
|
| 22 |
-
import torch
|
| 23 |
-
from einops import rearrange
|
| 24 |
-
|
| 25 |
-
from .ar_config_base_model_config import create_video2world_model_config
|
| 26 |
-
from .ar_config_base_tokenizer import TokenizerConfig
|
| 27 |
-
from .ar_config_inference_inference_config import (
|
| 28 |
-
DataShapeConfig,
|
| 29 |
-
DiffusionDecoderSamplingConfig,
|
| 30 |
-
InferenceConfig,
|
| 31 |
-
SamplingConfig,
|
| 32 |
-
)
|
| 33 |
-
from .ar_diffusion_decoder_inference import diffusion_decoder_process_tokens
|
| 34 |
-
from .ar_diffusion_decoder_model import LatentDiffusionDecoderModel
|
| 35 |
-
from .ar_model import AutoRegressiveModel
|
| 36 |
-
from .ar_utils_inference import _SUPPORTED_CONTEXT_LEN, prepare_video_batch_for_saving
|
| 37 |
-
from .base_world_generation_pipeline import BaseWorldGenerationPipeline
|
| 38 |
-
from .df_inference_inference_utils import (
|
| 39 |
-
load_model_by_config,
|
| 40 |
-
load_network_model,
|
| 41 |
-
load_tokenizer_model,
|
| 42 |
-
)
|
| 43 |
-
from .log import log
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
def detect_model_size_from_ckpt_path(ckpt_path: str) -> str:
|
| 47 |
-
"""Detect model size from checkpoint path.
|
| 48 |
-
|
| 49 |
-
Args:
|
| 50 |
-
ckpt_path: Path to model checkpoint file
|
| 51 |
-
|
| 52 |
-
Returns:
|
| 53 |
-
str: Model size ('4b', '5b', '12b', or '13b')
|
| 54 |
-
|
| 55 |
-
Examples:
|
| 56 |
-
>>> detect_model_size_from_ckpt_path("model_4B.pt")
|
| 57 |
-
'4b'
|
| 58 |
-
"""
|
| 59 |
-
model_size = "4b"
|
| 60 |
-
if "4B" in ckpt_path:
|
| 61 |
-
model_size = "4b"
|
| 62 |
-
elif "5B" in ckpt_path:
|
| 63 |
-
model_size = "5b"
|
| 64 |
-
elif "12B" in ckpt_path:
|
| 65 |
-
model_size = "12b"
|
| 66 |
-
elif "13B" in ckpt_path:
|
| 67 |
-
model_size = "13b"
|
| 68 |
-
else:
|
| 69 |
-
log.warning(f"Could not detect model size from checkpoint path: {ckpt_path}")
|
| 70 |
-
return model_size
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
def create_inference_config(
|
| 74 |
-
model_ckpt_path: str,
|
| 75 |
-
tokenizer_ckpt_path: str,
|
| 76 |
-
model_size: str = "4b",
|
| 77 |
-
batch_size: int = 1,
|
| 78 |
-
inference_type: str = "base",
|
| 79 |
-
) -> InferenceConfig:
|
| 80 |
-
"""Create inference configuration for model.
|
| 81 |
-
|
| 82 |
-
Args:
|
| 83 |
-
model_ckpt_path: Path to model checkpoint
|
| 84 |
-
tokenizer_ckpt_path: Path to tokenizer checkpoint
|
| 85 |
-
model_size: Size of model ('4b', '5b', '12b', '13b')
|
| 86 |
-
batch_size: Batch size for inference
|
| 87 |
-
inference_type: Type of inference ('base' or 'video2world')
|
| 88 |
-
|
| 89 |
-
Returns:
|
| 90 |
-
InferenceConfig: Configuration object for inference
|
| 91 |
-
"""
|
| 92 |
-
model_size = model_size.lower()
|
| 93 |
-
# For inference config
|
| 94 |
-
kwargs = {}
|
| 95 |
-
if inference_type == "video2world":
|
| 96 |
-
kwargs.update(
|
| 97 |
-
dict(
|
| 98 |
-
insert_cross_attn=True,
|
| 99 |
-
insert_cross_attn_every_k_layers=1,
|
| 100 |
-
context_dim=1024,
|
| 101 |
-
training_type="text_to_video",
|
| 102 |
-
apply_abs_pos_emb=True,
|
| 103 |
-
)
|
| 104 |
-
)
|
| 105 |
-
if model_size == "5b":
|
| 106 |
-
model_size = "4b" # The base model (excluding the cross attention layers) is the 4B model
|
| 107 |
-
elif model_size == "13b":
|
| 108 |
-
model_size = "12b" # The base model (excluding the cross attention layers) is the 12B model
|
| 109 |
-
else:
|
| 110 |
-
raise ValueError(f"Unsupported model size for video2world inference_type: {model_size}")
|
| 111 |
-
else:
|
| 112 |
-
assert inference_type == "base", f"Unsupported inference_type: {inference_type}"
|
| 113 |
-
|
| 114 |
-
model_config, tokenizer_config = create_video2world_model_config(
|
| 115 |
-
model_ckpt_path=model_ckpt_path,
|
| 116 |
-
tokenizer_ckpt_path=tokenizer_ckpt_path,
|
| 117 |
-
model_size=model_size,
|
| 118 |
-
rope_dim="3D",
|
| 119 |
-
add_special_tokens=False,
|
| 120 |
-
pixel_chunk_duration=33,
|
| 121 |
-
num_video_frames=33,
|
| 122 |
-
num_condition_latents_t=1,
|
| 123 |
-
batch_size=batch_size,
|
| 124 |
-
video_height=640,
|
| 125 |
-
video_width=1024,
|
| 126 |
-
**kwargs,
|
| 127 |
-
)
|
| 128 |
-
|
| 129 |
-
inference_config = InferenceConfig()
|
| 130 |
-
|
| 131 |
-
inference_config.model_config = model_config
|
| 132 |
-
inference_config.tokenizer_config = tokenizer_config
|
| 133 |
-
|
| 134 |
-
inference_config.data_shape_config = DataShapeConfig(
|
| 135 |
-
num_video_frames=model_config.num_video_frames,
|
| 136 |
-
height=model_config.video_height,
|
| 137 |
-
width=model_config.video_width,
|
| 138 |
-
latent_shape=model_config.video_latent_shape,
|
| 139 |
-
)
|
| 140 |
-
inference_config.model_config.fuse_qkv = False
|
| 141 |
-
return inference_config
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
class ARBaseGenerationPipeline(BaseWorldGenerationPipeline):
|
| 145 |
-
"""Base class for autoregressive world generation models.
|
| 146 |
-
|
| 147 |
-
Handles the core functionality for generating videos using autoregressive models.
|
| 148 |
-
Provides configurable GPU memory management through model offloading and supports
|
| 149 |
-
different inference types for video generation.
|
| 150 |
-
|
| 151 |
-
Attributes:
|
| 152 |
-
inference_config (InferenceConfig): Configuration for model inference
|
| 153 |
-
tokenizer_config (TokenizerConfig): Configuration for tokenizer
|
| 154 |
-
disable_diffusion_decoder (bool): Whether diffusion decoder is disabled
|
| 155 |
-
latent_shape (List[int]): Shape of video latents [T, H, W]
|
| 156 |
-
_supported_context_len (int): Supported context window length
|
| 157 |
-
latent_chunk_duration (int): Duration of latent chunks
|
| 158 |
-
pixel_chunk_duration (int): Duration of pixel chunks
|
| 159 |
-
diffusion_decoder_model (Optional[nn.Module]): The diffusion decoder model
|
| 160 |
-
"""
|
| 161 |
-
|
| 162 |
-
def __init__(
|
| 163 |
-
self,
|
| 164 |
-
inference_type: str,
|
| 165 |
-
checkpoint_dir: str,
|
| 166 |
-
checkpoint_name: str,
|
| 167 |
-
has_text_input: bool = False,
|
| 168 |
-
offload_network: bool = False,
|
| 169 |
-
offload_tokenizer: bool = False,
|
| 170 |
-
disable_diffusion_decoder: bool = False,
|
| 171 |
-
offload_guardrail_models: bool = False,
|
| 172 |
-
offload_diffusion_decoder: bool = False,
|
| 173 |
-
):
|
| 174 |
-
"""Initialize the autoregressive world generation pipeline.
|
| 175 |
-
|
| 176 |
-
Args:
|
| 177 |
-
inference_type: Type of world generation ('base' or 'video2world')
|
| 178 |
-
checkpoint_dir: Base directory containing model checkpoints
|
| 179 |
-
checkpoint_name: Name of the AR checkpoint to load
|
| 180 |
-
has_text_input: Whether the pipeline takes text input for world generation
|
| 181 |
-
disable_diffusion_decoder: Whether to disable the diffusion decoder stage
|
| 182 |
-
offload_network: Whether to offload AR model from GPU after use
|
| 183 |
-
offload_guardrail_models: Whether to offload content filtering models
|
| 184 |
-
offload_diffusion_decoder: Whether to offload diffusion decoder
|
| 185 |
-
|
| 186 |
-
Raises:
|
| 187 |
-
AssertionError: If inference_type is not 'base' or 'video2world'
|
| 188 |
-
"""
|
| 189 |
-
assert inference_type in [
|
| 190 |
-
"base",
|
| 191 |
-
"video2world",
|
| 192 |
-
], "Invalid inference_type, must be 'base' or 'video2world'"
|
| 193 |
-
|
| 194 |
-
# Create inference config
|
| 195 |
-
model_size = detect_model_size_from_ckpt_path(checkpoint_name)
|
| 196 |
-
model_ckpt_path = os.path.join(checkpoint_dir, checkpoint_name, "model.pt")
|
| 197 |
-
tokenizer_ckpt_path = os.path.join(checkpoint_dir, "Cosmos-1.0-Tokenizer-DV8x16x16/ema.jit")
|
| 198 |
-
|
| 199 |
-
inference_config: InferenceConfig = create_inference_config(
|
| 200 |
-
model_ckpt_path=model_ckpt_path,
|
| 201 |
-
tokenizer_ckpt_path=tokenizer_ckpt_path,
|
| 202 |
-
model_size=model_size,
|
| 203 |
-
inference_type=inference_type,
|
| 204 |
-
)
|
| 205 |
-
|
| 206 |
-
self.inference_config = inference_config
|
| 207 |
-
self.disable_diffusion_decoder = disable_diffusion_decoder
|
| 208 |
-
|
| 209 |
-
if not disable_diffusion_decoder:
|
| 210 |
-
self.diffusion_decoder_ckpt_path = os.path.join(
|
| 211 |
-
checkpoint_dir, "Cosmos-1.0-Diffusion-7B-Decoder-DV8x16x16ToCV8x8x8/model.pt"
|
| 212 |
-
)
|
| 213 |
-
self.diffusion_decoder_config = "DD_FT_7Bv1_003_002_tokenizer888_spatch2_discrete_cond_on_token"
|
| 214 |
-
self.diffusion_decoder_tokenizer_path = os.path.join(checkpoint_dir, "Cosmos-1.0-Tokenizer-CV8x8x8")
|
| 215 |
-
self.dd_sampling_config = DiffusionDecoderSamplingConfig()
|
| 216 |
-
aux_vars_path = os.path.join(os.path.dirname(self.diffusion_decoder_ckpt_path), "aux_vars.pt")
|
| 217 |
-
# We use a generic prompt when no text prompts are available for diffusion decoder.
|
| 218 |
-
# Generic prompt used - "high quality, 4k, high definition, smooth video"
|
| 219 |
-
aux_vars = torch.load(aux_vars_path, weights_only=True)
|
| 220 |
-
self.generic_prompt = dict()
|
| 221 |
-
self.generic_prompt["context"] = aux_vars["context"].cuda()
|
| 222 |
-
self.generic_prompt["context_mask"] = aux_vars["context_mask"].cuda()
|
| 223 |
-
|
| 224 |
-
self.latent_shape = inference_config.data_shape_config.latent_shape # [L, 40, 64]
|
| 225 |
-
self._supported_context_len = _SUPPORTED_CONTEXT_LEN
|
| 226 |
-
self.tokenizer_config = inference_config.tokenizer_config
|
| 227 |
-
|
| 228 |
-
self.offload_diffusion_decoder = offload_diffusion_decoder
|
| 229 |
-
self.diffusion_decoder_model = None
|
| 230 |
-
if not self.offload_diffusion_decoder and not disable_diffusion_decoder:
|
| 231 |
-
self._load_diffusion_decoder()
|
| 232 |
-
|
| 233 |
-
super().__init__(
|
| 234 |
-
inference_type=inference_type,
|
| 235 |
-
checkpoint_dir=checkpoint_dir,
|
| 236 |
-
checkpoint_name=checkpoint_name,
|
| 237 |
-
has_text_input=has_text_input,
|
| 238 |
-
offload_guardrail_models=offload_guardrail_models,
|
| 239 |
-
offload_network=offload_network,
|
| 240 |
-
offload_tokenizer=offload_tokenizer,
|
| 241 |
-
offload_text_encoder_model=True,
|
| 242 |
-
)
|
| 243 |
-
|
| 244 |
-
def _load_model(self):
|
| 245 |
-
"""Load and initialize the autoregressive model.
|
| 246 |
-
|
| 247 |
-
Creates and configures the autoregressive model with appropriate settings.
|
| 248 |
-
"""
|
| 249 |
-
self.model = AutoRegressiveModel(
|
| 250 |
-
config=self.inference_config.model_config,
|
| 251 |
-
)
|
| 252 |
-
|
| 253 |
-
def _load_network(self):
|
| 254 |
-
"""Load network weights for the autoregressive model."""
|
| 255 |
-
self.model.load_ar_model(tokenizer_config=self.inference_config.tokenizer_config)
|
| 256 |
-
|
| 257 |
-
def _load_tokenizer(self):
|
| 258 |
-
"""Load and initialize the tokenizer model.
|
| 259 |
-
|
| 260 |
-
Configures the tokenizer using settings from inference_config and
|
| 261 |
-
attaches it to the autoregressive model.
|
| 262 |
-
"""
|
| 263 |
-
self.model.load_tokenizer(tokenizer_config=self.inference_config.tokenizer_config)
|
| 264 |
-
|
| 265 |
-
def _load_diffusion_decoder(self):
|
| 266 |
-
"""Load and initialize the diffusion decoder model."""
|
| 267 |
-
self.diffusion_decoder_model = load_model_by_config(
|
| 268 |
-
config_job_name=self.diffusion_decoder_config,
|
| 269 |
-
config_file="cosmos1/models/autoregressive/diffusion_decoder/config/config_latent_diffusion_decoder.py",
|
| 270 |
-
model_class=LatentDiffusionDecoderModel,
|
| 271 |
-
)
|
| 272 |
-
load_network_model(self.diffusion_decoder_model, self.diffusion_decoder_ckpt_path)
|
| 273 |
-
load_tokenizer_model(self.diffusion_decoder_model, self.diffusion_decoder_tokenizer_path)
|
| 274 |
-
|
| 275 |
-
def _offload_diffusion_decoder(self):
|
| 276 |
-
"""Offload diffusion decoder model from GPU memory."""
|
| 277 |
-
if self.diffusion_decoder_model is not None:
|
| 278 |
-
del self.diffusion_decoder_model
|
| 279 |
-
self.diffusion_decoder_model = None
|
| 280 |
-
gc.collect()
|
| 281 |
-
torch.cuda.empty_cache()
|
| 282 |
-
|
| 283 |
-
def _run_model_with_offload(
|
| 284 |
-
self, inp_vid: torch.Tensor, num_input_frames: int, seed: int, sampling_config: SamplingConfig
|
| 285 |
-
) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
|
| 286 |
-
"""Run the autoregressive model to generate video tokens.
|
| 287 |
-
|
| 288 |
-
Takes input video frames and generates new video tokens using the autoregressive model.
|
| 289 |
-
Handles context frame selection and token generation.
|
| 290 |
-
|
| 291 |
-
Args:
|
| 292 |
-
inp_vid (torch.Tensor): Input video tensor of shape
|
| 293 |
-
num_input_frames (int): Number of context frames to use from input. The tensor shape should be (B x T x 3 x H x W).
|
| 294 |
-
seed (int): Random seed for generation
|
| 295 |
-
sampling_config (SamplingConfig): Configuration for sampling parameters
|
| 296 |
-
|
| 297 |
-
Returns:
|
| 298 |
-
tuple: (
|
| 299 |
-
List of generated video tensors,
|
| 300 |
-
List of token index tensors,
|
| 301 |
-
List of prompt embedding tensors
|
| 302 |
-
)
|
| 303 |
-
"""
|
| 304 |
-
# Choosing the context length from list of available contexts
|
| 305 |
-
latent_context_t_size = 0
|
| 306 |
-
context_used = 0
|
| 307 |
-
for _clen in self._supported_context_len:
|
| 308 |
-
if num_input_frames >= _clen:
|
| 309 |
-
context_used = _clen
|
| 310 |
-
latent_context_t_size += 1
|
| 311 |
-
log.info(f"Using input size of {context_used} frames")
|
| 312 |
-
|
| 313 |
-
data_batch = {"video": inp_vid}
|
| 314 |
-
data_batch = misc.to(data_batch, "cuda")
|
| 315 |
-
|
| 316 |
-
T, H, W = self.latent_shape
|
| 317 |
-
num_gen_tokens = int(np.prod([T - latent_context_t_size, H, W]))
|
| 318 |
-
|
| 319 |
-
out_videos_cur_batch, indices_tensor_cur_batch = self.generate_partial_tokens_from_data_batch(
|
| 320 |
-
data_batch=data_batch,
|
| 321 |
-
num_tokens_to_generate=num_gen_tokens,
|
| 322 |
-
sampling_config=sampling_config,
|
| 323 |
-
tokenizer_config=self.tokenizer_config,
|
| 324 |
-
latent_shape=self.latent_shape,
|
| 325 |
-
task_condition="video",
|
| 326 |
-
num_chunks_to_generate=1,
|
| 327 |
-
seed=seed,
|
| 328 |
-
)
|
| 329 |
-
if self.offload_network:
|
| 330 |
-
self._offload_network()
|
| 331 |
-
if self.offload_tokenizer:
|
| 332 |
-
self._offload_tokenizer()
|
| 333 |
-
return out_videos_cur_batch, indices_tensor_cur_batch
|
| 334 |
-
|
| 335 |
-
def _run_diffusion_decoder(
|
| 336 |
-
self,
|
| 337 |
-
out_videos_cur_batch: List[torch.Tensor],
|
| 338 |
-
indices_tensor_cur_batch: List[torch.Tensor],
|
| 339 |
-
t5_emb_batch: List[torch.Tensor],
|
| 340 |
-
) -> List[torch.Tensor]:
|
| 341 |
-
"""Process generated tokens through the diffusion decoder.
|
| 342 |
-
|
| 343 |
-
Enhances video quality through diffusion-based decoding.
|
| 344 |
-
|
| 345 |
-
Args:
|
| 346 |
-
out_videos_cur_batch: List of generated video tensors
|
| 347 |
-
indices_tensor_cur_batch: List of token indices tensors
|
| 348 |
-
t5_emb_batch: List of text embeddings for conditioning
|
| 349 |
-
|
| 350 |
-
Returns:
|
| 351 |
-
list: Enhanced video tensors after diffusion processing
|
| 352 |
-
"""
|
| 353 |
-
out_videos_cur_batch_dd = diffusion_decoder_process_tokens(
|
| 354 |
-
model=self.diffusion_decoder_model,
|
| 355 |
-
indices_tensor=indices_tensor_cur_batch,
|
| 356 |
-
dd_sampling_config=self.dd_sampling_config,
|
| 357 |
-
original_video_example=out_videos_cur_batch[0],
|
| 358 |
-
t5_emb_batch=t5_emb_batch,
|
| 359 |
-
)
|
| 360 |
-
return out_videos_cur_batch_dd
|
| 361 |
-
|
| 362 |
-
def _run_diffusion_decoder_with_offload(
|
| 363 |
-
self,
|
| 364 |
-
out_videos_cur_batch: List[torch.Tensor],
|
| 365 |
-
indices_tensor_cur_batch: List[torch.Tensor],
|
| 366 |
-
t5_emb_batch: List[torch.Tensor],
|
| 367 |
-
) -> List[torch.Tensor]:
|
| 368 |
-
"""Run diffusion decoder with memory management.
|
| 369 |
-
|
| 370 |
-
Loads decoder if needed, processes videos, and offloads decoder afterward
|
| 371 |
-
if configured in offload_diffusion_decoder.
|
| 372 |
-
|
| 373 |
-
Args:
|
| 374 |
-
out_videos_cur_batch: List of generated video tensors
|
| 375 |
-
indices_tensor_cur_batch: List of token indices tensors
|
| 376 |
-
t5_emb_batch: List of text embeddings for conditioning
|
| 377 |
-
|
| 378 |
-
Returns:
|
| 379 |
-
list: Enhanced video tensors after diffusion processing
|
| 380 |
-
"""
|
| 381 |
-
if self.offload_diffusion_decoder:
|
| 382 |
-
self._load_diffusion_decoder()
|
| 383 |
-
out_videos_cur_batch = self._run_diffusion_decoder(out_videos_cur_batch, indices_tensor_cur_batch, t5_emb_batch)
|
| 384 |
-
if self.offload_diffusion_decoder:
|
| 385 |
-
self._offload_diffusion_decoder()
|
| 386 |
-
return out_videos_cur_batch
|
| 387 |
-
|
| 388 |
-
def generate(
|
| 389 |
-
self,
|
| 390 |
-
inp_vid: torch.Tensor,
|
| 391 |
-
sampling_config: SamplingConfig,
|
| 392 |
-
num_input_frames: int = 9,
|
| 393 |
-
seed: int = 0,
|
| 394 |
-
) -> np.ndarray | None:
|
| 395 |
-
"""Generate a video continuation from input frames.
|
| 396 |
-
|
| 397 |
-
Pipeline steps:
|
| 398 |
-
1. Generates video tokens using autoregressive model
|
| 399 |
-
2. Optionally enhances quality via diffusion decoder
|
| 400 |
-
3. Applies safety checks if enabled
|
| 401 |
-
|
| 402 |
-
Args:
|
| 403 |
-
inp_vid: Input video tensor of shape (batch_size, time, channels=3, height, width)
|
| 404 |
-
sampling_config: Parameters controlling the generation process
|
| 405 |
-
num_input_frames: Number of input frames to use as context (default: 9)
|
| 406 |
-
seed: Random seed for reproducibility (default: 0)
|
| 407 |
-
|
| 408 |
-
Returns:
|
| 409 |
-
np.ndarray | None: Generated video as numpy array (time, height, width, channels)
|
| 410 |
-
if generation successful, None if safety checks fail
|
| 411 |
-
"""
|
| 412 |
-
log.info("Run generation")
|
| 413 |
-
out_videos_cur_batch, indices_tensor_cur_batch = self._run_model_with_offload(
|
| 414 |
-
inp_vid, num_input_frames, seed, sampling_config
|
| 415 |
-
)
|
| 416 |
-
log.info("Finish AR model generation")
|
| 417 |
-
|
| 418 |
-
if not self.disable_diffusion_decoder:
|
| 419 |
-
log.info("Run diffusion decoder on generated tokens")
|
| 420 |
-
out_videos_cur_batch = self._run_diffusion_decoder_with_offload(
|
| 421 |
-
out_videos_cur_batch, indices_tensor_cur_batch, t5_emb_batch=[self.generic_prompt["context"]]
|
| 422 |
-
)
|
| 423 |
-
log.info("Finish diffusion decoder on generated tokens")
|
| 424 |
-
out_videos_cur_batch = prepare_video_batch_for_saving(out_videos_cur_batch)
|
| 425 |
-
output_video = out_videos_cur_batch[0]
|
| 426 |
-
|
| 427 |
-
log.info("Run guardrail on generated video")
|
| 428 |
-
output_video = self._run_guardrail_on_video_with_offload(output_video)
|
| 429 |
-
if output_video is None:
|
| 430 |
-
log.critical("Generated video is not safe")
|
| 431 |
-
return None
|
| 432 |
-
log.info("Finish guardrail on generated video")
|
| 433 |
-
|
| 434 |
-
return output_video
|
| 435 |
-
|
| 436 |
-
@torch.inference_mode()
|
| 437 |
-
def generate_partial_tokens_from_data_batch(
|
| 438 |
-
self,
|
| 439 |
-
data_batch: dict,
|
| 440 |
-
num_tokens_to_generate: int,
|
| 441 |
-
sampling_config: SamplingConfig,
|
| 442 |
-
tokenizer_config: TokenizerConfig,
|
| 443 |
-
latent_shape: list[int],
|
| 444 |
-
task_condition: str,
|
| 445 |
-
num_chunks_to_generate: int = 1,
|
| 446 |
-
seed: int = 0,
|
| 447 |
-
) -> tuple[List[torch.Tensor], List[torch.Tensor], List[torch.Tensor], List[torch.Tensor]]:
|
| 448 |
-
"""Generate video tokens from partial input tokens with conditioning.
|
| 449 |
-
|
| 450 |
-
Handles token generation and decoding process:
|
| 451 |
-
1. Processes input batch and applies conditioning
|
| 452 |
-
2. Generates specified number of new tokens
|
| 453 |
-
3. Decodes tokens to video frames
|
| 454 |
-
|
| 455 |
-
Args:
|
| 456 |
-
data_batch: Dictionary containing input data including video and optional context
|
| 457 |
-
num_tokens_to_generate: Number of tokens to generate
|
| 458 |
-
sampling_config: Configuration for sampling parameters
|
| 459 |
-
tokenizer_config: Configuration for tokenizer, including video tokenizer settings
|
| 460 |
-
latent_shape: Shape of video latents [T, H, W]
|
| 461 |
-
task_condition: Type of generation task ('video' or 'text_and_video')
|
| 462 |
-
num_chunks_to_generate: Number of chunks to generate (default: 1)
|
| 463 |
-
seed: Random seed for generation (default: 0)
|
| 464 |
-
|
| 465 |
-
Returns:
|
| 466 |
-
tuple containing:
|
| 467 |
-
- List[torch.Tensor]: Generated videos
|
| 468 |
-
- List[torch.Tensor]: Input videos
|
| 469 |
-
- List[torch.Tensor]: Generated tokens
|
| 470 |
-
- List[torch.Tensor]: Token index tensors
|
| 471 |
-
"""
|
| 472 |
-
log.debug(f"Starting generate_partial_tokens_from_data_batch with seed {seed}")
|
| 473 |
-
log.debug(f"Number of tokens to generate: {num_tokens_to_generate}")
|
| 474 |
-
log.debug(f"Latent shape: {latent_shape}")
|
| 475 |
-
|
| 476 |
-
video_token_start = tokenizer_config.video_tokenizer.tokenizer_offset
|
| 477 |
-
video_vocab_size = tokenizer_config.video_tokenizer.vocab_size
|
| 478 |
-
video_token_end = video_token_start + video_vocab_size
|
| 479 |
-
|
| 480 |
-
logit_clipping_range = [video_token_start, video_token_end]
|
| 481 |
-
|
| 482 |
-
if self.offload_network:
|
| 483 |
-
self._offload_network()
|
| 484 |
-
if self.offload_tokenizer:
|
| 485 |
-
self._load_tokenizer()
|
| 486 |
-
|
| 487 |
-
assert logit_clipping_range == [
|
| 488 |
-
0,
|
| 489 |
-
self.model.tokenizer.video_vocab_size,
|
| 490 |
-
], f"logit_clipping_range {logit_clipping_range} is not supported for fast generate. Expected [0, {self.model.tokenizer.video_vocab_size}]"
|
| 491 |
-
|
| 492 |
-
out_videos = {}
|
| 493 |
-
out_indices_tensors = {}
|
| 494 |
-
|
| 495 |
-
# for text2world, we only add a <bov> token at the beginning of the video tokens, this applies to 5B and 13B models
|
| 496 |
-
if self.model.tokenizer.tokenizer_config.training_type == "text_to_video":
|
| 497 |
-
num_bov_tokens = 1
|
| 498 |
-
num_eov_tokens = 0
|
| 499 |
-
else:
|
| 500 |
-
num_eov_tokens = 1 if self.model.tokenizer.tokenizer_config.add_special_tokens else 0
|
| 501 |
-
num_bov_tokens = 1 if self.model.tokenizer.tokenizer_config.add_special_tokens else 0
|
| 502 |
-
|
| 503 |
-
chunk_idx = 0
|
| 504 |
-
out_videos[chunk_idx] = []
|
| 505 |
-
out_indices_tensors[chunk_idx] = []
|
| 506 |
-
|
| 507 |
-
# get the context embedding and mask
|
| 508 |
-
context = data_batch.get("context", None) if task_condition != "video" else None
|
| 509 |
-
context_mask = data_batch.get("context_mask", None) if task_condition != "video" else None
|
| 510 |
-
if context is not None:
|
| 511 |
-
context = misc.to(context, "cuda").detach().clone()
|
| 512 |
-
if context_mask is not None:
|
| 513 |
-
context_mask = misc.to(context_mask, "cuda").detach().clone()
|
| 514 |
-
|
| 515 |
-
# get the video tokens
|
| 516 |
-
data_tokens, token_boundaries = self.model.tokenizer.tokenize(data_batch=data_batch)
|
| 517 |
-
data_tokens = misc.to(data_tokens, "cuda").detach().clone()
|
| 518 |
-
batch_size = data_tokens.shape[0]
|
| 519 |
-
|
| 520 |
-
for sample_num in range(batch_size):
|
| 521 |
-
input_tokens = data_tokens[sample_num][0 : token_boundaries["video"][sample_num][1]] # [B, L]
|
| 522 |
-
input_tokens = [
|
| 523 |
-
input_tokens[0 : -num_tokens_to_generate - num_eov_tokens].tolist()
|
| 524 |
-
] # -1 is to exclude eov token
|
| 525 |
-
log.debug(
|
| 526 |
-
f"Run sampling. # input condition tokens: {len(input_tokens[0])}; # generate tokens: {num_tokens_to_generate + num_eov_tokens}; "
|
| 527 |
-
f"full length of the data tokens: {len(data_tokens[sample_num])}: {data_tokens[sample_num]}"
|
| 528 |
-
)
|
| 529 |
-
video_start_boundary = token_boundaries["video"][sample_num][0] + num_bov_tokens
|
| 530 |
-
|
| 531 |
-
video_decoded, indices_tensor = self.generate_video_from_tokens(
|
| 532 |
-
prompt_tokens=input_tokens,
|
| 533 |
-
latent_shape=latent_shape,
|
| 534 |
-
video_start_boundary=video_start_boundary,
|
| 535 |
-
max_gen_len=num_tokens_to_generate,
|
| 536 |
-
sampling_config=sampling_config,
|
| 537 |
-
logit_clipping_range=logit_clipping_range,
|
| 538 |
-
seed=seed,
|
| 539 |
-
context=context,
|
| 540 |
-
context_mask=context_mask,
|
| 541 |
-
) # BCLHW, range [0, 1]
|
| 542 |
-
|
| 543 |
-
# For the first chunk, we store the entire generated video
|
| 544 |
-
out_videos[chunk_idx].append(video_decoded[sample_num].detach().clone())
|
| 545 |
-
out_indices_tensors[chunk_idx].append(indices_tensor[sample_num].detach().clone())
|
| 546 |
-
|
| 547 |
-
output_videos = []
|
| 548 |
-
output_indice_tensors = []
|
| 549 |
-
for sample_num in range(len(out_videos[0])):
|
| 550 |
-
tensors_to_concat = [out_videos[chunk_idx][sample_num] for chunk_idx in range(num_chunks_to_generate)]
|
| 551 |
-
concatenated = torch.cat(tensors_to_concat, dim=1)
|
| 552 |
-
output_videos.append(concatenated)
|
| 553 |
-
|
| 554 |
-
indices_tensor_to_concat = [
|
| 555 |
-
out_indices_tensors[chunk_idx][sample_num] for chunk_idx in range(num_chunks_to_generate)
|
| 556 |
-
]
|
| 557 |
-
concatenated_indices_tensor = torch.cat(indices_tensor_to_concat, dim=1) # BLHW
|
| 558 |
-
output_indice_tensors.append(concatenated_indices_tensor)
|
| 559 |
-
|
| 560 |
-
return output_videos, output_indice_tensors
|
| 561 |
-
|
| 562 |
-
def generate_video_from_tokens(
|
| 563 |
-
self,
|
| 564 |
-
prompt_tokens: list[torch.Tensor],
|
| 565 |
-
latent_shape: list[int],
|
| 566 |
-
video_start_boundary: int,
|
| 567 |
-
max_gen_len: int,
|
| 568 |
-
sampling_config: SamplingConfig,
|
| 569 |
-
logit_clipping_range: list[int],
|
| 570 |
-
seed: int = 0,
|
| 571 |
-
context: Optional[torch.Tensor] = None,
|
| 572 |
-
context_mask: Optional[torch.Tensor] = None,
|
| 573 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 574 |
-
r"""
|
| 575 |
-
Function to generate video from input tokens. These input tokens can be initial text tokens (in case of text to video),
|
| 576 |
-
or partial ground truth tokens.
|
| 577 |
-
|
| 578 |
-
Handles the core token-to-video generation process:
|
| 579 |
-
1. Generates new tokens using the autoregressive model
|
| 580 |
-
2. Handles padding and token sequence completion
|
| 581 |
-
3. Reshapes and processes generated tokens
|
| 582 |
-
4. Decodes final tokens into video frames
|
| 583 |
-
|
| 584 |
-
Args:
|
| 585 |
-
model (AutoRegressiveModel): LLama model instance
|
| 586 |
-
prompt_tokens (list): Prompt tokens used by the model
|
| 587 |
-
latent_shape (list): Shape of the video latents
|
| 588 |
-
video_start_boundary (int): Index where the video tokens start
|
| 589 |
-
max_gen_len (int): Maximum length of the tokens that needs to be generated
|
| 590 |
-
sampling_config (SamplingConfig): Config used by sampler during inference
|
| 591 |
-
logit_clipping_range (list): Range of indices in the logits to be clipped, e.g. [video_token_start, video_token_end]
|
| 592 |
-
context (Optional[torch.Tensor]): The context tensor added via cross-attn.
|
| 593 |
-
context_mask (Optional[torch.Tensor]): The context cross-attn mask tensor.
|
| 594 |
-
Returns:
|
| 595 |
-
tuple containing:
|
| 596 |
-
- List[torch.Tensor]: Generated videos
|
| 597 |
-
- List[torch.Tensor]: Generated tokens
|
| 598 |
-
- List[torch.Tensor]: Token index tensors
|
| 599 |
-
"""
|
| 600 |
-
# Combine the tokens and do padding, sometimes the generated tokens end before the max_gen_len
|
| 601 |
-
total_seq_len = np.prod(latent_shape)
|
| 602 |
-
|
| 603 |
-
assert not sampling_config.logprobs
|
| 604 |
-
|
| 605 |
-
stop_tokens = self.model.tokenizer.stop_tokens
|
| 606 |
-
if self.offload_tokenizer:
|
| 607 |
-
self._offload_tokenizer()
|
| 608 |
-
if self.offload_network:
|
| 609 |
-
self._load_network()
|
| 610 |
-
|
| 611 |
-
generation_tokens, _ = self.model.generate(
|
| 612 |
-
prompt_tokens=prompt_tokens,
|
| 613 |
-
temperature=sampling_config.temperature,
|
| 614 |
-
top_p=sampling_config.top_p,
|
| 615 |
-
echo=sampling_config.echo,
|
| 616 |
-
seed=seed,
|
| 617 |
-
context=context,
|
| 618 |
-
context_mask=context_mask,
|
| 619 |
-
max_gen_len=max_gen_len,
|
| 620 |
-
compile_sampling=sampling_config.compile_sampling,
|
| 621 |
-
compile_prefill=sampling_config.compile_prefill,
|
| 622 |
-
stop_tokens=stop_tokens,
|
| 623 |
-
verbose=True,
|
| 624 |
-
)
|
| 625 |
-
generation_tokens = generation_tokens[:, video_start_boundary:]
|
| 626 |
-
# Combine the tokens and do padding, sometimes the generated tokens end before the max_gen_len
|
| 627 |
-
if generation_tokens.shape[1] < total_seq_len:
|
| 628 |
-
log.warning(
|
| 629 |
-
f"Generated video tokens (shape:{generation_tokens.shape}) shorted than expected {total_seq_len}. Could be the model produce end token early. Repeat the last token to fill the sequence in order for decoding."
|
| 630 |
-
)
|
| 631 |
-
padding_len = total_seq_len - generation_tokens.shape[1]
|
| 632 |
-
padding_tokens = generation_tokens[:, [-1]].repeat(1, padding_len)
|
| 633 |
-
generation_tokens = torch.cat([generation_tokens, padding_tokens], dim=1)
|
| 634 |
-
# Cast to LongTensor
|
| 635 |
-
indices_tensor = generation_tokens.long()
|
| 636 |
-
# First, we reshape the generated tokens into batch x time x height x width
|
| 637 |
-
indices_tensor = rearrange(
|
| 638 |
-
indices_tensor,
|
| 639 |
-
"B (T H W) -> B T H W",
|
| 640 |
-
T=latent_shape[0],
|
| 641 |
-
H=latent_shape[1],
|
| 642 |
-
W=latent_shape[2],
|
| 643 |
-
)
|
| 644 |
-
log.debug(f"generated video tokens {len(generation_tokens[0])} -> reshape: {indices_tensor.shape}")
|
| 645 |
-
# If logit clipping range is specified, offset the generated indices by the logit_clipping_range[0]
|
| 646 |
-
# Video decoder always takes tokens in the range (0, N-1). So, this offset is needed.
|
| 647 |
-
if len(logit_clipping_range) > 0:
|
| 648 |
-
indices_tensor = indices_tensor - logit_clipping_range[0]
|
| 649 |
-
|
| 650 |
-
if self.offload_network:
|
| 651 |
-
self._offload_network()
|
| 652 |
-
if self.offload_tokenizer:
|
| 653 |
-
self._load_tokenizer()
|
| 654 |
-
|
| 655 |
-
# Now decode the video using tokenizer.
|
| 656 |
-
video_decoded = self.model.tokenizer.video_tokenizer.decode(indices_tensor.cuda())
|
| 657 |
-
# Normalize decoded video from [-1, 1] to [0, 1], and clip value
|
| 658 |
-
video_decoded = (video_decoded * 0.5 + 0.5).clamp_(0, 1)
|
| 659 |
-
return video_decoded, indices_tensor
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
class ARVideo2WorldGenerationPipeline(ARBaseGenerationPipeline):
|
| 663 |
-
"""Video-to-world generation pipeline with text conditioning capabilities.
|
| 664 |
-
|
| 665 |
-
Extends the base autoregressive generation pipeline by adding:
|
| 666 |
-
- Text prompt processing and embedding
|
| 667 |
-
- Text-conditioned video generation
|
| 668 |
-
- Additional safety checks for text input
|
| 669 |
-
- Memory management for text encoder model
|
| 670 |
-
|
| 671 |
-
Enables generating video continuations that are guided by both
|
| 672 |
-
input video frames and text descriptions.
|
| 673 |
-
|
| 674 |
-
Additional attributes compared to ARBaseGenerationPipeline:
|
| 675 |
-
offload_text_encoder_model (bool): Whether to offload text encoder from GPU after use
|
| 676 |
-
"""
|
| 677 |
-
|
| 678 |
-
def __init__(
|
| 679 |
-
self,
|
| 680 |
-
checkpoint_dir: str,
|
| 681 |
-
checkpoint_name: str,
|
| 682 |
-
inference_type: str = None,
|
| 683 |
-
has_text_input: bool = True,
|
| 684 |
-
disable_diffusion_decoder: bool = False,
|
| 685 |
-
offload_guardrail_models: bool = False,
|
| 686 |
-
offload_diffusion_decoder: bool = False,
|
| 687 |
-
offload_network: bool = False,
|
| 688 |
-
offload_tokenizer: bool = False,
|
| 689 |
-
offload_text_encoder_model: bool = False,
|
| 690 |
-
):
|
| 691 |
-
"""Initialize text-conditioned video generation pipeline.
|
| 692 |
-
|
| 693 |
-
Args:
|
| 694 |
-
checkpoint_dir: Base directory containing model checkpoints
|
| 695 |
-
checkpoint_name: Name of the checkpoint to load
|
| 696 |
-
inference_type: Type of world generation workflow
|
| 697 |
-
has_text_input: Whether the pipeline takes text input for world generation
|
| 698 |
-
disable_diffusion_decoder: Whether to disable diffusion decoder stage
|
| 699 |
-
offload_guardrail_models: Whether to offload content filtering models
|
| 700 |
-
offload_diffusion_decoder: Whether to offload diffusion decoder
|
| 701 |
-
offload_network: Whether to offload AR model from GPU
|
| 702 |
-
offload_tokenizer: Whether to offload tokenizer from GPU
|
| 703 |
-
offload_text_encoder_model: Whether to offload text encoder
|
| 704 |
-
"""
|
| 705 |
-
super().__init__(
|
| 706 |
-
checkpoint_dir=checkpoint_dir,
|
| 707 |
-
checkpoint_name=checkpoint_name,
|
| 708 |
-
inference_type=inference_type,
|
| 709 |
-
has_text_input=has_text_input,
|
| 710 |
-
disable_diffusion_decoder=disable_diffusion_decoder,
|
| 711 |
-
offload_guardrail_models=offload_guardrail_models,
|
| 712 |
-
offload_diffusion_decoder=offload_diffusion_decoder,
|
| 713 |
-
offload_network=offload_network,
|
| 714 |
-
offload_tokenizer=offload_tokenizer,
|
| 715 |
-
)
|
| 716 |
-
self.offload_text_encoder_model = offload_text_encoder_model
|
| 717 |
-
if not self.offload_text_encoder_model:
|
| 718 |
-
self._load_text_encoder_model()
|
| 719 |
-
|
| 720 |
-
def _run_model_with_offload(
|
| 721 |
-
self,
|
| 722 |
-
prompt_embedding: torch.Tensor,
|
| 723 |
-
prompt_mask: torch.Tensor,
|
| 724 |
-
inp_vid: torch.Tensor,
|
| 725 |
-
num_input_frames: int,
|
| 726 |
-
seed: int,
|
| 727 |
-
sampling_config: SamplingConfig,
|
| 728 |
-
) -> tuple[List[torch.Tensor], List[torch.Tensor], List[torch.Tensor]]:
|
| 729 |
-
"""Run model generation with memory management.
|
| 730 |
-
|
| 731 |
-
Executes generation process and handles model offloading to manage GPU memory.
|
| 732 |
-
|
| 733 |
-
Args:
|
| 734 |
-
prompt_embedding: Text prompt embeddings tensor
|
| 735 |
-
prompt_mask: Attention mask for prompt embeddings
|
| 736 |
-
inp_vid: Input video tensor
|
| 737 |
-
num_input_frames: Number of input frames to use
|
| 738 |
-
seed: Random seed for reproducibility
|
| 739 |
-
sampling_config: Configuration for sampling parameters
|
| 740 |
-
|
| 741 |
-
Returns:
|
| 742 |
-
tuple: (
|
| 743 |
-
List of generated video tensors
|
| 744 |
-
List of token index tensors
|
| 745 |
-
List of prompt embedding tensors
|
| 746 |
-
)
|
| 747 |
-
"""
|
| 748 |
-
out_videos, indices_tensor, prompt_embedding = self._run_model(
|
| 749 |
-
prompt_embedding, prompt_mask, inp_vid, num_input_frames, seed, sampling_config
|
| 750 |
-
)
|
| 751 |
-
if self.offload_network:
|
| 752 |
-
self._offload_network()
|
| 753 |
-
if self.offload_tokenizer:
|
| 754 |
-
self._offload_tokenizer()
|
| 755 |
-
return out_videos, indices_tensor, prompt_embedding
|
| 756 |
-
|
| 757 |
-
def _run_model(
|
| 758 |
-
self,
|
| 759 |
-
prompt_embedding: torch.Tensor,
|
| 760 |
-
prompt_mask: torch.Tensor,
|
| 761 |
-
inp_vid: torch.Tensor,
|
| 762 |
-
num_input_frames: int,
|
| 763 |
-
seed: int,
|
| 764 |
-
sampling_config: SamplingConfig,
|
| 765 |
-
) -> tuple[List[torch.Tensor], List[torch.Tensor], torch.Tensor]:
|
| 766 |
-
"""Run core model generation process.
|
| 767 |
-
|
| 768 |
-
Handles text-conditioned video generation:
|
| 769 |
-
1. Prepares data batch with text embeddings and video
|
| 770 |
-
2. Determines appropriate context length
|
| 771 |
-
3. Generates video tokens with text conditioning
|
| 772 |
-
4. Processes output tensors
|
| 773 |
-
|
| 774 |
-
Args:
|
| 775 |
-
prompt_embedding: Text prompt embeddings tensor
|
| 776 |
-
prompt_mask: Attention mask for prompt embeddings
|
| 777 |
-
inp_vid: Input video tensor
|
| 778 |
-
num_input_frames: Number of input frames to use
|
| 779 |
-
seed: Random seed for reproducibility
|
| 780 |
-
sampling_config: Configuration for sampling parameters,
|
| 781 |
-
uses default config if None
|
| 782 |
-
|
| 783 |
-
Returns:
|
| 784 |
-
tuple: (
|
| 785 |
-
List of generated video tensors
|
| 786 |
-
List of token index tensors
|
| 787 |
-
Text context tensor
|
| 788 |
-
)
|
| 789 |
-
"""
|
| 790 |
-
data_batch = {}
|
| 791 |
-
data_batch["context"], data_batch["context_mask"] = prompt_embedding, prompt_mask
|
| 792 |
-
T, H, W = self.latent_shape
|
| 793 |
-
|
| 794 |
-
if sampling_config is None:
|
| 795 |
-
sampling_config = self.sampling_config
|
| 796 |
-
if type(inp_vid) is list:
|
| 797 |
-
batch_size = len(inp_vid)
|
| 798 |
-
elif type(inp_vid) is torch.Tensor:
|
| 799 |
-
batch_size = 1
|
| 800 |
-
data_batch["context"] = data_batch["context"].repeat(batch_size, 1, 1)
|
| 801 |
-
data_batch["context_mask"] = data_batch["context_mask"].repeat(batch_size, 1)
|
| 802 |
-
data_batch["context_mask"] = torch.ones_like(data_batch["context_mask"]).bool()
|
| 803 |
-
|
| 804 |
-
latent_context_t_size = 0
|
| 805 |
-
|
| 806 |
-
# Choosing the context length from list of available contexts
|
| 807 |
-
context_used = 0
|
| 808 |
-
for _clen in self._supported_context_len:
|
| 809 |
-
if num_input_frames >= _clen:
|
| 810 |
-
context_used = _clen
|
| 811 |
-
latent_context_t_size += 1
|
| 812 |
-
log.info(f"Using context of {context_used} frames")
|
| 813 |
-
|
| 814 |
-
num_gen_tokens = int(np.prod([T - latent_context_t_size, H, W]))
|
| 815 |
-
|
| 816 |
-
data_batch["video"] = inp_vid
|
| 817 |
-
data_batch["video"] = data_batch["video"].repeat(batch_size, 1, 1, 1, 1)
|
| 818 |
-
|
| 819 |
-
data_batch = misc.to(data_batch, "cuda")
|
| 820 |
-
|
| 821 |
-
log.debug(f" num_tokens_to_generate: {num_gen_tokens}")
|
| 822 |
-
log.debug(f" sampling_config: {sampling_config}")
|
| 823 |
-
log.debug(f" tokenizer_config: {self.tokenizer_config}")
|
| 824 |
-
log.debug(f" latent_shape: {self.latent_shape}")
|
| 825 |
-
log.debug(f" latent_context_t_size: {latent_context_t_size}")
|
| 826 |
-
log.debug(f" seed: {seed}")
|
| 827 |
-
|
| 828 |
-
out_videos_cur_batch, indices_tensor_cur_batch = self.generate_partial_tokens_from_data_batch(
|
| 829 |
-
data_batch=data_batch,
|
| 830 |
-
num_tokens_to_generate=num_gen_tokens,
|
| 831 |
-
sampling_config=sampling_config,
|
| 832 |
-
tokenizer_config=self.tokenizer_config,
|
| 833 |
-
latent_shape=self.latent_shape,
|
| 834 |
-
task_condition="text_and_video",
|
| 835 |
-
seed=seed,
|
| 836 |
-
)
|
| 837 |
-
return out_videos_cur_batch, indices_tensor_cur_batch, data_batch["context"]
|
| 838 |
-
|
| 839 |
-
def generate(
|
| 840 |
-
self,
|
| 841 |
-
inp_prompt: str,
|
| 842 |
-
inp_vid: torch.Tensor,
|
| 843 |
-
num_input_frames: int = 9,
|
| 844 |
-
seed: int = 0,
|
| 845 |
-
sampling_config: SamplingConfig = None,
|
| 846 |
-
) -> np.ndarray | None:
|
| 847 |
-
"""Generate a video guided by text prompt and input frames.
|
| 848 |
-
|
| 849 |
-
Pipeline steps:
|
| 850 |
-
1. Validates text prompt safety if enabled
|
| 851 |
-
2. Converts text to embeddings
|
| 852 |
-
3. Generates video with text conditioning
|
| 853 |
-
4. Enhances quality via diffusion decoder
|
| 854 |
-
5. Applies video safety checks if enabled
|
| 855 |
-
|
| 856 |
-
Args:
|
| 857 |
-
inp_prompt: Text prompt to guide the generation
|
| 858 |
-
inp_vid: Input video tensor with shape (batch_size, time, channels=3, height, width)
|
| 859 |
-
num_input_frames: Number of frames to use as context (default: 9)
|
| 860 |
-
seed: Random seed for reproducibility (default: 0)
|
| 861 |
-
sampling_config: Configuration for sampling parameters,
|
| 862 |
-
uses default config if None
|
| 863 |
-
|
| 864 |
-
Returns:
|
| 865 |
-
np.ndarray | None: Generated video as numpy array (time, height, width, channels)
|
| 866 |
-
if generation successful, None if safety checks fail
|
| 867 |
-
"""
|
| 868 |
-
log.info("Run guardrail on prompt")
|
| 869 |
-
is_safe = self._run_guardrail_on_prompt_with_offload(inp_prompt)
|
| 870 |
-
if not is_safe:
|
| 871 |
-
log.critical("Input text prompt is not safe")
|
| 872 |
-
return None
|
| 873 |
-
log.info("Pass guardrail on prompt")
|
| 874 |
-
|
| 875 |
-
log.info("Run text embedding on prompt")
|
| 876 |
-
prompt_embeddings, prompt_masks = self._run_text_embedding_on_prompt_with_offload([inp_prompt])
|
| 877 |
-
prompt_embedding = prompt_embeddings[0]
|
| 878 |
-
prompt_mask = prompt_masks[0]
|
| 879 |
-
log.info("Finish text embedding on prompt")
|
| 880 |
-
|
| 881 |
-
log.info("Run generation")
|
| 882 |
-
out_videos_cur_batch, indices_tensor_cur_batch, prompt_embedding = self._run_model_with_offload(
|
| 883 |
-
prompt_embedding, prompt_mask, inp_vid, num_input_frames, seed, sampling_config
|
| 884 |
-
)
|
| 885 |
-
log.info("Finish AR model generation")
|
| 886 |
-
|
| 887 |
-
if not self.disable_diffusion_decoder:
|
| 888 |
-
log.info("Run diffusion decoder on generated tokens")
|
| 889 |
-
out_videos_cur_batch = self._run_diffusion_decoder_with_offload(
|
| 890 |
-
out_videos_cur_batch, indices_tensor_cur_batch, [prompt_embedding]
|
| 891 |
-
)
|
| 892 |
-
log.info("Finish diffusion decoder on generated tokens")
|
| 893 |
-
out_videos_cur_batch = prepare_video_batch_for_saving(out_videos_cur_batch)
|
| 894 |
-
output_video = out_videos_cur_batch[0]
|
| 895 |
-
|
| 896 |
-
log.info("Run guardrail on generated video")
|
| 897 |
-
output_video = self._run_guardrail_on_video_with_offload(output_video)
|
| 898 |
-
if output_video is None:
|
| 899 |
-
log.critical("Generated video is not safe")
|
| 900 |
-
return None
|
| 901 |
-
log.info("Finish guardrail on generated video")
|
| 902 |
-
|
| 903 |
-
return output_video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/1f41a4225dcea325c5ea283e51e09477ee1d0e6d
DELETED
|
@@ -1,149 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import argparse
|
| 17 |
-
import os
|
| 18 |
-
|
| 19 |
-
import imageio
|
| 20 |
-
import torch
|
| 21 |
-
|
| 22 |
-
from .world_generation_pipeline import ARVideo2WorldGenerationPipeline
|
| 23 |
-
from .ar_utils_inference import load_vision_input, validate_args
|
| 24 |
-
from .log import log
|
| 25 |
-
from .io import read_prompts_from_file
|
| 26 |
-
|
| 27 |
-
# from download_autoregressive import main as download_autoregressive
|
| 28 |
-
from transformers import PreTrainedModel, PretrainedConfig
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
class ARVideo2WorldConfig(PretrainedConfig):
|
| 32 |
-
model_type = "ARVideo2World"
|
| 33 |
-
def __init__(self, **kwargs):
|
| 34 |
-
super().__init__(**kwargs)
|
| 35 |
-
|
| 36 |
-
self.checkpoint_dir = kwargs.get("checkpoint_dir", "checkpoints")
|
| 37 |
-
self.ar_model_dir = kwargs.get("ar_model_dir", "Cosmos-1.0-Autoregressive-5B-Video2World")
|
| 38 |
-
self.video_save_name = kwargs.get("video_save_name", "output")
|
| 39 |
-
self.video_save_folder = kwargs.get("video_save_folder", "outputs/")
|
| 40 |
-
self.prompt = kwargs.get("prompt", None)
|
| 41 |
-
|
| 42 |
-
self.input_type = kwargs.get("input_type", "text_and_video")
|
| 43 |
-
self.input_image_or_video_path = kwargs.get("input_image_or_video_path", None)
|
| 44 |
-
self.batch_input_path = kwargs.get("batch_input_path", None)
|
| 45 |
-
self.num_input_frames = kwargs.get("num_input_frames", 9)
|
| 46 |
-
self.temperature = kwargs.get("temperature", 1.0)
|
| 47 |
-
self.top_p = kwargs.get("top_p", 0.8)
|
| 48 |
-
self.seed = kwargs.get("seed", 0)
|
| 49 |
-
|
| 50 |
-
self.disable_diffusion_decoder = kwargs.get("disable_diffusion_decoder", False)
|
| 51 |
-
self.offload_guardrail_models = kwargs.get("offload_guardrail_models", False)
|
| 52 |
-
self.offload_diffusion_decoder = kwargs.get("offload_diffusion_decoder", False)
|
| 53 |
-
self.offload_ar_model = kwargs.get("offload_ar_model", False)
|
| 54 |
-
self.offload_tokenizer = kwargs.get("offload_tokenizer", False)
|
| 55 |
-
self.offload_text_encoder_model = kwargs.get("offload_text_encoder_model", False)
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
class ARVideo2World(PreTrainedModel):
|
| 59 |
-
config_class = ARVideo2WorldConfig
|
| 60 |
-
|
| 61 |
-
def __init__(self, args=ARVideo2WorldConfig()):
|
| 62 |
-
super().__init__(args)
|
| 63 |
-
torch.enable_grad(False)
|
| 64 |
-
self.args = args
|
| 65 |
-
|
| 66 |
-
inference_type = "video2world" # When the inference_type is "video2world", AR model takes both text and video as input, the world generation is based on the input text prompt and video
|
| 67 |
-
self.sampling_config = validate_args(args, inference_type)
|
| 68 |
-
|
| 69 |
-
# Initialize prompted base generation model pipeline
|
| 70 |
-
self.pipeline = ARVideo2WorldGenerationPipeline(
|
| 71 |
-
inference_type=inference_type,
|
| 72 |
-
checkpoint_dir=args.checkpoint_dir,
|
| 73 |
-
checkpoint_name=args.ar_model_dir,
|
| 74 |
-
disable_diffusion_decoder=args.disable_diffusion_decoder,
|
| 75 |
-
offload_guardrail_models=args.offload_guardrail_models,
|
| 76 |
-
offload_diffusion_decoder=args.offload_diffusion_decoder,
|
| 77 |
-
offload_network=args.offload_ar_model,
|
| 78 |
-
offload_tokenizer=args.offload_tokenizer,
|
| 79 |
-
offload_text_encoder_model=args.offload_text_encoder_model,
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
def forward(self):
|
| 83 |
-
args = self.args
|
| 84 |
-
|
| 85 |
-
# Load input image(s) or video(s)
|
| 86 |
-
input_videos = load_vision_input(
|
| 87 |
-
input_type=args.input_type,
|
| 88 |
-
batch_input_path=args.batch_input_path,
|
| 89 |
-
input_image_or_video_path=args.input_image_or_video_path,
|
| 90 |
-
data_resolution=args.data_resolution,
|
| 91 |
-
num_input_frames=args.num_input_frames,
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
# Load input prompt(s)
|
| 95 |
-
if args.batch_input_path:
|
| 96 |
-
prompts_list = read_prompts_from_file(args.batch_input_path)
|
| 97 |
-
else:
|
| 98 |
-
prompts_list = [{"visual_input": args.input_image_or_video_path, "prompt": args.prompt}]
|
| 99 |
-
|
| 100 |
-
# Iterate through prompts
|
| 101 |
-
for idx, prompt_entry in enumerate(prompts_list):
|
| 102 |
-
video_path = prompt_entry["visual_input"]
|
| 103 |
-
input_filename = os.path.basename(video_path)
|
| 104 |
-
|
| 105 |
-
# Check if video exists in loaded videos
|
| 106 |
-
if input_filename not in input_videos:
|
| 107 |
-
log.critical(f"Input file {input_filename} not found, skipping prompt.")
|
| 108 |
-
continue
|
| 109 |
-
|
| 110 |
-
inp_vid = input_videos[input_filename]
|
| 111 |
-
inp_prompt = prompt_entry["prompt"]
|
| 112 |
-
|
| 113 |
-
# Generate video
|
| 114 |
-
log.info(f"Run with input: {prompt_entry}")
|
| 115 |
-
out_vid = self.pipeline.generate(
|
| 116 |
-
inp_prompt=inp_prompt,
|
| 117 |
-
inp_vid=inp_vid,
|
| 118 |
-
num_input_frames=args.num_input_frames,
|
| 119 |
-
seed=args.seed,
|
| 120 |
-
sampling_config=self.sampling_config,
|
| 121 |
-
)
|
| 122 |
-
if out_vid is None:
|
| 123 |
-
log.critical("Guardrail blocked video2world generation.")
|
| 124 |
-
continue
|
| 125 |
-
|
| 126 |
-
# Save video
|
| 127 |
-
if args.input_image_or_video_path:
|
| 128 |
-
out_vid_path = os.path.join(args.video_save_folder, f"{args.video_save_name}.mp4")
|
| 129 |
-
else:
|
| 130 |
-
out_vid_path = os.path.join(args.video_save_folder, f"{idx}.mp4")
|
| 131 |
-
imageio.mimsave(out_vid_path, out_vid, fps=25)
|
| 132 |
-
|
| 133 |
-
log.info(f"Saved video to {out_vid_path}")
|
| 134 |
-
|
| 135 |
-
def save_pretrained(self, save_directory, **kwargs):
|
| 136 |
-
# We don't save anything, but need this function to override
|
| 137 |
-
pass
|
| 138 |
-
|
| 139 |
-
@classmethod
|
| 140 |
-
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
|
| 141 |
-
config = kwargs["config"]
|
| 142 |
-
other_args = kwargs.copy()
|
| 143 |
-
other_args.pop("config")
|
| 144 |
-
config.update(other_args)
|
| 145 |
-
# model_sizes = ["5B",] if "5B" in config.ar_model_dir else ["13B",]
|
| 146 |
-
# model_types = ["Video2World",]
|
| 147 |
-
# download_autoregressive(model_types, model_sizes, config.checkpoint_dir)
|
| 148 |
-
model = cls(config)
|
| 149 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/2464bc5e1892a3541ce439c0ea36347f43647224
DELETED
|
@@ -1,305 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from typing import List, Optional
|
| 17 |
-
|
| 18 |
-
import numpy as np
|
| 19 |
-
import torch
|
| 20 |
-
import transformer_engine as te
|
| 21 |
-
from einops import rearrange
|
| 22 |
-
from torch import nn
|
| 23 |
-
from torch.utils.checkpoint import checkpoint
|
| 24 |
-
from transformer_engine.pytorch.attention import DotProductAttention, apply_rotary_pos_emb
|
| 25 |
-
|
| 26 |
-
# ---------------------- Feed Forward Network -----------------------
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
class FeedForward(nn.Module):
|
| 30 |
-
"""
|
| 31 |
-
Transformer FFN with optional gating
|
| 32 |
-
|
| 33 |
-
Parameters:
|
| 34 |
-
d_model (int): Dimensionality of input features.
|
| 35 |
-
d_ff (int): Dimensionality of the hidden layer.
|
| 36 |
-
dropout (float, optional): Dropout rate applied after the activation function. Defaults to 0.1.
|
| 37 |
-
activation (callable, optional): The activation function applied after the first linear layer.
|
| 38 |
-
Defaults to nn.ReLU().
|
| 39 |
-
is_gated (bool, optional): If set to True, incorporates gating mechanism to the feed-forward layer.
|
| 40 |
-
Defaults to False.
|
| 41 |
-
bias (bool, optional): If set to True, adds a bias to the linear layers. Defaults to True.
|
| 42 |
-
|
| 43 |
-
Example:
|
| 44 |
-
>>> ff = FeedForward(d_model=512, d_ff=2048)
|
| 45 |
-
>>> x = torch.randn(64, 10, 512) # Example input tensor
|
| 46 |
-
>>> output = ff(x)
|
| 47 |
-
>>> print(output.shape) # Expected shape: (64, 10, 512)
|
| 48 |
-
"""
|
| 49 |
-
|
| 50 |
-
def __init__(
|
| 51 |
-
self,
|
| 52 |
-
d_model: int,
|
| 53 |
-
d_ff: int,
|
| 54 |
-
dropout: float = 0.1,
|
| 55 |
-
activation=nn.ReLU(),
|
| 56 |
-
is_gated: bool = False,
|
| 57 |
-
bias: bool = False,
|
| 58 |
-
) -> None:
|
| 59 |
-
super().__init__()
|
| 60 |
-
|
| 61 |
-
self.layer1 = nn.Linear(d_model, d_ff, bias=bias)
|
| 62 |
-
self.layer2 = nn.Linear(d_ff, d_model, bias=bias)
|
| 63 |
-
|
| 64 |
-
self.dropout = nn.Dropout(dropout)
|
| 65 |
-
self.activation = activation
|
| 66 |
-
self.is_gated = is_gated
|
| 67 |
-
if is_gated:
|
| 68 |
-
self.linear_gate = nn.Linear(d_model, d_ff, bias=False)
|
| 69 |
-
|
| 70 |
-
def forward(self, x: torch.Tensor):
|
| 71 |
-
g = self.activation(self.layer1(x))
|
| 72 |
-
if self.is_gated:
|
| 73 |
-
x = g * self.linear_gate(x)
|
| 74 |
-
else:
|
| 75 |
-
x = g
|
| 76 |
-
assert self.dropout.p == 0.0, "we skip dropout"
|
| 77 |
-
return self.layer2(x)
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
class GPT2FeedForward(FeedForward):
|
| 81 |
-
def __init__(self, d_model: int, d_ff: int, dropout: float = 0.1, bias: bool = False):
|
| 82 |
-
super().__init__(
|
| 83 |
-
d_model=d_model,
|
| 84 |
-
d_ff=d_ff,
|
| 85 |
-
dropout=dropout,
|
| 86 |
-
activation=nn.GELU(),
|
| 87 |
-
is_gated=False,
|
| 88 |
-
bias=bias,
|
| 89 |
-
)
|
| 90 |
-
|
| 91 |
-
def forward(self, x: torch.Tensor):
|
| 92 |
-
assert self.dropout.p == 0.0, "we skip dropout"
|
| 93 |
-
|
| 94 |
-
x = self.layer1(x)
|
| 95 |
-
|
| 96 |
-
def activation_layer2_forward(x):
|
| 97 |
-
x = self.activation(x)
|
| 98 |
-
x = self.layer2(x)
|
| 99 |
-
return x
|
| 100 |
-
|
| 101 |
-
x = checkpoint(activation_layer2_forward, x, use_reentrant=False)
|
| 102 |
-
return x
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
# ---------------------- Normalization Layer -----------------------
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
def normalize(x: torch.Tensor, dim: Optional[List[int]] = None, eps: float = 0) -> torch.Tensor:
|
| 109 |
-
"""
|
| 110 |
-
Normalizes the input tensor along specified dimensions such that the average square norm of elements is adjusted.
|
| 111 |
-
|
| 112 |
-
Args:
|
| 113 |
-
x (torch.Tensor): The input tensor to normalize.
|
| 114 |
-
dim (list, optional): The dimensions over which to normalize. If None, normalizes over all dimensions except the first.
|
| 115 |
-
eps (float, optional): A small constant to ensure numerical stability during division.
|
| 116 |
-
|
| 117 |
-
Returns:
|
| 118 |
-
torch.Tensor: The normalized tensor.
|
| 119 |
-
"""
|
| 120 |
-
if dim is None:
|
| 121 |
-
dim = list(range(1, x.ndim))
|
| 122 |
-
norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32)
|
| 123 |
-
norm = torch.add(eps, norm, alpha=np.sqrt(norm.numel() / x.numel()))
|
| 124 |
-
return x / norm.to(x.dtype)
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
def get_normalization(name: str, channels: int):
|
| 128 |
-
if name == "I":
|
| 129 |
-
return nn.Identity()
|
| 130 |
-
elif name == "R":
|
| 131 |
-
return te.pytorch.RMSNorm(channels, eps=1e-6)
|
| 132 |
-
else:
|
| 133 |
-
raise ValueError(f"Normalization {name} not found")
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
class BaseAttentionOp(nn.Module):
|
| 137 |
-
def __init__(self):
|
| 138 |
-
super().__init__()
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
class Attention(nn.Module):
|
| 142 |
-
"""
|
| 143 |
-
Generalized attention impl.
|
| 144 |
-
|
| 145 |
-
Allowing for both self-attention and cross-attention configurations depending on whether a `context_dim` is provided.
|
| 146 |
-
If `context_dim` is None, self-attention is assumed.
|
| 147 |
-
|
| 148 |
-
Parameters:
|
| 149 |
-
query_dim (int): Dimension of each query vector.
|
| 150 |
-
context_dim (int, optional): Dimension of each context vector. If None, self-attention is assumed.
|
| 151 |
-
heads (int, optional): Number of attention heads. Defaults to 8.
|
| 152 |
-
dim_head (int, optional): Dimension of each head. Defaults to 64.
|
| 153 |
-
dropout (float, optional): Dropout rate applied to the output of the attention block. Defaults to 0.0.
|
| 154 |
-
attn_op (BaseAttentionOp, optional): Custom attention operation to be used instead of the default.
|
| 155 |
-
qkv_bias (bool, optional): If True, adds a learnable bias to query, key, and value projections. Defaults to False.
|
| 156 |
-
out_bias (bool, optional): If True, adds a learnable bias to the output projection. Defaults to False.
|
| 157 |
-
qkv_norm (str, optional): A string representing normalization strategies for query, key, and value projections.
|
| 158 |
-
Defaults to "SSI".
|
| 159 |
-
qkv_norm_mode (str, optional): A string representing normalization mode for query, key, and value projections.
|
| 160 |
-
Defaults to 'per_head'. Only support 'per_head'.
|
| 161 |
-
|
| 162 |
-
Examples:
|
| 163 |
-
>>> attn = Attention(query_dim=128, context_dim=256, heads=4, dim_head=32, dropout=0.1)
|
| 164 |
-
>>> query = torch.randn(10, 128) # Batch size of 10
|
| 165 |
-
>>> context = torch.randn(10, 256) # Batch size of 10
|
| 166 |
-
>>> output = attn(query, context) # Perform the attention operation
|
| 167 |
-
|
| 168 |
-
Note:
|
| 169 |
-
https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
| 170 |
-
"""
|
| 171 |
-
|
| 172 |
-
def __init__(
|
| 173 |
-
self,
|
| 174 |
-
query_dim: int,
|
| 175 |
-
context_dim=None,
|
| 176 |
-
heads=8,
|
| 177 |
-
dim_head=64,
|
| 178 |
-
dropout=0.0,
|
| 179 |
-
attn_op: Optional[BaseAttentionOp] = None,
|
| 180 |
-
qkv_bias: bool = False,
|
| 181 |
-
out_bias: bool = False,
|
| 182 |
-
qkv_norm: str = "SSI",
|
| 183 |
-
qkv_norm_mode: str = "per_head",
|
| 184 |
-
backend: str = "transformer_engine",
|
| 185 |
-
qkv_format: str = "bshd",
|
| 186 |
-
) -> None:
|
| 187 |
-
super().__init__()
|
| 188 |
-
|
| 189 |
-
self.is_selfattn = context_dim is None # self attention
|
| 190 |
-
|
| 191 |
-
inner_dim = dim_head * heads
|
| 192 |
-
context_dim = query_dim if context_dim is None else context_dim
|
| 193 |
-
|
| 194 |
-
self.heads = heads
|
| 195 |
-
self.dim_head = dim_head
|
| 196 |
-
self.qkv_norm_mode = qkv_norm_mode
|
| 197 |
-
self.qkv_format = qkv_format
|
| 198 |
-
|
| 199 |
-
if self.qkv_norm_mode == "per_head":
|
| 200 |
-
norm_dim = dim_head
|
| 201 |
-
else:
|
| 202 |
-
raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'")
|
| 203 |
-
|
| 204 |
-
self.backend = backend
|
| 205 |
-
|
| 206 |
-
self.to_q = nn.Sequential(
|
| 207 |
-
nn.Linear(query_dim, inner_dim, bias=qkv_bias),
|
| 208 |
-
get_normalization(qkv_norm[0], norm_dim),
|
| 209 |
-
)
|
| 210 |
-
self.to_k = nn.Sequential(
|
| 211 |
-
nn.Linear(context_dim, inner_dim, bias=qkv_bias),
|
| 212 |
-
get_normalization(qkv_norm[1], norm_dim),
|
| 213 |
-
)
|
| 214 |
-
self.to_v = nn.Sequential(
|
| 215 |
-
nn.Linear(context_dim, inner_dim, bias=qkv_bias),
|
| 216 |
-
get_normalization(qkv_norm[2], norm_dim),
|
| 217 |
-
)
|
| 218 |
-
|
| 219 |
-
self.to_out = nn.Sequential(
|
| 220 |
-
nn.Linear(inner_dim, query_dim, bias=out_bias),
|
| 221 |
-
nn.Dropout(dropout),
|
| 222 |
-
)
|
| 223 |
-
|
| 224 |
-
if attn_op: # use what is given
|
| 225 |
-
self.attn_op = attn_op
|
| 226 |
-
elif self.backend == "transformer_engine":
|
| 227 |
-
sequence_parallel = False
|
| 228 |
-
self.attn_op: BaseAttentionOp = DotProductAttention(
|
| 229 |
-
self.heads,
|
| 230 |
-
self.dim_head,
|
| 231 |
-
num_gqa_groups=self.heads,
|
| 232 |
-
attention_dropout=0,
|
| 233 |
-
qkv_format=qkv_format,
|
| 234 |
-
attn_mask_type="no_mask",
|
| 235 |
-
tp_size=1,
|
| 236 |
-
tp_group=None,
|
| 237 |
-
sequence_parallel=sequence_parallel,
|
| 238 |
-
)
|
| 239 |
-
else:
|
| 240 |
-
raise ValueError(f"Backend {backend} not found")
|
| 241 |
-
|
| 242 |
-
def cal_qkv(
|
| 243 |
-
self, x, context=None, mask=None, rope_emb=None, **kwargs
|
| 244 |
-
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 245 |
-
del kwargs
|
| 246 |
-
|
| 247 |
-
"""
|
| 248 |
-
self.to_q, self.to_k, self.to_v are nn.Sequential with projection + normalization layers.
|
| 249 |
-
Before 07/24/2024, these modules normalize across all heads.
|
| 250 |
-
After 07/24/2024, to support tensor parallelism and follow the common practice in the community,
|
| 251 |
-
we support to normalize per head.
|
| 252 |
-
To keep the checkpoint copatibility with the previous code,
|
| 253 |
-
we keep the nn.Sequential but call the projection and the normalization layers separately.
|
| 254 |
-
We use a flag `self.qkv_norm_mode` to control the normalization behavior.
|
| 255 |
-
The default value of `self.qkv_norm_mode` is "per_head", which means we normalize per head.
|
| 256 |
-
"""
|
| 257 |
-
if self.qkv_norm_mode == "per_head":
|
| 258 |
-
q = self.to_q[0](x)
|
| 259 |
-
context = x if context is None else context
|
| 260 |
-
k = self.to_k[0](context)
|
| 261 |
-
v = self.to_v[0](context)
|
| 262 |
-
q, k, v = map(
|
| 263 |
-
lambda t: rearrange(t, "b ... (n c) -> b ... n c", n=self.heads, c=self.dim_head),
|
| 264 |
-
(q, k, v),
|
| 265 |
-
)
|
| 266 |
-
else:
|
| 267 |
-
raise ValueError(f"Normalization mode {self.qkv_norm_mode} not found, only support 'per_head'")
|
| 268 |
-
|
| 269 |
-
q = self.to_q[1](q)
|
| 270 |
-
k = self.to_k[1](k)
|
| 271 |
-
v = self.to_v[1](v)
|
| 272 |
-
if self.is_selfattn and rope_emb is not None: # only apply to self-attention!
|
| 273 |
-
q = apply_rotary_pos_emb(q, rope_emb, tensor_format=self.qkv_format, fused=True)
|
| 274 |
-
k = apply_rotary_pos_emb(k, rope_emb, tensor_format=self.qkv_format, fused=True)
|
| 275 |
-
return q, k, v
|
| 276 |
-
|
| 277 |
-
def cal_attn(self, q, k, v, mask=None):
|
| 278 |
-
if self.backend == "transformer_engine":
|
| 279 |
-
seq_dim = self.qkv_format.index("s")
|
| 280 |
-
assert (
|
| 281 |
-
q.shape[seq_dim] > 1 and k.shape[seq_dim] > 1
|
| 282 |
-
), "Seqlen must be larger than 1 for TE Attention starting with 1.8 TE version."
|
| 283 |
-
out = self.attn_op(q, k, v, core_attention_bias_type="no_bias", core_attention_bias=None) # [B, Mq, H, V]
|
| 284 |
-
return self.to_out(out)
|
| 285 |
-
elif self.backend == "torch":
|
| 286 |
-
out = self.attn_op(q, k, v, mask=mask) # [B, Mq, H, V]
|
| 287 |
-
return self.to_out(rearrange(out, " b ... n c -> b ... (n c)"))
|
| 288 |
-
else:
|
| 289 |
-
raise ValueError(f"Backend {self.backend} not found")
|
| 290 |
-
|
| 291 |
-
def forward(
|
| 292 |
-
self,
|
| 293 |
-
x,
|
| 294 |
-
context=None,
|
| 295 |
-
mask=None,
|
| 296 |
-
rope_emb=None,
|
| 297 |
-
**kwargs,
|
| 298 |
-
):
|
| 299 |
-
"""
|
| 300 |
-
Args:
|
| 301 |
-
x (Tensor): The query tensor of shape [B, Mq, K]
|
| 302 |
-
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
|
| 303 |
-
"""
|
| 304 |
-
q, k, v = self.cal_qkv(x, context, mask, rope_emb=rope_emb, **kwargs)
|
| 305 |
-
return self.cal_attn(q, k, v, mask)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/2984b57e08440bd3117de9e25e4f3cfabd619e80
DELETED
|
@@ -1,195 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from typing import Optional, Tuple
|
| 17 |
-
|
| 18 |
-
import torch
|
| 19 |
-
|
| 20 |
-
from .ar_network_transformer import Transformer
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
def sample_top_p(logits, temperature, top_p, return_probs: bool = False):
|
| 24 |
-
"""
|
| 25 |
-
Perform top-p (nucleus) sampling on a probability distribution.
|
| 26 |
-
|
| 27 |
-
Args:
|
| 28 |
-
logits (torch.Tensor): Logits of the probability distribution.
|
| 29 |
-
temperature (float): Temperature for sampling.
|
| 30 |
-
top_p (float): Probability threshold for top-p sampling.
|
| 31 |
-
|
| 32 |
-
Returns:
|
| 33 |
-
torch.Tensor: Sampled token indices.
|
| 34 |
-
|
| 35 |
-
Note:
|
| 36 |
-
Top-p sampling selects the smallest set of tokens whose cumulative probability mass
|
| 37 |
-
exceeds the threshold p. The distribution is renormalized based on the selected tokens.
|
| 38 |
-
"""
|
| 39 |
-
probs = torch.softmax(logits[:, -1, :] / temperature, dim=-1)
|
| 40 |
-
# Sort the probabilities in descending order and get their indices.
|
| 41 |
-
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
| 42 |
-
# Compute the cumulative sum of the sorted probabilities.
|
| 43 |
-
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
| 44 |
-
# Create a mask where the cumulative probability exceeds the threshold p.
|
| 45 |
-
mask = probs_sum - probs_sort > top_p
|
| 46 |
-
# Set the probabilities that exceed the threshold to 0.
|
| 47 |
-
probs_sort[mask] = 0.0
|
| 48 |
-
# Renormalize the remaining probabilities so they sum to 1.
|
| 49 |
-
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
| 50 |
-
# Sample from the renormalized probability distribution.
|
| 51 |
-
# next_token = torch.multinomial(probs_sort, num_samples=1)
|
| 52 |
-
next_token = multinomial_sample_one_no_sync(probs_sort, dtype=torch.int64)
|
| 53 |
-
# Gather the indices of the sampled tokens.
|
| 54 |
-
next_token = torch.gather(probs_idx, -1, next_token)
|
| 55 |
-
if return_probs:
|
| 56 |
-
# Initialize a tensor for unsorted probabilities
|
| 57 |
-
probs_unsorted = torch.zeros_like(probs_sort)
|
| 58 |
-
# Scatter the sorted probabilities back to their original order
|
| 59 |
-
probs_unsorted.scatter_(-1, probs_idx, probs_sort)
|
| 60 |
-
else:
|
| 61 |
-
probs_unsorted = None
|
| 62 |
-
return next_token, probs_unsorted
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
def multinomial_sample_one_no_sync(probs_sort, dtype=torch.int):
|
| 66 |
-
"""
|
| 67 |
-
Multinomial sampling without a cuda synchronization.
|
| 68 |
-
Source: https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py
|
| 69 |
-
"""
|
| 70 |
-
q = torch.empty_like(probs_sort).exponential_(1)
|
| 71 |
-
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=dtype)
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
def logits_to_probs(
|
| 75 |
-
logits,
|
| 76 |
-
temperature: float = 1.0,
|
| 77 |
-
top_k: Optional[int] = None,
|
| 78 |
-
):
|
| 79 |
-
logits = logits / max(temperature, 1e-5)
|
| 80 |
-
|
| 81 |
-
if top_k is not None:
|
| 82 |
-
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 83 |
-
pivot = v.select(-1, -1).unsqueeze(-1)
|
| 84 |
-
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
| 85 |
-
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 86 |
-
return probs
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
def sample_top_k(logits, temperature: float = 1.0, top_k: Optional[int] = None):
|
| 90 |
-
"""
|
| 91 |
-
Sample from the logits using top-k sampling.
|
| 92 |
-
Source: https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py
|
| 93 |
-
"""
|
| 94 |
-
# logits: [batch_size, seq_len, vocab_size]
|
| 95 |
-
if temperature == 0.0:
|
| 96 |
-
idx_next = torch.argmax(logits[:, -1, :], dim=-1, keepdim=True)
|
| 97 |
-
probs = None
|
| 98 |
-
else:
|
| 99 |
-
probs = logits_to_probs(logits[:, -1, :], temperature, top_k)
|
| 100 |
-
idx_next = multinomial_sample_one_no_sync(probs)
|
| 101 |
-
return idx_next, probs
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
def prefill(
|
| 105 |
-
model: Transformer,
|
| 106 |
-
input_pos: torch.Tensor,
|
| 107 |
-
tokens: torch.Tensor = None,
|
| 108 |
-
token_embeddings: torch.Tensor = None,
|
| 109 |
-
temperature: float = 1.0,
|
| 110 |
-
top_k: Optional[int] = None,
|
| 111 |
-
top_p: Optional[float] = None,
|
| 112 |
-
**kwargs,
|
| 113 |
-
) -> torch.Tensor:
|
| 114 |
-
logits = model(tokens=tokens, token_embeddings=token_embeddings, input_pos=input_pos, **kwargs)
|
| 115 |
-
# Only top-p or top-k can be provided
|
| 116 |
-
assert (
|
| 117 |
-
top_p is None or top_k is None
|
| 118 |
-
), "Only one of top-p or top-k can be provided, got top-p={top_p} and top-k={top_k}"
|
| 119 |
-
if top_p is not None:
|
| 120 |
-
return sample_top_p(logits, temperature=temperature, top_p=top_p)[0]
|
| 121 |
-
else:
|
| 122 |
-
return sample_top_k(logits, temperature=temperature, top_k=top_k)[0]
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
def decode_one_token(
|
| 126 |
-
model: Transformer,
|
| 127 |
-
tokens: torch.Tensor,
|
| 128 |
-
input_pos: torch.Tensor,
|
| 129 |
-
temperature: float = 1.0,
|
| 130 |
-
top_k: Optional[int] = None,
|
| 131 |
-
top_p: Optional[float] = None,
|
| 132 |
-
**kwargs,
|
| 133 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 134 |
-
"""
|
| 135 |
-
Decode a single token from the autoregressive model.
|
| 136 |
-
"""
|
| 137 |
-
logits = model(tokens=tokens, input_pos=input_pos, **kwargs)
|
| 138 |
-
if top_p is not None:
|
| 139 |
-
return sample_top_p(logits, temperature=temperature, top_p=top_p)
|
| 140 |
-
else:
|
| 141 |
-
return sample_top_k(logits, temperature=temperature, top_k=top_k)
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
def decode_n_tokens(
|
| 145 |
-
model: Transformer,
|
| 146 |
-
cur_token: torch.Tensor,
|
| 147 |
-
input_pos: torch.Tensor,
|
| 148 |
-
num_new_tokens: int,
|
| 149 |
-
stop_tokens: torch.Tensor = None,
|
| 150 |
-
temperature: float = 1.0,
|
| 151 |
-
top_p: Optional[float] = None,
|
| 152 |
-
top_k: Optional[int] = None,
|
| 153 |
-
return_probs: bool = False,
|
| 154 |
-
decode_one_token_function=decode_one_token,
|
| 155 |
-
**kwargs,
|
| 156 |
-
):
|
| 157 |
-
"""
|
| 158 |
-
Decode n tokens from the autoregressive model.
|
| 159 |
-
Adapted from https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py
|
| 160 |
-
"""
|
| 161 |
-
new_tokens, new_probs = [], []
|
| 162 |
-
batch_size = cur_token.shape[0]
|
| 163 |
-
assert (
|
| 164 |
-
top_p is None or top_k is None
|
| 165 |
-
), "Only one of top-p or top-k can be provided, got top-p={top_p} and top-k={top_k}"
|
| 166 |
-
if stop_tokens is not None:
|
| 167 |
-
# Indicator for whether the EOS token (stop token) has been reached for each sample in the batch
|
| 168 |
-
eos_reached = torch.tensor([False] * batch_size, device="cuda")
|
| 169 |
-
for t in range(num_new_tokens):
|
| 170 |
-
with torch.backends.cuda.sdp_kernel(
|
| 171 |
-
enable_flash=False, enable_mem_efficient=False, enable_math=True
|
| 172 |
-
): # Actually better for Inductor to codegen attention here
|
| 173 |
-
next_token, next_prob = decode_one_token_function(
|
| 174 |
-
model,
|
| 175 |
-
tokens=cur_token,
|
| 176 |
-
input_pos=input_pos,
|
| 177 |
-
temperature=temperature,
|
| 178 |
-
top_k=top_k,
|
| 179 |
-
top_p=top_p,
|
| 180 |
-
**kwargs,
|
| 181 |
-
)
|
| 182 |
-
input_pos += 1
|
| 183 |
-
if stop_tokens is not None and len(stop_tokens) > 0:
|
| 184 |
-
eos_reached = eos_reached | (torch.isin(next_token, stop_tokens))
|
| 185 |
-
if eos_reached.all():
|
| 186 |
-
break
|
| 187 |
-
new_tokens.append(next_token.clone())
|
| 188 |
-
if return_probs:
|
| 189 |
-
new_probs.append(next_prob.clone())
|
| 190 |
-
cur_token = next_token.clone()
|
| 191 |
-
|
| 192 |
-
if return_probs:
|
| 193 |
-
return new_tokens, new_probs
|
| 194 |
-
else:
|
| 195 |
-
return new_tokens
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/29be4d33e5dfb6255b5db0b99bcbc4311a3faa82
DELETED
|
@@ -1,63 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from collections import namedtuple
|
| 17 |
-
|
| 18 |
-
import torch
|
| 19 |
-
from torch import nn
|
| 20 |
-
|
| 21 |
-
from .ar_tokenizer_modules import CausalConv3d, DecoderFactorized, EncoderFactorized
|
| 22 |
-
from .ar_tokenizer_quantizers import FSQuantizer
|
| 23 |
-
from .log import log
|
| 24 |
-
|
| 25 |
-
NetworkEval = namedtuple("NetworkEval", ["reconstructions", "quant_loss", "quant_info"])
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
class CausalDiscreteVideoTokenizer(nn.Module):
|
| 29 |
-
def __init__(self, z_channels: int, z_factor: int, embedding_dim: int, **kwargs) -> None:
|
| 30 |
-
super().__init__()
|
| 31 |
-
self.name = kwargs.get("name", "CausalDiscreteVideoTokenizer")
|
| 32 |
-
self.embedding_dim = embedding_dim
|
| 33 |
-
self.encoder = EncoderFactorized(z_channels=z_factor * z_channels, **kwargs)
|
| 34 |
-
self.decoder = DecoderFactorized(z_channels=z_channels, **kwargs)
|
| 35 |
-
|
| 36 |
-
self.quant_conv = CausalConv3d(z_factor * z_channels, embedding_dim, kernel_size=1, padding=0)
|
| 37 |
-
self.post_quant_conv = CausalConv3d(embedding_dim, z_channels, kernel_size=1, padding=0)
|
| 38 |
-
|
| 39 |
-
self.quantizer = FSQuantizer(**kwargs)
|
| 40 |
-
|
| 41 |
-
num_parameters = sum(param.numel() for param in self.parameters())
|
| 42 |
-
log.debug(f"model={self.name}, num_parameters={num_parameters:,}")
|
| 43 |
-
log.debug(f"z_channels={z_channels}, embedding_dim={self.embedding_dim}.")
|
| 44 |
-
|
| 45 |
-
def to(self, *args, **kwargs):
|
| 46 |
-
setattr(self.quantizer, "dtype", kwargs.get("dtype", torch.bfloat16))
|
| 47 |
-
return super(CausalDiscreteVideoTokenizer, self).to(*args, **kwargs)
|
| 48 |
-
|
| 49 |
-
def encode(self, x):
|
| 50 |
-
h = self.encoder(x)
|
| 51 |
-
h = self.quant_conv(h)
|
| 52 |
-
return self.quantizer(h)
|
| 53 |
-
|
| 54 |
-
def decode(self, quant):
|
| 55 |
-
quant = self.post_quant_conv(quant)
|
| 56 |
-
return self.decoder(quant)
|
| 57 |
-
|
| 58 |
-
def forward(self, input):
|
| 59 |
-
quant_info, quant_codes, quant_loss = self.encode(input)
|
| 60 |
-
reconstructions = self.decode(quant_codes)
|
| 61 |
-
if self.training:
|
| 62 |
-
return dict(reconstructions=reconstructions, quant_loss=quant_loss, quant_info=quant_info)
|
| 63 |
-
return NetworkEval(reconstructions=reconstructions, quant_loss=quant_loss, quant_info=quant_info)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/2a19d3b8e2a1cf29c182f7b25a25d4c1e10089da
DELETED
|
@@ -1,491 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import math
|
| 17 |
-
from typing import List, Optional, Tuple
|
| 18 |
-
|
| 19 |
-
import numpy as np
|
| 20 |
-
import torch
|
| 21 |
-
from einops import rearrange, repeat
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
|
| 25 |
-
"""
|
| 26 |
-
embed_dim: output dimension for each position
|
| 27 |
-
pos: a list of positions to be encoded: size (M,)
|
| 28 |
-
out: (M, D)
|
| 29 |
-
"""
|
| 30 |
-
assert embed_dim % 2 == 0
|
| 31 |
-
omega = np.arange(embed_dim // 2, dtype=np.float64)
|
| 32 |
-
omega /= embed_dim / 2.0
|
| 33 |
-
omega = 1.0 / 10000**omega # (D/2,)
|
| 34 |
-
|
| 35 |
-
pos = pos.reshape(-1) # (M,)
|
| 36 |
-
out = np.einsum("m,d->md", pos, omega) # (M, D/2), outer product
|
| 37 |
-
|
| 38 |
-
emb_sin = np.sin(out) # (M, D/2)
|
| 39 |
-
emb_cos = np.cos(out) # (M, D/2)
|
| 40 |
-
|
| 41 |
-
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
|
| 42 |
-
return emb
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def _rotate_half_te(x: torch.Tensor) -> torch.Tensor:
|
| 46 |
-
"""
|
| 47 |
-
change sign so the last dimension becomes [-odd, +even].
|
| 48 |
-
Adopted from TransformerEngine.
|
| 49 |
-
Source: https://github.com/NVIDIA/TransformerEngine/blob/main/transformer_engine/pytorch/attention.py
|
| 50 |
-
"""
|
| 51 |
-
x = x.view(x.shape[:-1] + torch.Size((2, x.shape[-1] // 2)))
|
| 52 |
-
x1, x2 = x.unbind(dim=-2)
|
| 53 |
-
return torch.cat((-x2, x1), dim=-1)
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
def _apply_rotary_pos_emb_te(
|
| 57 |
-
t: torch.Tensor,
|
| 58 |
-
cos_freqs: torch.Tensor,
|
| 59 |
-
sin_freqs: torch.Tensor,
|
| 60 |
-
) -> torch.Tensor:
|
| 61 |
-
"""
|
| 62 |
-
Apply rotary positional embedding tensor to the input tensor.
|
| 63 |
-
Adopted from TransformerEngine.
|
| 64 |
-
Source: https://github.com/NVIDIA/TransformerEngine/blob/main/transformer_engine/pytorch/attention.py
|
| 65 |
-
|
| 66 |
-
Parameters
|
| 67 |
-
----------
|
| 68 |
-
t: torch.Tensor
|
| 69 |
-
Input tensor of shape `[b, s, h, d]`, on which
|
| 70 |
-
rotary positional embedding will be applied.
|
| 71 |
-
cos_freqs: torch.Tensor
|
| 72 |
-
Cosine component of rotary positional embedding tensor of shape `[s, 1, 1, d]` and dtype 'float',
|
| 73 |
-
sin_freqs: torch.Tensor
|
| 74 |
-
Sine component of rotary positional embedding tensor of shape `[s, 1, 1, d]` and dtype 'float',
|
| 75 |
-
"""
|
| 76 |
-
rot_dim = cos_freqs.shape[-1]
|
| 77 |
-
# ideally t_pass is empty so rotary pos embedding is applied to all tensor t
|
| 78 |
-
t, t_pass = t[..., :rot_dim], t[..., rot_dim:]
|
| 79 |
-
# first part is cosine component
|
| 80 |
-
# second part is sine component, need to change signs with _rotate_half method
|
| 81 |
-
t = (t * cos_freqs) + (_rotate_half_te(t) * sin_freqs)
|
| 82 |
-
output = torch.cat((t, t_pass), dim=-1)
|
| 83 |
-
return output
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
class RotaryPositionEmbedding(torch.nn.Module):
|
| 87 |
-
"""
|
| 88 |
-
Rotary Position Embedding module as described in the paper:
|
| 89 |
-
https://arxiv.org/abs/2104.09864
|
| 90 |
-
|
| 91 |
-
This module implements rotary positional embeddings, which are used to
|
| 92 |
-
enhance the performance of transformer models.
|
| 93 |
-
|
| 94 |
-
Args:
|
| 95 |
-
dim (int): Dimensionality of the input tensor.
|
| 96 |
-
max_position_embeddings (Optional[int]): Maximum position embeddings.
|
| 97 |
-
original_max_position_embeddings (Optional[int]): Original maximum position embeddings.
|
| 98 |
-
rope_theta (Optional[float]): Base for the frequency calculation.
|
| 99 |
-
apply_yarn (Optional[bool]): Whether to apply YaRN (Yet another Rotary).
|
| 100 |
-
scale (Optional[int]): Scaling factor for the frequency calculation.
|
| 101 |
-
extrapolation_factor (Optional[int]): Extrapolation factor for the frequency extension.
|
| 102 |
-
attn_factor (Optional[int]): Attention factor for the frequency calculation.
|
| 103 |
-
beta_fast (Optional[int]): Fast beta value for the YaRN frequency calculation.
|
| 104 |
-
beta_slow (Optional[int]): Slow beta value for the YaRN frequency calculation.
|
| 105 |
-
rope_dim (Optional[str]): Dimensionality of the RoPE. Choices: "1D", "2D", "3D".
|
| 106 |
-
latent_shape (Optional[List[int]]): Shape of the latent tensor for video or image inputs.
|
| 107 |
-
original_latent_shape (Optional[List[int]]): Original shape of the latent tensor for video or image inputs.
|
| 108 |
-
pad_to_multiple_of (Optional[int]): Pad the position embedding to a multiple of this value.
|
| 109 |
-
"""
|
| 110 |
-
|
| 111 |
-
def __init__(
|
| 112 |
-
self,
|
| 113 |
-
dim: int,
|
| 114 |
-
max_position_embeddings: Optional[int] = None,
|
| 115 |
-
original_max_position_embeddings: Optional[int] = None,
|
| 116 |
-
rope_theta: Optional[float] = 10000.0,
|
| 117 |
-
apply_yarn: Optional[bool] = False,
|
| 118 |
-
scale: Optional[int] = None,
|
| 119 |
-
extrapolation_factor: Optional[int] = 1,
|
| 120 |
-
attn_factor: Optional[int] = 1,
|
| 121 |
-
beta_fast: Optional[int] = 32,
|
| 122 |
-
beta_slow: Optional[int] = 1,
|
| 123 |
-
rope_dim: Optional[str] = "1D",
|
| 124 |
-
latent_shape: Optional[List[int]] = None,
|
| 125 |
-
original_latent_shape: Optional[List[int]] = None,
|
| 126 |
-
pad_to_multiple_of: Optional[int] = None,
|
| 127 |
-
):
|
| 128 |
-
super().__init__()
|
| 129 |
-
|
| 130 |
-
self.dim = dim
|
| 131 |
-
self.max_position_embeddings = max_position_embeddings
|
| 132 |
-
self.original_max_position_embeddings = original_max_position_embeddings
|
| 133 |
-
self.rope_theta = rope_theta
|
| 134 |
-
self.apply_yarn = apply_yarn
|
| 135 |
-
self.scale = scale
|
| 136 |
-
self.extrapolation_factor = extrapolation_factor
|
| 137 |
-
self.attn_factor = attn_factor
|
| 138 |
-
self.beta_fast = beta_fast
|
| 139 |
-
self.beta_slow = beta_slow
|
| 140 |
-
self.mscale = 1.0
|
| 141 |
-
self.rope_dim = rope_dim
|
| 142 |
-
self.latent_shape = latent_shape
|
| 143 |
-
self.original_latent_shape = original_latent_shape
|
| 144 |
-
self.pad_to_multiple_of = pad_to_multiple_of
|
| 145 |
-
self.get_inv_freq(torch.cuda.current_device())
|
| 146 |
-
|
| 147 |
-
def get_mscale(self, scale: float = 1.0) -> float:
|
| 148 |
-
"""Get the magnitude scaling factor for YaRN."""
|
| 149 |
-
if scale <= 1:
|
| 150 |
-
return 1.0
|
| 151 |
-
return 0.1 * math.log(scale) + 1.0
|
| 152 |
-
|
| 153 |
-
def forward(self, seq_len: Optional[int] = None) -> torch.Tensor:
|
| 154 |
-
"""
|
| 155 |
-
Forward pass for the rotary position embedding.
|
| 156 |
-
|
| 157 |
-
Args:
|
| 158 |
-
seq_len (Optional[int]): Length of the sequence.
|
| 159 |
-
|
| 160 |
-
Returns:
|
| 161 |
-
torch.Tensor: The computed frequencies for positional embedding.
|
| 162 |
-
"""
|
| 163 |
-
|
| 164 |
-
if self.apply_yarn and seq_len > self.max_seq_len_cached:
|
| 165 |
-
self.max_seq_len_cached = seq_len
|
| 166 |
-
self.freqs = self.compute_freqs()
|
| 167 |
-
|
| 168 |
-
return self.freqs
|
| 169 |
-
|
| 170 |
-
def compute_freqs(
|
| 171 |
-
self,
|
| 172 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 173 |
-
"""Compute the spatial frequencies for the latent tensor."""
|
| 174 |
-
self.seq = torch.arange(self.max_seq_len_cached, dtype=torch.float).cuda()
|
| 175 |
-
if self.rope_dim == "1D":
|
| 176 |
-
emb = torch.einsum("i,j->ij", self.seq, self.inv_freq)
|
| 177 |
-
|
| 178 |
-
elif self.rope_dim == "2D":
|
| 179 |
-
H, W = self.latent_shape
|
| 180 |
-
half_emb_h = torch.outer(self.seq[:H], self.spatial_inv_freq)
|
| 181 |
-
half_emb_w = torch.outer(self.seq[:W], self.spatial_inv_freq)
|
| 182 |
-
emb = torch.cat(
|
| 183 |
-
[
|
| 184 |
-
repeat(half_emb_h, "h d -> h w d", w=W),
|
| 185 |
-
repeat(half_emb_w, "w d -> h w d", h=H),
|
| 186 |
-
]
|
| 187 |
-
* 2,
|
| 188 |
-
dim=-1,
|
| 189 |
-
)
|
| 190 |
-
emb = rearrange(emb, "h w d -> (h w) 1 1 d").float()
|
| 191 |
-
|
| 192 |
-
elif self.rope_dim == "3D":
|
| 193 |
-
T, H, W = self.latent_shape
|
| 194 |
-
half_emb_t = torch.outer(self.seq[:T], self.temporal_inv_freq)
|
| 195 |
-
half_emb_h = torch.outer(self.seq[:H], self.spatial_inv_freq)
|
| 196 |
-
half_emb_w = torch.outer(self.seq[:W], self.spatial_inv_freq)
|
| 197 |
-
emb = torch.cat(
|
| 198 |
-
[
|
| 199 |
-
repeat(half_emb_t, "t d -> t h w d", h=H, w=W),
|
| 200 |
-
repeat(half_emb_h, "h d -> t h w d", t=T, w=W),
|
| 201 |
-
repeat(half_emb_w, "w d -> t h w d", t=T, h=H),
|
| 202 |
-
]
|
| 203 |
-
* 2,
|
| 204 |
-
dim=-1,
|
| 205 |
-
)
|
| 206 |
-
emb = rearrange(emb, "t h w d -> (t h w) 1 1 d").float()
|
| 207 |
-
else:
|
| 208 |
-
raise ValueError(f"Invalid RoPE dimensionality: {self.rope_dim}")
|
| 209 |
-
return emb
|
| 210 |
-
|
| 211 |
-
def get_scale_factors(self, inv_freq: torch.Tensor, original_seq_len: int) -> torch.Tensor:
|
| 212 |
-
"""Get the scale factors for YaRN."""
|
| 213 |
-
# Calculate the high and low frequency cutoffs for YaRN. Note: `beta_fast` and `beta_slow` are called
|
| 214 |
-
# `high_freq_factor` and `low_freq_factor` in the Llama 3.1 RoPE scaling code.
|
| 215 |
-
high_freq_cutoff = 2 * math.pi * self.beta_fast / original_seq_len
|
| 216 |
-
low_freq_cutoff = 2 * math.pi * self.beta_slow / original_seq_len
|
| 217 |
-
# Obtain a smooth mask that has a value of 0 for low frequencies and 1 for high frequencies, with linear
|
| 218 |
-
# interpolation in between.
|
| 219 |
-
smooth_mask = torch.clamp((inv_freq - low_freq_cutoff) / (high_freq_cutoff - low_freq_cutoff), min=0, max=1)
|
| 220 |
-
# For low frequencies, we scale the frequency by 1/self.scale. For high frequencies, we keep the frequency.
|
| 221 |
-
scale_factors = (1 - smooth_mask) / self.scale + smooth_mask
|
| 222 |
-
return scale_factors
|
| 223 |
-
|
| 224 |
-
def get_inv_freq(self, device: torch.device) -> None:
|
| 225 |
-
"""Get the inverse frequency."""
|
| 226 |
-
if self.rope_dim == "1D":
|
| 227 |
-
assert self.max_position_embeddings is not None, "Max position embeddings required."
|
| 228 |
-
inv_freq = 1.0 / (
|
| 229 |
-
self.rope_theta ** (torch.arange(0, self.dim, 2, dtype=torch.float32, device=device) / self.dim)
|
| 230 |
-
)
|
| 231 |
-
if self.apply_yarn:
|
| 232 |
-
assert self.original_max_position_embeddings is not None, "Original max position embeddings required."
|
| 233 |
-
assert self.beta_slow is not None, "Beta slow value required."
|
| 234 |
-
assert self.beta_fast is not None, "Beta fast value required."
|
| 235 |
-
|
| 236 |
-
scale_factors = self.get_scale_factors(inv_freq, self.original_max_position_embeddings)
|
| 237 |
-
# Apply the scaling factors to inv_freq.
|
| 238 |
-
inv_freq = inv_freq * scale_factors
|
| 239 |
-
# Set the magnitude scaling factor.
|
| 240 |
-
self.mscale = float(self.get_mscale(self.scale) * self.attn_factor)
|
| 241 |
-
self.max_seq_len_cached = self.max_position_embeddings
|
| 242 |
-
self.inv_freq = inv_freq
|
| 243 |
-
|
| 244 |
-
elif self.rope_dim == "2D":
|
| 245 |
-
assert self.latent_shape is not None, "Latent shape required."
|
| 246 |
-
dim_h = self.dim // 2
|
| 247 |
-
spatial_inv_freq = 1.0 / (
|
| 248 |
-
self.rope_theta ** torch.arange(0, dim_h, 2, dtype=torch.float32, device=device) / dim_h
|
| 249 |
-
)
|
| 250 |
-
if self.apply_yarn:
|
| 251 |
-
assert self.original_latent_shape is not None, "Original latent shape required."
|
| 252 |
-
assert self.beta_slow is not None, "Beta slow value required."
|
| 253 |
-
assert self.beta_fast is not None, "Beta fast value required."
|
| 254 |
-
|
| 255 |
-
scale_factors = self.get_scale_factors(spatial_inv_freq, self.original_latent_shape[0])
|
| 256 |
-
spatial_inv_freq = spatial_inv_freq * scale_factors
|
| 257 |
-
self.mscale = float(self.get_mscale(self.scale) * self.attn_factor)
|
| 258 |
-
self.spatial_inv_freq = spatial_inv_freq
|
| 259 |
-
self.max_seq_len_cached = max(self.latent_shape)
|
| 260 |
-
|
| 261 |
-
elif self.rope_dim == "3D":
|
| 262 |
-
assert self.latent_shape is not None, "Latent shape required."
|
| 263 |
-
dim_h = self.dim // 6 * 2
|
| 264 |
-
dim_t = self.dim - 2 * dim_h
|
| 265 |
-
self.dim_spatial_range = torch.arange(0, dim_h, 2)[: (dim_h // 2)].float().to(device) / dim_h
|
| 266 |
-
spatial_inv_freq = 1.0 / (self.rope_theta**self.dim_spatial_range)
|
| 267 |
-
self.dim_temporal_range = torch.arange(0, dim_t, 2)[: (dim_t // 2)].float().to(device) / dim_t
|
| 268 |
-
temporal_inv_freq = 1.0 / (self.rope_theta**self.dim_temporal_range)
|
| 269 |
-
if self.apply_yarn:
|
| 270 |
-
assert self.original_latent_shape is not None, "Original latent shape required."
|
| 271 |
-
assert self.beta_slow is not None, "Beta slow value required."
|
| 272 |
-
assert self.beta_fast is not None, "Beta fast value required."
|
| 273 |
-
scale_factors_spatial = self.get_scale_factors(spatial_inv_freq, self.original_latent_shape[1])
|
| 274 |
-
spatial_inv_freq = spatial_inv_freq * scale_factors_spatial
|
| 275 |
-
scale_factors_temporal = self.get_scale_factors(temporal_inv_freq, self.original_latent_shape[0])
|
| 276 |
-
temporal_inv_freq = temporal_inv_freq * scale_factors_temporal
|
| 277 |
-
self.mscale = float(self.get_mscale(self.scale) * self.attn_factor)
|
| 278 |
-
self.spatial_inv_freq = spatial_inv_freq
|
| 279 |
-
self.temporal_inv_freq = temporal_inv_freq
|
| 280 |
-
self.max_seq_len_cached = max(self.latent_shape)
|
| 281 |
-
else:
|
| 282 |
-
raise ValueError(f"Invalid RoPE dimensionality: {self.rope_dim}")
|
| 283 |
-
|
| 284 |
-
self.freqs = self.compute_freqs()
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
class RotaryPositionEmbeddingPytorchV2(RotaryPositionEmbedding):
|
| 288 |
-
"""
|
| 289 |
-
Rotary Position Embedding that works in the same way as the TransformerEngine RoPE
|
| 290 |
-
(https://github.com/NVIDIA/TransformerEngine/blob/main/transformer_engine/pytorch/attention.py)
|
| 291 |
-
|
| 292 |
-
"""
|
| 293 |
-
|
| 294 |
-
def __init__(
|
| 295 |
-
self,
|
| 296 |
-
seq_len: int,
|
| 297 |
-
training_type: str = None,
|
| 298 |
-
**kwargs,
|
| 299 |
-
):
|
| 300 |
-
super().__init__(
|
| 301 |
-
**kwargs,
|
| 302 |
-
)
|
| 303 |
-
emb = self.create_rope_freqs(seq_len=seq_len, training_type=training_type)
|
| 304 |
-
emb = emb.transpose(0, 1).contiguous() # [seq, 1, 1, dim] -> [1, seq, 1, dim]
|
| 305 |
-
assert emb.shape[0] == 1 and emb.shape[2] == 1, f"emb shape: {emb.shape}"
|
| 306 |
-
# cos/sin first then dtype conversion for better precision
|
| 307 |
-
self.register_buffer("cos_cached", torch.cos(emb), persistent=False)
|
| 308 |
-
self.register_buffer("sin_cached", torch.sin(emb), persistent=False)
|
| 309 |
-
|
| 310 |
-
def create_rope_freqs(self, seq_len: int, training_type: str = None) -> torch.Tensor:
|
| 311 |
-
"""
|
| 312 |
-
Create rotary position embedding frequencies.
|
| 313 |
-
|
| 314 |
-
Args:
|
| 315 |
-
seq_len (int): Sequence length of a sample.
|
| 316 |
-
|
| 317 |
-
Returns:
|
| 318 |
-
torch.Tensor: The computed positional embeddings.
|
| 319 |
-
"""
|
| 320 |
-
if self.rope_dim == "1D":
|
| 321 |
-
freqs = super().forward(seq_len=seq_len)
|
| 322 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
| 323 |
-
emb = emb.reshape(emb.size(0), 1, 1, emb.size(1))
|
| 324 |
-
|
| 325 |
-
elif self.rope_dim in ["2D", "3D"]:
|
| 326 |
-
emb = super().forward(seq_len=seq_len)
|
| 327 |
-
if training_type == "text_to_video":
|
| 328 |
-
# since we added <bov> token at the beginning of the video for text2world, we also extend the position embedding by one token in the beginning
|
| 329 |
-
bov_pe = torch.zeros((1, *emb.shape[1:]), device=emb.device)
|
| 330 |
-
emb = torch.cat((bov_pe, emb), dim=0)
|
| 331 |
-
else:
|
| 332 |
-
raise ValueError(f"Invalid RoPE dimensionality: {self.rope_dim}")
|
| 333 |
-
if self.pad_to_multiple_of is not None and emb.shape[0] % self.pad_to_multiple_of != 0:
|
| 334 |
-
# Round up to the nearest multiple of pad_to_multiple_of
|
| 335 |
-
pad_len = self.pad_to_multiple_of - emb.shape[0] % self.pad_to_multiple_of
|
| 336 |
-
emb = torch.cat((emb, torch.zeros((pad_len, *emb.shape[1:]), device=emb.device)), dim=0)
|
| 337 |
-
|
| 338 |
-
return emb
|
| 339 |
-
|
| 340 |
-
def forward(
|
| 341 |
-
self, q: torch.Tensor, k: torch.Tensor, input_pos: Optional[torch.Tensor] = None, seq_len: Optional[int] = None
|
| 342 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 343 |
-
if q.dtype != self.cos_cached.dtype:
|
| 344 |
-
self.cos_cached = self.cos_cached.to(q.dtype)
|
| 345 |
-
self.sin_cached = self.sin_cached.to(q.dtype)
|
| 346 |
-
|
| 347 |
-
cos_emb = self.cos_cached
|
| 348 |
-
sin_emb = self.sin_cached
|
| 349 |
-
if input_pos is not None:
|
| 350 |
-
cos_emb = cos_emb[:, input_pos, :, :]
|
| 351 |
-
sin_emb = sin_emb[:, input_pos, :, :]
|
| 352 |
-
elif seq_len is not None:
|
| 353 |
-
cos_emb = cos_emb[:, :seq_len, :, :]
|
| 354 |
-
sin_emb = sin_emb[:, :seq_len, :, :]
|
| 355 |
-
q = _apply_rotary_pos_emb_te(q, cos_emb, sin_emb)
|
| 356 |
-
k = _apply_rotary_pos_emb_te(k, cos_emb, sin_emb)
|
| 357 |
-
return q, k
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
class RotaryPositionEmbeddingPytorchV1(RotaryPositionEmbedding):
|
| 361 |
-
"""
|
| 362 |
-
Rotary Position Embedding that works in the same way as
|
| 363 |
-
mistral_inference (https://github.com/mistralai/mistral-inference/blob/main/src/mistral_inference/rope.py)
|
| 364 |
-
or llama3 (https://github.com/meta-llama/llama3/blob/main/llama/model.py)
|
| 365 |
-
|
| 366 |
-
"""
|
| 367 |
-
|
| 368 |
-
def __init__(
|
| 369 |
-
self,
|
| 370 |
-
**kwargs,
|
| 371 |
-
):
|
| 372 |
-
super().__init__(
|
| 373 |
-
**kwargs,
|
| 374 |
-
)
|
| 375 |
-
if self.rope_dim == "1D":
|
| 376 |
-
emb = torch.stack((self.freqs, self.freqs), dim=-1).reshape(*self.freqs.shape[:-1], -1)
|
| 377 |
-
elif self.rope_dim in ["2D", "3D"]:
|
| 378 |
-
emb = rearrange(self.freqs, "s 1 1 d -> s d").float()
|
| 379 |
-
self.register_buffer("cos_cached", (emb.cos() * self.mscale)[None, :, None, :], persistent=False)
|
| 380 |
-
self.register_buffer("sin_cached", (emb.sin() * self.mscale)[None, :, None, :], persistent=False)
|
| 381 |
-
|
| 382 |
-
def rotate_half(self, x: torch.Tensor) -> torch.Tensor:
|
| 383 |
-
"""Rotate half the hidden dimensions of the input tensor."""
|
| 384 |
-
x_reshaped = x.reshape(*x.shape[:-1], -1, 2)
|
| 385 |
-
x1 = x_reshaped[..., 0]
|
| 386 |
-
x2 = x_reshaped[..., 1]
|
| 387 |
-
output = torch.stack((-x2, x1), dim=-1).reshape(*x.shape)
|
| 388 |
-
return output
|
| 389 |
-
|
| 390 |
-
def forward(
|
| 391 |
-
self, q: torch.Tensor, k: torch.Tensor, input_pos: Optional[torch.Tensor] = None, seq_len: Optional[int] = None
|
| 392 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 393 |
-
"""
|
| 394 |
-
Forward pass for the rotary position embedding.
|
| 395 |
-
|
| 396 |
-
Args:
|
| 397 |
-
q (torch.Tensor): Query tensor.
|
| 398 |
-
k (torch.Tensor): Key tensor.
|
| 399 |
-
input_pos (Optional[torch.Tensor]): Starting position for the sequence.
|
| 400 |
-
seq_len (Optional[int]): Length of the sequence.
|
| 401 |
-
|
| 402 |
-
Returns:
|
| 403 |
-
Tuple[torch.Tensor, torch.Tensor]: Rotated query and key tensors.
|
| 404 |
-
"""
|
| 405 |
-
if self.apply_yarn and seq_len > self.max_seq_len_cached:
|
| 406 |
-
freqs = super().forward(seq_len)
|
| 407 |
-
if self.rope_dim == "1D":
|
| 408 |
-
emb = torch.stack((freqs, freqs), dim=-1).reshape(*freqs.shape[:-1], -1)
|
| 409 |
-
elif self.rope_dim in ["2D", "3D"]:
|
| 410 |
-
emb = rearrange(freqs, "s 1 1 d -> s d").float()
|
| 411 |
-
else:
|
| 412 |
-
raise ValueError(f"Invalid RoPE dimensionality: {self.rope_dim}")
|
| 413 |
-
self.register_buffer(
|
| 414 |
-
"cos_cached", (emb.cos() * self.mscale)[None, :, None, :].to(q.dtype), persistent=False
|
| 415 |
-
)
|
| 416 |
-
self.register_buffer(
|
| 417 |
-
"sin_cached", (emb.sin() * self.mscale)[None, :, None, :].to(q.dtype), persistent=False
|
| 418 |
-
)
|
| 419 |
-
|
| 420 |
-
if input_pos is not None:
|
| 421 |
-
cos_cached = self.cos_cached[:, input_pos]
|
| 422 |
-
sin_cached = self.sin_cached[:, input_pos]
|
| 423 |
-
else:
|
| 424 |
-
assert (
|
| 425 |
-
self.cos_cached.shape[1] >= seq_len
|
| 426 |
-
), f"Invalid sequence length; cos_cached.shape {self.cos_cached.shape}, seq_len {seq_len}."
|
| 427 |
-
cos_cached = self.cos_cached[:, :seq_len, ...]
|
| 428 |
-
sin_cached = self.sin_cached[:, :seq_len, ...]
|
| 429 |
-
xq = q * cos_cached + self.rotate_half(q) * sin_cached
|
| 430 |
-
xk = k * cos_cached + self.rotate_half(k) * sin_cached
|
| 431 |
-
|
| 432 |
-
return xq.type_as(q), xk.type_as(k)
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
class SinCosPosEmbAxisTE(torch.nn.Module):
|
| 436 |
-
def __init__(
|
| 437 |
-
self,
|
| 438 |
-
dim: int,
|
| 439 |
-
latent_shape: Optional[List[int]] = None,
|
| 440 |
-
pad_to_multiple_of: Optional[int] = None,
|
| 441 |
-
dtype: torch.dtype = torch.bfloat16,
|
| 442 |
-
**kwargs,
|
| 443 |
-
):
|
| 444 |
-
"""
|
| 445 |
-
Args:
|
| 446 |
-
dim (int): Dimensionality of the input tensor.
|
| 447 |
-
latent_shape (Optional[List[int]]): Shape of the latent tensor for video or image inputs.
|
| 448 |
-
pad_to_multiple_of (Optional[int]): Pad the position embedding to a multiple of this value.
|
| 449 |
-
dtype (torch.dtype): Data type of the position embedding tensor.
|
| 450 |
-
"""
|
| 451 |
-
super().__init__()
|
| 452 |
-
dim_h = dim // 6 * 2
|
| 453 |
-
dim_w = dim_h
|
| 454 |
-
dim_t = dim - 2 * dim_h
|
| 455 |
-
assert dim == dim_h + dim_w + dim_t, f"bad dim: {dim} != {dim_h} + {dim_w} + {dim_t}"
|
| 456 |
-
self.latent_shape = latent_shape
|
| 457 |
-
T, H, W = latent_shape
|
| 458 |
-
emb_h = get_1d_sincos_pos_embed_from_grid(dim_h, pos=np.arange(H))
|
| 459 |
-
emb_w = get_1d_sincos_pos_embed_from_grid(dim_w, pos=np.arange(W))
|
| 460 |
-
emb_t = get_1d_sincos_pos_embed_from_grid(dim_t, pos=np.arange(T))
|
| 461 |
-
|
| 462 |
-
self.register_buffer("pos_emb_h", torch.from_numpy(emb_h).to(dtype=dtype, device="cuda"), persistent=False)
|
| 463 |
-
self.register_buffer("pos_emb_w", torch.from_numpy(emb_w).to(dtype=dtype, device="cuda"), persistent=False)
|
| 464 |
-
self.register_buffer("pos_emb_t", torch.from_numpy(emb_t).to(dtype=dtype, device="cuda"), persistent=False)
|
| 465 |
-
self.pad_to_multiple_of = pad_to_multiple_of
|
| 466 |
-
|
| 467 |
-
def forward(
|
| 468 |
-
self,
|
| 469 |
-
training_type: str = None,
|
| 470 |
-
) -> torch.Tensor:
|
| 471 |
-
T, H, W = self.latent_shape
|
| 472 |
-
emb = torch.cat(
|
| 473 |
-
[
|
| 474 |
-
repeat(self.pos_emb_t, "t d-> t h w d", h=H, w=W),
|
| 475 |
-
repeat(self.pos_emb_h, "h d-> t h w d", t=T, w=W),
|
| 476 |
-
repeat(self.pos_emb_w, "w d-> t h w d", t=T, h=H),
|
| 477 |
-
],
|
| 478 |
-
dim=-1,
|
| 479 |
-
)
|
| 480 |
-
# Flatten the T,H,W dimensions
|
| 481 |
-
emb = rearrange(emb, "t h w d -> (t h w) d")
|
| 482 |
-
|
| 483 |
-
if training_type == "text_to_video":
|
| 484 |
-
bov_pe = torch.zeros((1, *emb.shape[1:]), device=emb.device, dtype=emb.dtype)
|
| 485 |
-
emb = torch.cat((bov_pe, emb), dim=0)
|
| 486 |
-
if self.pad_to_multiple_of is not None and emb.shape[0] % self.pad_to_multiple_of != 0:
|
| 487 |
-
pad_len = self.pad_to_multiple_of - emb.shape[0] % self.pad_to_multiple_of
|
| 488 |
-
emb = torch.cat((emb, torch.zeros((pad_len, *emb.shape[1:]), device=emb.device, dtype=emb.dtype)), dim=0)
|
| 489 |
-
seq_len, dim = emb.shape
|
| 490 |
-
emb = emb.reshape(1, seq_len, dim)
|
| 491 |
-
return emb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/2c584c7c9a5e03bcb3b808d053f89e7c2aeaf9cf
DELETED
|
@@ -1,119 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import torch
|
| 17 |
-
import torch.nn.functional as F
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def split_with_overlap(video_BCTHW, num_video_frames, overlap=2, tobf16=True):
|
| 21 |
-
"""
|
| 22 |
-
Splits the video tensor into chunks of num_video_frames with a specified overlap.
|
| 23 |
-
|
| 24 |
-
Args:
|
| 25 |
-
- video_BCTHW (torch.Tensor): Input tensor with shape [Batch, Channels, Time, Height, Width].
|
| 26 |
-
- num_video_frames (int): Number of frames per chunk.
|
| 27 |
-
- overlap (int): Number of overlapping frames between chunks.
|
| 28 |
-
|
| 29 |
-
Returns:
|
| 30 |
-
- List of torch.Tensors: List of video chunks with overlap.
|
| 31 |
-
"""
|
| 32 |
-
# Get the dimensions of the input tensor
|
| 33 |
-
B, C, T, H, W = video_BCTHW.shape
|
| 34 |
-
|
| 35 |
-
# Ensure overlap is less than num_video_frames
|
| 36 |
-
assert overlap < num_video_frames, "Overlap should be less than num_video_frames."
|
| 37 |
-
|
| 38 |
-
# List to store the chunks
|
| 39 |
-
chunks = []
|
| 40 |
-
|
| 41 |
-
# Step size for the sliding window
|
| 42 |
-
step = num_video_frames - overlap
|
| 43 |
-
|
| 44 |
-
# Loop through the time dimension (T) with the sliding window
|
| 45 |
-
for start in range(0, T - overlap, step):
|
| 46 |
-
end = start + num_video_frames
|
| 47 |
-
# Handle the case when the last chunk might go out of bounds
|
| 48 |
-
if end > T:
|
| 49 |
-
# Get the last available frame
|
| 50 |
-
num_padding_frames = end - T
|
| 51 |
-
chunk = F.pad(video_BCTHW[:, :, start:T, :, :], (0, 0, 0, 0, 0, num_padding_frames), mode="reflect")
|
| 52 |
-
else:
|
| 53 |
-
# Regular case: no padding needed
|
| 54 |
-
chunk = video_BCTHW[:, :, start:end, :, :]
|
| 55 |
-
if tobf16:
|
| 56 |
-
chunks.append(chunk.to(torch.bfloat16))
|
| 57 |
-
else:
|
| 58 |
-
chunks.append(chunk)
|
| 59 |
-
return chunks
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
def linear_blend_video_list(videos, D):
|
| 63 |
-
"""
|
| 64 |
-
Linearly blends a list of videos along the time dimension with overlap length D.
|
| 65 |
-
|
| 66 |
-
Parameters:
|
| 67 |
-
- videos: list of video tensors, each of shape [b, c, t, h, w]
|
| 68 |
-
- D: int, overlap length
|
| 69 |
-
|
| 70 |
-
Returns:
|
| 71 |
-
- output_video: blended video tensor of shape [b, c, L, h, w]
|
| 72 |
-
"""
|
| 73 |
-
assert len(videos) >= 2, "At least two videos are required."
|
| 74 |
-
b, c, t, h, w = videos[0].shape
|
| 75 |
-
N = len(videos)
|
| 76 |
-
|
| 77 |
-
# Ensure all videos have the same shape
|
| 78 |
-
for video in videos:
|
| 79 |
-
assert video.shape == (b, c, t, h, w), "All videos must have the same shape."
|
| 80 |
-
|
| 81 |
-
# Calculate total output length
|
| 82 |
-
L = N * t - D * (N - 1)
|
| 83 |
-
output_video = torch.zeros((b, c, L, h, w), device=videos[0].device)
|
| 84 |
-
|
| 85 |
-
output_index = 0 # Current index in the output video
|
| 86 |
-
|
| 87 |
-
for i in range(N):
|
| 88 |
-
if i == 0:
|
| 89 |
-
# Copy frames from the first video up to t - D
|
| 90 |
-
output_video[:, :, output_index : output_index + t - D, :, :] = videos[i][:, :, : t - D, :, :]
|
| 91 |
-
output_index += t - D
|
| 92 |
-
else:
|
| 93 |
-
# Blend overlapping frames between videos[i-1] and videos[i]
|
| 94 |
-
blend_weights = torch.linspace(0, 1, steps=D, device=videos[0].device)
|
| 95 |
-
|
| 96 |
-
for j in range(D):
|
| 97 |
-
w1 = 1 - blend_weights[j]
|
| 98 |
-
w2 = blend_weights[j]
|
| 99 |
-
frame_from_prev = videos[i - 1][:, :, t - D + j, :, :]
|
| 100 |
-
frame_from_curr = videos[i][:, :, j, :, :]
|
| 101 |
-
output_frame = w1 * frame_from_prev + w2 * frame_from_curr
|
| 102 |
-
output_video[:, :, output_index, :, :] = output_frame
|
| 103 |
-
output_index += 1
|
| 104 |
-
|
| 105 |
-
if i < N - 1:
|
| 106 |
-
# Copy non-overlapping frames from current video up to t - D
|
| 107 |
-
frames_to_copy = t - 2 * D
|
| 108 |
-
if frames_to_copy > 0:
|
| 109 |
-
output_video[:, :, output_index : output_index + frames_to_copy, :, :] = videos[i][
|
| 110 |
-
:, :, D : t - D, :, :
|
| 111 |
-
]
|
| 112 |
-
output_index += frames_to_copy
|
| 113 |
-
else:
|
| 114 |
-
# For the last video, copy frames from D to t
|
| 115 |
-
frames_to_copy = t - D
|
| 116 |
-
output_video[:, :, output_index : output_index + frames_to_copy, :, :] = videos[i][:, :, D:, :, :]
|
| 117 |
-
output_index += frames_to_copy
|
| 118 |
-
|
| 119 |
-
return output_video
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/39dca42a0a71383de919b750cedf2606faae206d
DELETED
|
@@ -1,65 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from typing import Any, Dict, List, Union
|
| 17 |
-
|
| 18 |
-
from omegaconf import OmegaConf
|
| 19 |
-
from omegaconf.base import DictKeyType, SCMode
|
| 20 |
-
from omegaconf.dictconfig import DictConfig # pragma: no cover
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
def to_object(cfg: Any) -> Union[Dict[DictKeyType, Any], List[Any], None, str, Any]:
|
| 24 |
-
"""
|
| 25 |
-
Converts an OmegaConf configuration object to a native Python container (dict or list), unless
|
| 26 |
-
the configuration is specifically created by LazyCall, in which case the original configuration
|
| 27 |
-
is returned directly.
|
| 28 |
-
|
| 29 |
-
This function serves as a modification of the original `to_object` method from OmegaConf,
|
| 30 |
-
preventing DictConfig objects created by LazyCall from being automatically converted to Python
|
| 31 |
-
dictionaries. This ensures that configurations meant to be lazily evaluated retain their intended
|
| 32 |
-
structure and behavior.
|
| 33 |
-
|
| 34 |
-
Differences from OmegaConf's original `to_object`:
|
| 35 |
-
- Adds a check at the beginning to return the configuration unchanged if it is created by LazyCall.
|
| 36 |
-
|
| 37 |
-
Reference:
|
| 38 |
-
- Original OmegaConf `to_object` method: https://github.com/omry/omegaconf/blob/master/omegaconf/omegaconf.py#L595
|
| 39 |
-
|
| 40 |
-
Args:
|
| 41 |
-
cfg (Any): The OmegaConf configuration object to convert.
|
| 42 |
-
|
| 43 |
-
Returns:
|
| 44 |
-
Union[Dict[DictKeyType, Any], List[Any], None, str, Any]: The converted Python container if
|
| 45 |
-
`cfg` is not a LazyCall created configuration, otherwise the unchanged `cfg`.
|
| 46 |
-
|
| 47 |
-
Examples:
|
| 48 |
-
>>> cfg = DictConfig({"key": "value", "_target_": "Model"})
|
| 49 |
-
>>> to_object(cfg)
|
| 50 |
-
DictConfig({"key": "value", "_target_": "Model"})
|
| 51 |
-
|
| 52 |
-
>>> cfg = DictConfig({"list": [1, 2, 3]})
|
| 53 |
-
>>> to_object(cfg)
|
| 54 |
-
{'list': [1, 2, 3]}
|
| 55 |
-
"""
|
| 56 |
-
if isinstance(cfg, DictConfig) and "_target_" in cfg.keys():
|
| 57 |
-
return cfg
|
| 58 |
-
|
| 59 |
-
return OmegaConf.to_container(
|
| 60 |
-
cfg=cfg,
|
| 61 |
-
resolve=True,
|
| 62 |
-
throw_on_missing=True,
|
| 63 |
-
enum_to_str=False,
|
| 64 |
-
structured_config_mode=SCMode.INSTANTIATE,
|
| 65 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/3c5a1dbe30558d9e7e97ad64304161c4e61a00f5
DELETED
|
@@ -1,60 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
"""
|
| 17 |
-
Impl of multistep methods to solve the ODE in the diffusion model.
|
| 18 |
-
"""
|
| 19 |
-
|
| 20 |
-
from typing import Callable, List, Tuple
|
| 21 |
-
|
| 22 |
-
import torch
|
| 23 |
-
|
| 24 |
-
from .df_df_functional_runge_kutta import reg_x0_euler_step, res_x0_rk2_step
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def order2_fn(
|
| 28 |
-
x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, x0_s: torch.Tensor, x0_preds: torch.Tensor
|
| 29 |
-
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
|
| 30 |
-
"""
|
| 31 |
-
impl the second order multistep method in https://arxiv.org/pdf/2308.02157
|
| 32 |
-
Adams Bashforth approach!
|
| 33 |
-
"""
|
| 34 |
-
if x0_preds:
|
| 35 |
-
x0_s1, s1 = x0_preds[0]
|
| 36 |
-
x_t = res_x0_rk2_step(x_s, t, s, x0_s, s1, x0_s1)
|
| 37 |
-
else:
|
| 38 |
-
x_t = reg_x0_euler_step(x_s, s, t, x0_s)[0]
|
| 39 |
-
return x_t, [(x0_s, s)]
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
# key: method name, value: method function
|
| 43 |
-
# key: order + algorithm name
|
| 44 |
-
MULTISTEP_FNs = {
|
| 45 |
-
"2ab": order2_fn,
|
| 46 |
-
}
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
def get_multi_step_fn(name: str) -> Callable:
|
| 50 |
-
if name in MULTISTEP_FNs:
|
| 51 |
-
return MULTISTEP_FNs[name]
|
| 52 |
-
methods = "\n\t".join(MULTISTEP_FNs.keys())
|
| 53 |
-
raise RuntimeError("Only support multistep method\n" + methods)
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
def is_multi_step_fn_supported(name: str) -> bool:
|
| 57 |
-
"""
|
| 58 |
-
Check if the multistep method is supported.
|
| 59 |
-
"""
|
| 60 |
-
return name in MULTISTEP_FNs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/4146fad65c365a8c4fd6903a0ea33860142f64f5
DELETED
|
@@ -1,323 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import copy
|
| 17 |
-
from abc import ABC, abstractmethod
|
| 18 |
-
from collections import defaultdict
|
| 19 |
-
from dataclasses import dataclass, fields
|
| 20 |
-
from enum import Enum
|
| 21 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 22 |
-
|
| 23 |
-
import torch
|
| 24 |
-
import torch.nn as nn
|
| 25 |
-
|
| 26 |
-
from .df_df_functional_batch_ops import batch_mul
|
| 27 |
-
from .log import log
|
| 28 |
-
from .lazy_config_init import instantiate
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
class BaseConditionEntry(nn.Module):
|
| 32 |
-
def __init__(self):
|
| 33 |
-
super().__init__()
|
| 34 |
-
|
| 35 |
-
self._dropout_rate = None
|
| 36 |
-
self._input_key = None
|
| 37 |
-
self._return_dict = False
|
| 38 |
-
|
| 39 |
-
@property
|
| 40 |
-
def dropout_rate(self) -> Union[float, torch.Tensor]:
|
| 41 |
-
return self._dropout_rate
|
| 42 |
-
|
| 43 |
-
@property
|
| 44 |
-
def input_key(self) -> str:
|
| 45 |
-
return self._input_key
|
| 46 |
-
|
| 47 |
-
@property
|
| 48 |
-
def is_return_dict(self) -> bool:
|
| 49 |
-
return self._return_dict
|
| 50 |
-
|
| 51 |
-
@dropout_rate.setter
|
| 52 |
-
def dropout_rate(self, value: Union[float, torch.Tensor]):
|
| 53 |
-
self._dropout_rate = value
|
| 54 |
-
|
| 55 |
-
@input_key.setter
|
| 56 |
-
def input_key(self, value: str):
|
| 57 |
-
self._input_key = value
|
| 58 |
-
|
| 59 |
-
@is_return_dict.setter
|
| 60 |
-
def is_return_dict(self, value: bool):
|
| 61 |
-
self._return_dict = value
|
| 62 |
-
|
| 63 |
-
@dropout_rate.deleter
|
| 64 |
-
def dropout_rate(self):
|
| 65 |
-
del self._dropout_rate
|
| 66 |
-
|
| 67 |
-
@input_key.deleter
|
| 68 |
-
def input_key(self):
|
| 69 |
-
del self._input_key
|
| 70 |
-
|
| 71 |
-
@is_return_dict.deleter
|
| 72 |
-
def is_return_dict(self):
|
| 73 |
-
del self._return_dict
|
| 74 |
-
|
| 75 |
-
def random_dropout_input(
|
| 76 |
-
self, in_tensor: torch.Tensor, dropout_rate: Optional[float] = None, key: Optional[str] = None
|
| 77 |
-
) -> torch.Tensor:
|
| 78 |
-
del key
|
| 79 |
-
dropout_rate = dropout_rate if dropout_rate is not None else self.dropout_rate
|
| 80 |
-
return batch_mul(
|
| 81 |
-
torch.bernoulli((1.0 - dropout_rate) * torch.ones(in_tensor.shape[0])).type_as(in_tensor),
|
| 82 |
-
in_tensor,
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
def summary(self) -> str:
|
| 86 |
-
pass
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
class DataType(Enum):
|
| 90 |
-
IMAGE = "image"
|
| 91 |
-
VIDEO = "video"
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
class TextAttr(BaseConditionEntry):
|
| 95 |
-
def __init__(self):
|
| 96 |
-
super().__init__()
|
| 97 |
-
|
| 98 |
-
def forward(self, token: torch.Tensor, mask: torch.Tensor):
|
| 99 |
-
return {"crossattn_emb": token, "crossattn_mask": mask}
|
| 100 |
-
|
| 101 |
-
def random_dropout_input(
|
| 102 |
-
self, in_tensor: torch.Tensor, dropout_rate: Optional[float] = None, key: Optional[str] = None
|
| 103 |
-
) -> torch.Tensor:
|
| 104 |
-
if key is not None and "mask" in key:
|
| 105 |
-
return in_tensor
|
| 106 |
-
return super().random_dropout_input(in_tensor, dropout_rate, key)
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
@dataclass
|
| 110 |
-
class BaseVideoCondition:
|
| 111 |
-
crossattn_emb: torch.Tensor
|
| 112 |
-
crossattn_mask: torch.Tensor
|
| 113 |
-
data_type: DataType = DataType.VIDEO
|
| 114 |
-
padding_mask: Optional[torch.Tensor] = None
|
| 115 |
-
fps: Optional[torch.Tensor] = None
|
| 116 |
-
num_frames: Optional[torch.Tensor] = None
|
| 117 |
-
image_size: Optional[torch.Tensor] = None
|
| 118 |
-
scalar_feature: Optional[torch.Tensor] = None
|
| 119 |
-
|
| 120 |
-
def to_dict(self) -> Dict[str, Optional[torch.Tensor]]:
|
| 121 |
-
return {f.name: getattr(self, f.name) for f in fields(self)}
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
@dataclass
|
| 125 |
-
class VideoExtendCondition(BaseVideoCondition):
|
| 126 |
-
video_cond_bool: Optional[torch.Tensor] = None # whether or not it conditioned on video
|
| 127 |
-
gt_latent: Optional[torch.Tensor] = None
|
| 128 |
-
condition_video_indicator: Optional[torch.Tensor] = None # 1 for condition region
|
| 129 |
-
|
| 130 |
-
# condition_video_input_mask will concat to the input of network, along channel dim;
|
| 131 |
-
# Will be concat with the input tensor
|
| 132 |
-
condition_video_input_mask: Optional[torch.Tensor] = None
|
| 133 |
-
# condition_video_augment_sigma: (B, T) tensor of sigma value for the conditional input augmentation, only valid when apply_corruption_to_condition_region is "noise_with_sigma" or "noise_with_sigma_fixed"
|
| 134 |
-
condition_video_augment_sigma: Optional[torch.Tensor] = None
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
class GeneralConditioner(nn.Module, ABC):
|
| 138 |
-
"""
|
| 139 |
-
An abstract module designed to handle various embedding models with conditional and
|
| 140 |
-
unconditional configurations. This abstract base class initializes and manages a collection
|
| 141 |
-
of embedders that can dynamically adjust their dropout rates based on conditioning.
|
| 142 |
-
|
| 143 |
-
Attributes:
|
| 144 |
-
KEY2DIM (dict): A mapping from output keys to dimensions used for concatenation.
|
| 145 |
-
embedders (nn.ModuleDict): A dictionary containing all embedded models initialized and
|
| 146 |
-
configured based on the provided configurations.
|
| 147 |
-
|
| 148 |
-
Parameters:
|
| 149 |
-
emb_models (Union[List, Any]): A dictionary where keys are embedder names and values
|
| 150 |
-
are configurations for initializing the embedders.
|
| 151 |
-
|
| 152 |
-
"""
|
| 153 |
-
|
| 154 |
-
KEY2DIM = {"crossattn_emb": 1, "crossattn_mask": 1}
|
| 155 |
-
|
| 156 |
-
def __init__(self, **emb_models: Union[List, Any]):
|
| 157 |
-
super().__init__()
|
| 158 |
-
self.embedders = nn.ModuleDict()
|
| 159 |
-
for n, (emb_name, embconfig) in enumerate(emb_models.items()):
|
| 160 |
-
embedder = instantiate(embconfig.obj)
|
| 161 |
-
assert isinstance(
|
| 162 |
-
embedder, BaseConditionEntry
|
| 163 |
-
), f"embedder model {embedder.__class__.__name__} has to inherit from AbstractEmbModel"
|
| 164 |
-
embedder.dropout_rate = getattr(embconfig, "dropout_rate", 0.0)
|
| 165 |
-
|
| 166 |
-
if hasattr(embconfig, "input_key"):
|
| 167 |
-
embedder.input_key = embconfig.input_key
|
| 168 |
-
elif hasattr(embconfig, "input_keys"):
|
| 169 |
-
embedder.input_keys = embconfig.input_keys
|
| 170 |
-
else:
|
| 171 |
-
raise KeyError(f"need either 'input_key' or 'input_keys' for embedder {embedder.__class__.__name__}")
|
| 172 |
-
|
| 173 |
-
log.debug(f"Initialized embedder #{n}-{emb_name}: \n {embedder.summary()}")
|
| 174 |
-
self.embedders[emb_name] = embedder
|
| 175 |
-
|
| 176 |
-
@abstractmethod
|
| 177 |
-
def forward(
|
| 178 |
-
self,
|
| 179 |
-
batch: Dict,
|
| 180 |
-
override_dropout_rate: Optional[Dict[str, float]] = None,
|
| 181 |
-
) -> Any:
|
| 182 |
-
"""Should be implemented in subclasses to handle conditon datatype"""
|
| 183 |
-
raise NotImplementedError
|
| 184 |
-
|
| 185 |
-
def _forward(
|
| 186 |
-
self,
|
| 187 |
-
batch: Dict,
|
| 188 |
-
override_dropout_rate: Optional[Dict[str, float]] = None,
|
| 189 |
-
) -> Dict:
|
| 190 |
-
"""
|
| 191 |
-
Processes the input batch through all configured embedders, applying conditional dropout rates if specified.
|
| 192 |
-
Output tensors for each key are concatenated along the dimensions specified in KEY2DIM.
|
| 193 |
-
|
| 194 |
-
Parameters:
|
| 195 |
-
batch (Dict): The input data batch to process.
|
| 196 |
-
override_dropout_rate (Optional[Dict[str, float]]): Optional dictionary to override default dropout rates
|
| 197 |
-
per embedder key.
|
| 198 |
-
|
| 199 |
-
Returns:
|
| 200 |
-
Dict: A dictionary of output tensors concatenated by specified dimensions.
|
| 201 |
-
|
| 202 |
-
Note:
|
| 203 |
-
In case the network code is sensitive to the order of concatenation, you can either control the order via \
|
| 204 |
-
config file or make sure the embedders return a unique key for each output.
|
| 205 |
-
"""
|
| 206 |
-
output = defaultdict(list)
|
| 207 |
-
if override_dropout_rate is None:
|
| 208 |
-
override_dropout_rate = {}
|
| 209 |
-
|
| 210 |
-
# make sure emb_name in override_dropout_rate is valid
|
| 211 |
-
for emb_name in override_dropout_rate.keys():
|
| 212 |
-
assert emb_name in self.embedders, f"invalid name found {emb_name}"
|
| 213 |
-
|
| 214 |
-
for emb_name, embedder in self.embedders.items():
|
| 215 |
-
with torch.no_grad():
|
| 216 |
-
if hasattr(embedder, "input_key") and (embedder.input_key is not None):
|
| 217 |
-
emb_out = embedder(
|
| 218 |
-
embedder.random_dropout_input(
|
| 219 |
-
batch[embedder.input_key], override_dropout_rate.get(emb_name, None)
|
| 220 |
-
)
|
| 221 |
-
)
|
| 222 |
-
elif hasattr(embedder, "input_keys"):
|
| 223 |
-
emb_out = embedder(
|
| 224 |
-
*[
|
| 225 |
-
embedder.random_dropout_input(batch[k], override_dropout_rate.get(emb_name, None), k)
|
| 226 |
-
for k in embedder.input_keys
|
| 227 |
-
]
|
| 228 |
-
)
|
| 229 |
-
for k, v in emb_out.items():
|
| 230 |
-
output[k].append(v)
|
| 231 |
-
# Concatenate the outputs
|
| 232 |
-
return {k: torch.cat(v, dim=self.KEY2DIM.get(k, -1)) for k, v in output.items()}
|
| 233 |
-
|
| 234 |
-
def get_condition_uncondition(
|
| 235 |
-
self,
|
| 236 |
-
data_batch: Dict,
|
| 237 |
-
) -> Tuple[Any, Any]:
|
| 238 |
-
"""
|
| 239 |
-
Processes the provided data batch to generate conditioned and unconditioned outputs.
|
| 240 |
-
|
| 241 |
-
This method manipulates dropout rates to simulate two scenarios:
|
| 242 |
-
1. All conditions applied (conditioned)
|
| 243 |
-
2. Conditions removed/reduced to minimum (unconditioned)
|
| 244 |
-
|
| 245 |
-
This method sets dropout rates to zero for the conditioned scenario to fully apply
|
| 246 |
-
embedders' effects. For unconditioned, it sets rates to 1 (or 0 if initial rate is
|
| 247 |
-
insignificant) to minimize embedder influences.
|
| 248 |
-
|
| 249 |
-
Parameters:
|
| 250 |
-
data_batch (Dict): Input data batch containing all necessary information for
|
| 251 |
-
embedding processing.
|
| 252 |
-
|
| 253 |
-
Returns:
|
| 254 |
-
Tuple[Any, Any]: A tuple containing:
|
| 255 |
-
- Outputs with all embedders fully applied (conditioned)
|
| 256 |
-
- Outputs with embedders minimized/not applied (unconditioned)
|
| 257 |
-
"""
|
| 258 |
-
cond_dropout_rates, dropout_rates = {}, {}
|
| 259 |
-
for emb_name, embedder in self.embedders.items():
|
| 260 |
-
cond_dropout_rates[emb_name] = 0.0
|
| 261 |
-
dropout_rates[emb_name] = 1.0 if embedder.dropout_rate > 1e-4 else 0.0
|
| 262 |
-
|
| 263 |
-
condition: Any = self(data_batch, override_dropout_rate=cond_dropout_rates)
|
| 264 |
-
un_condition: Any = self(data_batch, override_dropout_rate=dropout_rates)
|
| 265 |
-
return condition, un_condition
|
| 266 |
-
|
| 267 |
-
def get_condition_with_negative_prompt(
|
| 268 |
-
self,
|
| 269 |
-
data_batch: Dict,
|
| 270 |
-
) -> Tuple[Any, Any]:
|
| 271 |
-
"""
|
| 272 |
-
Similar functionality as get_condition_uncondition
|
| 273 |
-
But use negative prompts for unconditon
|
| 274 |
-
"""
|
| 275 |
-
cond_dropout_rates, uncond_dropout_rates = {}, {}
|
| 276 |
-
for emb_name, embedder in self.embedders.items():
|
| 277 |
-
cond_dropout_rates[emb_name] = 0.0
|
| 278 |
-
if isinstance(embedder, TextAttr):
|
| 279 |
-
uncond_dropout_rates[emb_name] = 0.0
|
| 280 |
-
else:
|
| 281 |
-
uncond_dropout_rates[emb_name] = 1.0 if embedder.dropout_rate > 1e-4 else 0.0
|
| 282 |
-
|
| 283 |
-
data_batch_neg_prompt = copy.deepcopy(data_batch)
|
| 284 |
-
if "neg_t5_text_embeddings" in data_batch_neg_prompt:
|
| 285 |
-
if isinstance(data_batch_neg_prompt["neg_t5_text_embeddings"], torch.Tensor):
|
| 286 |
-
data_batch_neg_prompt["t5_text_embeddings"] = data_batch_neg_prompt["neg_t5_text_embeddings"]
|
| 287 |
-
data_batch_neg_prompt["t5_text_mask"] = data_batch_neg_prompt["neg_t5_text_mask"]
|
| 288 |
-
|
| 289 |
-
condition: Any = self(data_batch, override_dropout_rate=cond_dropout_rates)
|
| 290 |
-
un_condition: Any = self(data_batch_neg_prompt, override_dropout_rate=uncond_dropout_rates)
|
| 291 |
-
|
| 292 |
-
return condition, un_condition
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
@dataclass
|
| 296 |
-
class CosmosCondition:
|
| 297 |
-
crossattn_emb: torch.Tensor
|
| 298 |
-
crossattn_mask: torch.Tensor
|
| 299 |
-
padding_mask: Optional[torch.Tensor] = None
|
| 300 |
-
scalar_feature: Optional[torch.Tensor] = None
|
| 301 |
-
|
| 302 |
-
def to_dict(self) -> Dict[str, Optional[torch.Tensor]]:
|
| 303 |
-
return {f.name: getattr(self, f.name) for f in fields(self)}
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
class VideoConditioner(GeneralConditioner):
|
| 307 |
-
def forward(
|
| 308 |
-
self,
|
| 309 |
-
batch: Dict,
|
| 310 |
-
override_dropout_rate: Optional[Dict[str, float]] = None,
|
| 311 |
-
) -> BaseVideoCondition:
|
| 312 |
-
output = super()._forward(batch, override_dropout_rate)
|
| 313 |
-
return BaseVideoCondition(**output)
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
class VideoExtendConditioner(GeneralConditioner):
|
| 317 |
-
def forward(
|
| 318 |
-
self,
|
| 319 |
-
batch: Dict,
|
| 320 |
-
override_dropout_rate: Optional[Dict[str, float]] = None,
|
| 321 |
-
) -> VideoExtendCondition:
|
| 322 |
-
output = super()._forward(batch, override_dropout_rate)
|
| 323 |
-
return VideoExtendCondition(**output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/45a2ac6c32e8df9e6836ed55973912b8730c0749
DELETED
|
@@ -1,50 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import torch
|
| 17 |
-
import torch.nn as nn
|
| 18 |
-
import torch.nn.functional as F
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
class MLP(nn.Module):
|
| 22 |
-
def __init__(
|
| 23 |
-
self,
|
| 24 |
-
dim: int,
|
| 25 |
-
hidden_dim: int,
|
| 26 |
-
):
|
| 27 |
-
"""
|
| 28 |
-
Initializes the multilayer perceptron (MLP) module.
|
| 29 |
-
|
| 30 |
-
Args:
|
| 31 |
-
dim: The input and output dimensionality.
|
| 32 |
-
hidden_dim: The dimensionality of the hidden layer.
|
| 33 |
-
"""
|
| 34 |
-
super().__init__()
|
| 35 |
-
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
| 36 |
-
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
| 37 |
-
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
| 38 |
-
|
| 39 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 40 |
-
"""
|
| 41 |
-
Performs the forward pass of the MLP module.
|
| 42 |
-
|
| 43 |
-
Args:
|
| 44 |
-
x: The input tensor of shape (batch_size, dim).
|
| 45 |
-
|
| 46 |
-
Returns:
|
| 47 |
-
The output tensor of shape (batch_size, dim).
|
| 48 |
-
"""
|
| 49 |
-
output = self.w2(F.silu(self.w1(x)) * self.w3(x))
|
| 50 |
-
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/46385211d438d1953e9ba21376680dc2c42db01c
DELETED
|
@@ -1,219 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import argparse
|
| 17 |
-
import os
|
| 18 |
-
import re
|
| 19 |
-
import string
|
| 20 |
-
from difflib import SequenceMatcher
|
| 21 |
-
|
| 22 |
-
from .misc import misc
|
| 23 |
-
import nltk
|
| 24 |
-
from better_profanity import profanity
|
| 25 |
-
|
| 26 |
-
from .guardrail_blocklist_utils import read_keyword_list_from_dir, to_ascii
|
| 27 |
-
from .guardrail_common_core import ContentSafetyGuardrail, GuardrailRunner
|
| 28 |
-
from .log import log
|
| 29 |
-
|
| 30 |
-
DEFAULT_CHECKPOINT_DIR = "checkpoints/Cosmos-1.0-Guardrail/blocklist"
|
| 31 |
-
CENSOR = misc.Color.red("*")
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
class Blocklist(ContentSafetyGuardrail):
|
| 35 |
-
def __init__(
|
| 36 |
-
self,
|
| 37 |
-
checkpoint_dir: str = DEFAULT_CHECKPOINT_DIR,
|
| 38 |
-
guardrail_partial_match_min_chars: int = 4,
|
| 39 |
-
guardrail_partial_match_letter_count: float = 0.5,
|
| 40 |
-
) -> None:
|
| 41 |
-
nltk.data.path.append(os.path.join(checkpoint_dir, "nltk_data"))
|
| 42 |
-
self.lemmatizer = nltk.WordNetLemmatizer()
|
| 43 |
-
self.profanity = profanity
|
| 44 |
-
self.checkpoint_dir = checkpoint_dir
|
| 45 |
-
self.guardrail_partial_match_min_chars = guardrail_partial_match_min_chars
|
| 46 |
-
self.guardrail_partial_match_letter_count = guardrail_partial_match_letter_count
|
| 47 |
-
|
| 48 |
-
# Load blocklist and whitelist keywords
|
| 49 |
-
self.blocklist_words = read_keyword_list_from_dir(os.path.join(self.checkpoint_dir, "custom"))
|
| 50 |
-
self.whitelist_words = read_keyword_list_from_dir(os.path.join(self.checkpoint_dir, "whitelist"))
|
| 51 |
-
self.exact_match_words = read_keyword_list_from_dir(os.path.join(self.checkpoint_dir, "exact_match"))
|
| 52 |
-
|
| 53 |
-
self.profanity.load_censor_words(custom_words=self.blocklist_words, whitelist_words=self.whitelist_words)
|
| 54 |
-
log.debug(f"Loaded {len(self.blocklist_words)} words/phrases from blocklist")
|
| 55 |
-
log.debug(f"Whitelisted {len(self.whitelist_words)} words/phrases from whitelist")
|
| 56 |
-
log.debug(f"Loaded {len(self.exact_match_words)} exact match words/phrases from blocklist")
|
| 57 |
-
|
| 58 |
-
def uncensor_whitelist(self, input_prompt: str, censored_prompt: str) -> str:
|
| 59 |
-
"""Explicitly uncensor words that are in the whitelist."""
|
| 60 |
-
input_words = input_prompt.split()
|
| 61 |
-
censored_words = censored_prompt.split()
|
| 62 |
-
whitelist_words = set(self.whitelist_words)
|
| 63 |
-
for i, token in enumerate(input_words):
|
| 64 |
-
if token.strip(string.punctuation).lower() in whitelist_words:
|
| 65 |
-
censored_words[i] = token
|
| 66 |
-
censored_prompt = " ".join(censored_words)
|
| 67 |
-
return censored_prompt
|
| 68 |
-
|
| 69 |
-
def censor_prompt(self, input_prompt: str) -> tuple[bool, str]:
|
| 70 |
-
"""Censor the prompt using the blocklist with better-profanity fuzzy matching.
|
| 71 |
-
|
| 72 |
-
Args:
|
| 73 |
-
input_prompt: input prompt to censor
|
| 74 |
-
|
| 75 |
-
Returns:
|
| 76 |
-
bool: True if the prompt is blocked, False otherwise
|
| 77 |
-
str: A message indicating why the prompt was blocked
|
| 78 |
-
"""
|
| 79 |
-
censored_prompt = self.profanity.censor(input_prompt, censor_char=CENSOR)
|
| 80 |
-
# Uncensor whitelisted words that were censored from blocklist fuzzy matching
|
| 81 |
-
censored_prompt = self.uncensor_whitelist(input_prompt, censored_prompt)
|
| 82 |
-
if CENSOR in censored_prompt:
|
| 83 |
-
return True, f"Prompt blocked by censorship: Censored Prompt: {censored_prompt}"
|
| 84 |
-
return False, ""
|
| 85 |
-
|
| 86 |
-
@staticmethod
|
| 87 |
-
def check_partial_match(
|
| 88 |
-
normalized_prompt: str, normalized_word: str, guardrail_partial_match_letter_count: float
|
| 89 |
-
) -> tuple[bool, str]:
|
| 90 |
-
"""
|
| 91 |
-
Check robustly if normalized word and the matching target have a difference of up to guardrail_partial_match_letter_count characters.
|
| 92 |
-
|
| 93 |
-
Args:
|
| 94 |
-
normalized_prompt: a string with many words
|
| 95 |
-
normalized_word: a string with one or multiple words, its length is smaller than normalized_prompt
|
| 96 |
-
guardrail_partial_match_letter_count: maximum allowed difference in characters (float to allow partial characters)
|
| 97 |
-
|
| 98 |
-
Returns:
|
| 99 |
-
bool: True if a match is found, False otherwise
|
| 100 |
-
str: A message indicating why the prompt was blocked
|
| 101 |
-
"""
|
| 102 |
-
prompt_words = normalized_prompt.split()
|
| 103 |
-
word_length = len(normalized_word.split())
|
| 104 |
-
max_similarity_ratio = (len(normalized_word) - float(guardrail_partial_match_letter_count)) / float(
|
| 105 |
-
len(normalized_word)
|
| 106 |
-
)
|
| 107 |
-
|
| 108 |
-
for i in range(len(prompt_words) - word_length + 1):
|
| 109 |
-
# Extract a substring from the prompt with the same number of words as the normalized_word
|
| 110 |
-
substring = " ".join(prompt_words[i : i + word_length])
|
| 111 |
-
similarity_ratio = SequenceMatcher(None, substring, normalized_word).ratio()
|
| 112 |
-
if similarity_ratio >= max_similarity_ratio:
|
| 113 |
-
return (
|
| 114 |
-
True,
|
| 115 |
-
f"Prompt blocked by partial match blocklist: Prompt: {normalized_prompt}, Partial Match Word: {normalized_word}",
|
| 116 |
-
)
|
| 117 |
-
|
| 118 |
-
return False, ""
|
| 119 |
-
|
| 120 |
-
@staticmethod
|
| 121 |
-
def check_against_whole_word_blocklist(
|
| 122 |
-
prompt: str,
|
| 123 |
-
blocklist: list[str],
|
| 124 |
-
guardrail_partial_match_min_chars: int = 4,
|
| 125 |
-
guardrail_partial_match_letter_count: float = 0.5,
|
| 126 |
-
) -> bool:
|
| 127 |
-
"""
|
| 128 |
-
Check if the prompt contains any whole words from the blocklist.
|
| 129 |
-
The match is case insensitive and robust to multiple spaces between words.
|
| 130 |
-
|
| 131 |
-
Args:
|
| 132 |
-
prompt: input prompt to check
|
| 133 |
-
blocklist: list of words to check against
|
| 134 |
-
guardrail_partial_match_min_chars: minimum number of characters in a word to check for partial match
|
| 135 |
-
guardrail_partial_match_letter_count: maximum allowed difference in characters for partial match
|
| 136 |
-
|
| 137 |
-
Returns:
|
| 138 |
-
bool: True if a match is found, False otherwise
|
| 139 |
-
str: A message indicating why the prompt was blocked
|
| 140 |
-
"""
|
| 141 |
-
# Normalize spaces and convert to lowercase
|
| 142 |
-
normalized_prompt = re.sub(r"\s+", " ", prompt).strip().lower()
|
| 143 |
-
|
| 144 |
-
for word in blocklist:
|
| 145 |
-
# Normalize spaces and convert to lowercase for each blocklist word
|
| 146 |
-
normalized_word = re.sub(r"\s+", " ", word).strip().lower()
|
| 147 |
-
|
| 148 |
-
# Use word boundaries to ensure whole word match
|
| 149 |
-
if re.search(r"\b" + re.escape(normalized_word) + r"\b", normalized_prompt):
|
| 150 |
-
return True, f"Prompt blocked by exact match blocklist: Prompt: {prompt}, Exact Match Word: {word}"
|
| 151 |
-
|
| 152 |
-
# Check for partial match if the word is long enough
|
| 153 |
-
if len(normalized_word) >= guardrail_partial_match_min_chars:
|
| 154 |
-
match, message = Blocklist.check_partial_match(
|
| 155 |
-
normalized_prompt, normalized_word, guardrail_partial_match_letter_count
|
| 156 |
-
)
|
| 157 |
-
if match:
|
| 158 |
-
return True, message
|
| 159 |
-
|
| 160 |
-
return False, ""
|
| 161 |
-
|
| 162 |
-
def is_safe(self, input_prompt: str = "") -> tuple[bool, str]:
|
| 163 |
-
"""Check if the input prompt is safe using the blocklist."""
|
| 164 |
-
# Check if the input is empty
|
| 165 |
-
if not input_prompt:
|
| 166 |
-
return False, "Input is empty"
|
| 167 |
-
input_prompt = to_ascii(input_prompt)
|
| 168 |
-
|
| 169 |
-
# Check full sentence for censored words
|
| 170 |
-
censored, message = self.censor_prompt(input_prompt)
|
| 171 |
-
if censored:
|
| 172 |
-
return False, message
|
| 173 |
-
|
| 174 |
-
# Check lemmatized words for censored words
|
| 175 |
-
tokens = nltk.word_tokenize(input_prompt)
|
| 176 |
-
lemmas = [self.lemmatizer.lemmatize(token) for token in tokens]
|
| 177 |
-
lemmatized_prompt = " ".join(lemmas)
|
| 178 |
-
censored, message = self.censor_prompt(lemmatized_prompt)
|
| 179 |
-
if censored:
|
| 180 |
-
return False, message
|
| 181 |
-
|
| 182 |
-
# Check for exact match blocklist words
|
| 183 |
-
censored, message = self.check_against_whole_word_blocklist(
|
| 184 |
-
input_prompt,
|
| 185 |
-
self.exact_match_words,
|
| 186 |
-
self.guardrail_partial_match_min_chars,
|
| 187 |
-
self.guardrail_partial_match_letter_count,
|
| 188 |
-
)
|
| 189 |
-
if censored:
|
| 190 |
-
return False, message
|
| 191 |
-
|
| 192 |
-
# If all these checks pass, the input is safe
|
| 193 |
-
return True, "Input is safe"
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
def parse_args():
|
| 197 |
-
parser = argparse.ArgumentParser()
|
| 198 |
-
parser.add_argument("--prompt", type=str, required=True, help="Input prompt")
|
| 199 |
-
parser.add_argument(
|
| 200 |
-
"--checkpoint_dir",
|
| 201 |
-
type=str,
|
| 202 |
-
help="Path to the Blocklist checkpoint folder",
|
| 203 |
-
default=DEFAULT_CHECKPOINT_DIR,
|
| 204 |
-
)
|
| 205 |
-
return parser.parse_args()
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
def main(args):
|
| 209 |
-
blocklist = Blocklist(checkpoint_dir=args.checkpoint_dir)
|
| 210 |
-
runner = GuardrailRunner(safety_models=[blocklist])
|
| 211 |
-
with misc.timer("blocklist safety check"):
|
| 212 |
-
safety, message = runner.run_safety_check(args.prompt)
|
| 213 |
-
log.info(f"Input is: {'SAFE' if safety else 'UNSAFE'}")
|
| 214 |
-
log.info(f"Message: {message}") if not safety else None
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
if __name__ == "__main__":
|
| 218 |
-
args = parse_args()
|
| 219 |
-
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/4a13a8fde58e7852b683112be63eaed44e1f143f
DELETED
|
@@ -1,596 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import json
|
| 17 |
-
import os
|
| 18 |
-
import time
|
| 19 |
-
from pathlib import Path
|
| 20 |
-
from typing import Any, Dict, List, Optional, Set
|
| 21 |
-
|
| 22 |
-
from .misc import misc
|
| 23 |
-
import torch
|
| 24 |
-
from safetensors.torch import load_file
|
| 25 |
-
from torch.nn.modules.module import _IncompatibleKeys
|
| 26 |
-
|
| 27 |
-
from .ar_config_base_model import ModelConfig
|
| 28 |
-
from .ar_config_base_tokenizer import TokenizerConfig
|
| 29 |
-
from .ar_module_mm_projector import MultimodalProjector
|
| 30 |
-
from .ar_network_transformer import Transformer
|
| 31 |
-
from .ar_network_vit import VisionTransformer, get_vit_config
|
| 32 |
-
from .ar_tokenizer_tokenizer import DiscreteMultimodalTokenizer, update_vocab_size
|
| 33 |
-
from .ar_utils_checkpoint import (
|
| 34 |
-
get_partial_state_dict,
|
| 35 |
-
process_state_dict,
|
| 36 |
-
substrings_to_ignore,
|
| 37 |
-
)
|
| 38 |
-
from .ar_utils_sampling import decode_n_tokens, decode_one_token, prefill
|
| 39 |
-
from .log import log
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
class AutoRegressiveModel(torch.nn.Module):
|
| 43 |
-
"""
|
| 44 |
-
A class to build and use a AutoRegressiveModel model for text generation.
|
| 45 |
-
|
| 46 |
-
Methods:
|
| 47 |
-
build: Build a AutoRegressiveModel instance by initializing and loading a model checkpoint.
|
| 48 |
-
generate: Generate text sequences based on provided prompts using the language generation model.
|
| 49 |
-
"""
|
| 50 |
-
|
| 51 |
-
def __init__(
|
| 52 |
-
self,
|
| 53 |
-
model: Transformer = None,
|
| 54 |
-
tokenizer: DiscreteMultimodalTokenizer = None,
|
| 55 |
-
config: ModelConfig = None,
|
| 56 |
-
vision_encoder: VisionTransformer = None,
|
| 57 |
-
mm_projector: MultimodalProjector = None,
|
| 58 |
-
):
|
| 59 |
-
"""
|
| 60 |
-
Initialize the AutoRegressiveModel instance with a model and tokenizer.
|
| 61 |
-
|
| 62 |
-
Args:
|
| 63 |
-
model (Transformer): The Transformer model for text generation.
|
| 64 |
-
tokenizer (Tokenizer): The tokenizer for encoding and decoding text.
|
| 65 |
-
config (Config): The configuration for the AutoRegressiveModel model.
|
| 66 |
-
vision_encoder (VisionTransformer): The vision encoder for the AutoRegressiveModel model.
|
| 67 |
-
mm_projector (MultimodalProjector): The multi-modal projector for the AutoRegressiveModel model.
|
| 68 |
-
"""
|
| 69 |
-
super().__init__()
|
| 70 |
-
self.model = model
|
| 71 |
-
self.tokenizer = tokenizer
|
| 72 |
-
self.config = config
|
| 73 |
-
|
| 74 |
-
self.vision_encoder = vision_encoder
|
| 75 |
-
self.mm_projector = mm_projector
|
| 76 |
-
|
| 77 |
-
@property
|
| 78 |
-
def precision(self):
|
| 79 |
-
return self.model.precision
|
| 80 |
-
|
| 81 |
-
def get_num_params(
|
| 82 |
-
self,
|
| 83 |
-
) -> int:
|
| 84 |
-
"""
|
| 85 |
-
Return the number of parameters in the model.
|
| 86 |
-
"""
|
| 87 |
-
n_params = sum(p.numel() for p in self.parameters())
|
| 88 |
-
return n_params
|
| 89 |
-
|
| 90 |
-
def load_ar_model(
|
| 91 |
-
self,
|
| 92 |
-
tokenizer_config,
|
| 93 |
-
):
|
| 94 |
-
"""
|
| 95 |
-
Load the AR model.
|
| 96 |
-
"""
|
| 97 |
-
model_config = self.config
|
| 98 |
-
ckpt_path = model_config.ckpt_path
|
| 99 |
-
with misc.timer(f"loading checkpoint from {ckpt_path}"):
|
| 100 |
-
if ckpt_path.endswith("safetensors"):
|
| 101 |
-
# Load with safetensors API
|
| 102 |
-
checkpoint = load_file(ckpt_path, device="cpu")
|
| 103 |
-
else:
|
| 104 |
-
# The pytorch version
|
| 105 |
-
checkpoint = torch.load(
|
| 106 |
-
ckpt_path,
|
| 107 |
-
map_location="cpu",
|
| 108 |
-
mmap=True, # load the checkpoint in memory-mapped mode
|
| 109 |
-
weights_only=True,
|
| 110 |
-
)
|
| 111 |
-
llm_checkpoint = checkpoint["model"] if "model" in checkpoint else checkpoint
|
| 112 |
-
orig_precision = torch.get_default_dtype()
|
| 113 |
-
precision = getattr(torch, model_config.precision)
|
| 114 |
-
torch.set_default_dtype(precision)
|
| 115 |
-
log.debug(f"Setting torch default dtype to {precision}")
|
| 116 |
-
|
| 117 |
-
model = Transformer(
|
| 118 |
-
params=model_config,
|
| 119 |
-
tokenizer_config=tokenizer_config,
|
| 120 |
-
)
|
| 121 |
-
log.debug(
|
| 122 |
-
f"tokenizer tokenizer_config.video_tokenizer.vocab_size {tokenizer_config.video_tokenizer.vocab_size}"
|
| 123 |
-
)
|
| 124 |
-
vocab_size = update_vocab_size(
|
| 125 |
-
existing_vocab_size=0,
|
| 126 |
-
to_be_added_vocab_size=tokenizer_config.video_tokenizer.vocab_size,
|
| 127 |
-
training_type=tokenizer_config.training_type,
|
| 128 |
-
add_special_tokens=False,
|
| 129 |
-
)
|
| 130 |
-
log.debug(
|
| 131 |
-
f"tokenizer tokenizer_config.video_tokenizer.vocab_size {tokenizer_config.video_tokenizer.vocab_size} vocab_size {vocab_size}"
|
| 132 |
-
)
|
| 133 |
-
# Perform vocab expansion
|
| 134 |
-
if vocab_size > model.vocab_size:
|
| 135 |
-
log.debug(f"Expanding vocab size to {vocab_size}")
|
| 136 |
-
# For text-to-video training, we only expand the embedding layer but not the output (unembedding) layer,
|
| 137 |
-
expand_output_layer = not (tokenizer_config.training_type == "text_to_video")
|
| 138 |
-
model.expand_vocab(
|
| 139 |
-
vocab_size,
|
| 140 |
-
init_method="gaussian",
|
| 141 |
-
expand_output_layer=expand_output_layer,
|
| 142 |
-
)
|
| 143 |
-
# Remove the "model." prefix in the state_dict
|
| 144 |
-
llm_checkpoint = process_state_dict(llm_checkpoint, prefix_to_remove="model.")
|
| 145 |
-
with misc.timer("loading state_dict into model"):
|
| 146 |
-
missing_keys, _ = model.load_state_dict(llm_checkpoint, strict=True)
|
| 147 |
-
# Remove keys with "_extra_state" suffix in missing_keys (defined by TransformerEngine for FP8 usage)
|
| 148 |
-
missing_keys = [k for k in missing_keys if not k.endswith("_extra_state")]
|
| 149 |
-
assert len(missing_keys) == 0, f"Missing keys: {missing_keys}"
|
| 150 |
-
|
| 151 |
-
self.model = model.to(precision).to("cuda")
|
| 152 |
-
torch.set_default_dtype(orig_precision) # Reset the default dtype to the original value
|
| 153 |
-
|
| 154 |
-
def load_tokenizer(self, tokenizer_config):
|
| 155 |
-
"""
|
| 156 |
-
Load the tokenizer.
|
| 157 |
-
"""
|
| 158 |
-
self.tokenizer = DiscreteMultimodalTokenizer(tokenizer_config)
|
| 159 |
-
|
| 160 |
-
@staticmethod
|
| 161 |
-
def build(
|
| 162 |
-
model_config: ModelConfig = ModelConfig(),
|
| 163 |
-
tokenizer_config: TokenizerConfig = None,
|
| 164 |
-
) -> "AutoRegressiveModel":
|
| 165 |
-
"""
|
| 166 |
-
Build a AutoRegressiveModel instance by initializing and loading a model checkpoint.
|
| 167 |
-
|
| 168 |
-
Args:
|
| 169 |
-
model_config (ModelConfig, optional): The model configuration for the AutoRegressiveModel instance. Defaults to ModelConfig().
|
| 170 |
-
tokenizer_config (TokenizerConfig, optional): The tokenizer configuration for the AutoRegressiveModel instance. Defaults to None.
|
| 171 |
-
download_rank_sync (bool, optional): Whether to download the checkpoint in a rank-synchronized manner. Defaults to True.
|
| 172 |
-
Returns:
|
| 173 |
-
AutoRegressiveModel: An instance of the AutoRegressiveModel class with the loaded model and tokenizer.
|
| 174 |
-
|
| 175 |
-
Raises:
|
| 176 |
-
AssertionError: If there are no checkpoint files in the specified directory.
|
| 177 |
-
|
| 178 |
-
Note:
|
| 179 |
-
This method sets the device to CUDA and loads the pre-trained model and tokenizer.
|
| 180 |
-
"""
|
| 181 |
-
# Initialize model configuration parameters
|
| 182 |
-
config_params = {}
|
| 183 |
-
|
| 184 |
-
# Load checkpoint and model parameters
|
| 185 |
-
|
| 186 |
-
if model_config.ckpt_path is None:
|
| 187 |
-
# If ckpt_path is not provided, we assume the model checkpoint is saved in the ckpt_dir
|
| 188 |
-
ckpt_dir = model_config.ckpt_dir
|
| 189 |
-
|
| 190 |
-
# We prioritize safetensors version over the pytorch version, since the former is
|
| 191 |
-
# much faster for checkpoint loading.
|
| 192 |
-
checkpoints = sorted(Path(ckpt_dir).glob("*.safetensors"))
|
| 193 |
-
if len(checkpoints) == 0:
|
| 194 |
-
checkpoints = sorted(Path(ckpt_dir).glob("*.pth"))
|
| 195 |
-
|
| 196 |
-
assert len(checkpoints) > 0, f"no checkpoint files found in {ckpt_dir}"
|
| 197 |
-
assert (
|
| 198 |
-
len(checkpoints) == 1
|
| 199 |
-
), f"multiple checkpoint files found in {ckpt_dir} (currently only one is supported)"
|
| 200 |
-
ckpt_path = str(checkpoints[0]) # Assuming single checkpoint for non-parallel case
|
| 201 |
-
|
| 202 |
-
if os.path.exists(Path(ckpt_dir) / "config.json"):
|
| 203 |
-
with open(Path(ckpt_dir) / "config.json", "r") as f:
|
| 204 |
-
config_params = json.loads(f.read())
|
| 205 |
-
else:
|
| 206 |
-
log.info(
|
| 207 |
-
f"No params.json found in the checkpoint directory ({ckpt_dir}). " f"Using default model config."
|
| 208 |
-
)
|
| 209 |
-
|
| 210 |
-
else:
|
| 211 |
-
# If ckpt_path is provided, we load the model from the specified path,
|
| 212 |
-
# and use the default model configuration
|
| 213 |
-
ckpt_path = model_config.ckpt_path
|
| 214 |
-
|
| 215 |
-
for key, value in config_params.items():
|
| 216 |
-
if hasattr(model_config, key):
|
| 217 |
-
# Override the default model configuration with the parameters from the checkpoint
|
| 218 |
-
setattr(model_config, key, value)
|
| 219 |
-
|
| 220 |
-
with misc.timer(f"loading checkpoint from {ckpt_path}"):
|
| 221 |
-
if ckpt_path.endswith("safetensors"):
|
| 222 |
-
# Load with safetensors API
|
| 223 |
-
checkpoint = load_file(ckpt_path, device="cpu")
|
| 224 |
-
else:
|
| 225 |
-
# The pytorch version
|
| 226 |
-
checkpoint = torch.load(
|
| 227 |
-
ckpt_path,
|
| 228 |
-
map_location="cpu",
|
| 229 |
-
mmap=True, # load the checkpoint in memory-mapped mode
|
| 230 |
-
weights_only=True,
|
| 231 |
-
)
|
| 232 |
-
llm_checkpoint = checkpoint["model"] if "model" in checkpoint else checkpoint
|
| 233 |
-
|
| 234 |
-
if model_config.vision_encoder is not None:
|
| 235 |
-
# Take the LLM weights (starting with "model.") from the VLM checkpoint
|
| 236 |
-
llm_checkpoint = get_partial_state_dict(llm_checkpoint, prefix="model.")
|
| 237 |
-
if model_config.vision_encoder is not None:
|
| 238 |
-
# For vanilla VLM ckpt before fine-tuning, `checkpoint['model']` only contains LLM weights, and `checkpoint['vision_encoder']`
|
| 239 |
-
# and `checkpoint['mm_projector']` are both for those weights
|
| 240 |
-
# For fine-tuned VLM ckpt, `checkpoint['model']` contains all LLM, mm_projector and vision_encoder weights
|
| 241 |
-
if "vision_encoder" in checkpoint:
|
| 242 |
-
log.debug("Using pretrained vision_encoder")
|
| 243 |
-
vit_checkpoint = checkpoint["vision_encoder"]
|
| 244 |
-
else:
|
| 245 |
-
log.debug("Using fine-tuned vision_encoder")
|
| 246 |
-
vit_checkpoint = get_partial_state_dict(llm_checkpoint, prefix="vision_encoder.")
|
| 247 |
-
vit_checkpoint = process_state_dict(vit_checkpoint, prefix_to_remove="vision_encoder.")
|
| 248 |
-
if "mm_projector" in checkpoint:
|
| 249 |
-
log.debug("Using pretrained mm_projector")
|
| 250 |
-
projector_checkpoint = checkpoint["mm_projector"]
|
| 251 |
-
else:
|
| 252 |
-
log.debug("Using fine-tuned mm_projector")
|
| 253 |
-
projector_checkpoint = get_partial_state_dict(llm_checkpoint, prefix="mm_projector.")
|
| 254 |
-
projector_checkpoint = process_state_dict(projector_checkpoint, prefix_to_remove="mm_projector.")
|
| 255 |
-
assert (
|
| 256 |
-
len(vit_checkpoint) > 0 and len(projector_checkpoint) > 0
|
| 257 |
-
), "vit_checkpoint and projector_checkpoint cannot be empty. We do not support random initialization for vision_encoder and mm_projector."
|
| 258 |
-
|
| 259 |
-
tokenizer = DiscreteMultimodalTokenizer(tokenizer_config)
|
| 260 |
-
orig_precision = torch.get_default_dtype()
|
| 261 |
-
precision = getattr(torch, model_config.precision)
|
| 262 |
-
torch.set_default_dtype(precision)
|
| 263 |
-
log.debug(f"Setting torch default dtype to {precision}")
|
| 264 |
-
|
| 265 |
-
model = Transformer(
|
| 266 |
-
params=model_config,
|
| 267 |
-
tokenizer_config=tokenizer_config,
|
| 268 |
-
)
|
| 269 |
-
model_kwargs = {}
|
| 270 |
-
|
| 271 |
-
if model_config.vision_encoder is not None:
|
| 272 |
-
assert model_config.mm_projector is not None, "mm_projector must be provided if vision_encoder is provided."
|
| 273 |
-
vit_config = get_vit_config(model_config.vision_encoder)
|
| 274 |
-
vision_encoder = VisionTransformer.build(
|
| 275 |
-
vit_config,
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
-
mm_projector = MultimodalProjector(
|
| 279 |
-
mm_projector_type=model_config.mm_projector, in_dim=vit_config["dim"], out_dim=model_config["dim"]
|
| 280 |
-
)
|
| 281 |
-
model_kwargs.update({"vision_encoder": vision_encoder, "mm_projector": mm_projector})
|
| 282 |
-
|
| 283 |
-
# Perform vocab expansion
|
| 284 |
-
if tokenizer.vocab_size > model.vocab_size:
|
| 285 |
-
log.debug(f"Expanding vocab size to {tokenizer.vocab_size}")
|
| 286 |
-
# For text-to-video training, we only expand the embedding layer but not the output (unembedding) layer,
|
| 287 |
-
expand_output_layer = not (tokenizer.training_type == "text_to_video")
|
| 288 |
-
model.expand_vocab(
|
| 289 |
-
tokenizer.vocab_size,
|
| 290 |
-
init_method="gaussian",
|
| 291 |
-
expand_output_layer=expand_output_layer,
|
| 292 |
-
)
|
| 293 |
-
|
| 294 |
-
# Remove the "model." prefix in the state_dict
|
| 295 |
-
llm_checkpoint = process_state_dict(llm_checkpoint, prefix_to_remove="model.")
|
| 296 |
-
with misc.timer("loading state_dict into model"):
|
| 297 |
-
missing_keys, unexpected_keys = model.load_state_dict(llm_checkpoint, strict=True)
|
| 298 |
-
# Remove keys with "_extra_state" suffix in missing_keys (defined by TransformerEngine for FP8 usage)
|
| 299 |
-
missing_keys = [k for k in missing_keys if not k.endswith("_extra_state")]
|
| 300 |
-
assert len(missing_keys) == 0, f"Missing keys: {missing_keys}"
|
| 301 |
-
|
| 302 |
-
if model_config.vision_encoder is not None:
|
| 303 |
-
vision_encoder.load_state_dict(vit_checkpoint)
|
| 304 |
-
mm_projector.load_state_dict(projector_checkpoint)
|
| 305 |
-
if model_config.vision_encoder_in_channels != 3:
|
| 306 |
-
vision_encoder.expand_in_channels(model_config.vision_encoder_in_channels)
|
| 307 |
-
|
| 308 |
-
model = model.to(precision) # ensure model parameters are in the correct precision
|
| 309 |
-
log.debug(f"Model config: {model_config}")
|
| 310 |
-
|
| 311 |
-
model_class = AutoRegressiveModel
|
| 312 |
-
|
| 313 |
-
torch.set_default_dtype(orig_precision) # Reset the default dtype to the original value
|
| 314 |
-
|
| 315 |
-
return model_class(model, tokenizer, model_config, **model_kwargs)
|
| 316 |
-
|
| 317 |
-
@torch.no_grad()
|
| 318 |
-
def generate(
|
| 319 |
-
self,
|
| 320 |
-
prompt_tokens: List[List[int]] | torch.Tensor,
|
| 321 |
-
max_gen_len: int,
|
| 322 |
-
temperature: float = 1.0,
|
| 323 |
-
top_k: Optional[int] = None,
|
| 324 |
-
top_p: Optional[float] = None,
|
| 325 |
-
num_gen_seq: int = 1,
|
| 326 |
-
logprobs: bool = False,
|
| 327 |
-
echo: bool = False,
|
| 328 |
-
seed: int = None,
|
| 329 |
-
context: Optional[torch.Tensor] = None,
|
| 330 |
-
context_mask: Optional[torch.Tensor] = None,
|
| 331 |
-
compile_sampling: bool = True,
|
| 332 |
-
compile_prefill: bool = False,
|
| 333 |
-
verbose: bool = True,
|
| 334 |
-
stop_tokens: Optional[Set[int]] = None,
|
| 335 |
-
images: Optional[torch.Tensor] = None,
|
| 336 |
-
):
|
| 337 |
-
"""
|
| 338 |
-
Autoregressive generation built upon the gpt-fast implementation (https://github.com/pytorch-labs/gpt-fast).
|
| 339 |
-
|
| 340 |
-
Args:
|
| 341 |
-
prompt_tokens (List[List[int]] | torch.Tensor): A single prompt of shape (1, seq_len).
|
| 342 |
-
max_gen_len (int): Maximum length of the generated text sequence.
|
| 343 |
-
temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.6.
|
| 344 |
-
top_k (int, optional): Top-k value for top-k sampling. Defaults to None.
|
| 345 |
-
top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to None.
|
| 346 |
-
num_gen_seq (int, optional): Number of outputs to generate given the same prompt. Defaults to 1. When temperature == 0, num_gen_seq must be 1 because the generation is deterministic.
|
| 347 |
-
echo (bool, optional): Flag indicating whether to include prompt tokens in the generated output. Defaults to False.
|
| 348 |
-
logit_clipping_range (list, optional): Range of logits to clip. Defaults to [].
|
| 349 |
-
seed (int, optional): Random seed for reproducibility. Defaults to None.
|
| 350 |
-
compile_sampling (bool, optional): Flag indicating whether to compile the decoding function. Defaults to True.
|
| 351 |
-
compile_prefill (bool, optional): Flag indicating whether to compile the prefill function. Defaults to False.
|
| 352 |
-
verbose (bool, optional): Flag indicating whether to print the the time. Defaults to False.
|
| 353 |
-
"""
|
| 354 |
-
assert top_k is None or top_p is None, f"Only one of top_k ({top_k} or top_p ({top_p} should be specified."
|
| 355 |
-
if temperature == 0:
|
| 356 |
-
top_p, top_k = None, None
|
| 357 |
-
log.debug("Setting top_p and top_k to None because temperature is 0")
|
| 358 |
-
if top_p is not None:
|
| 359 |
-
log.debug(f"Using top-p sampling with p={top_p} and temperature={temperature}")
|
| 360 |
-
elif top_k is not None:
|
| 361 |
-
log.debug(f"Using top-k sampling with k={top_k} and temperature={temperature}")
|
| 362 |
-
else:
|
| 363 |
-
log.debug("Not applying top-k or top-p sampling. Will use top-k sampling with k=None")
|
| 364 |
-
|
| 365 |
-
orig_precision = torch.get_default_dtype()
|
| 366 |
-
torch.set_default_dtype(self.precision)
|
| 367 |
-
|
| 368 |
-
torch._inductor.config.coordinate_descent_tuning = True
|
| 369 |
-
torch._inductor.config.triton.unique_kernel_names = True
|
| 370 |
-
# Experimental features to reduce compilation times, will be on by default in future
|
| 371 |
-
torch._inductor.config.fx_graph_cache = True
|
| 372 |
-
|
| 373 |
-
if seed is not None:
|
| 374 |
-
misc.set_random_seed(seed)
|
| 375 |
-
|
| 376 |
-
assert not logprobs, "logprobs are not supported for fast_generate yet"
|
| 377 |
-
# Examine if the function prefil and decode_one_token functions are compiled yet. If not, compile them based on the flags
|
| 378 |
-
if compile_sampling and not getattr(self, "inference_decode_compiled", False):
|
| 379 |
-
self.decode_one_token = torch.compile(decode_one_token, mode="reduce-overhead", fullgraph=True)
|
| 380 |
-
self.inference_decode_compiled = True
|
| 381 |
-
log.info("Compiled AR sampling function. Note: the first run will be slower due to compilation")
|
| 382 |
-
if compile_prefill and not getattr(self, "inference_prefill_compiled", False):
|
| 383 |
-
self.prefill = torch.compile(prefill, fullgraph=True, dynamic=True)
|
| 384 |
-
self.inference_prefill_compiled = True
|
| 385 |
-
log.info("Compiled prefill function. Note: the first run will be slower due to compilation")
|
| 386 |
-
|
| 387 |
-
if not hasattr(self, "decode_one_token"):
|
| 388 |
-
self.decode_one_token = decode_one_token
|
| 389 |
-
if not hasattr(self, "prefill"):
|
| 390 |
-
self.prefill = prefill
|
| 391 |
-
|
| 392 |
-
# Initialization and Assertions
|
| 393 |
-
if isinstance(self.model.params, list):
|
| 394 |
-
# During training, model.params is a list
|
| 395 |
-
log.debug(
|
| 396 |
-
f"Find self.model.params is a list, use self.config instead. Get max_batch_size={self.config.max_batch_size}, max_seq_len={self.config.max_seq_len}"
|
| 397 |
-
)
|
| 398 |
-
params = self.config
|
| 399 |
-
else:
|
| 400 |
-
params = self.model.params
|
| 401 |
-
if isinstance(prompt_tokens, list):
|
| 402 |
-
prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device="cuda")
|
| 403 |
-
if prompt_tokens.ndim == 1:
|
| 404 |
-
prompt_tokens = prompt_tokens.view(1, -1)
|
| 405 |
-
else:
|
| 406 |
-
assert prompt_tokens.ndim == 2, f"prompt_tokens has shape {prompt_tokens.shape}"
|
| 407 |
-
batch_size, prompt_len = prompt_tokens.shape
|
| 408 |
-
total_len = min(params.max_seq_len, max_gen_len + prompt_len)
|
| 409 |
-
if max_gen_len + prompt_len > params.max_seq_len:
|
| 410 |
-
log.warning(
|
| 411 |
-
f"max_gen_len + prompt_len={max_gen_len + prompt_len} exceeds max_seq_len={params.max_seq_len}, truncate max_gen_len to {params.max_seq_len - prompt_len}"
|
| 412 |
-
)
|
| 413 |
-
max_gen_len = params.max_seq_len - prompt_len
|
| 414 |
-
|
| 415 |
-
if context_mask is not None:
|
| 416 |
-
context_mask = context_mask.to(dtype=torch.bool)
|
| 417 |
-
if context_mask.ndim == 2:
|
| 418 |
-
assert (
|
| 419 |
-
context_mask.shape[0] == batch_size
|
| 420 |
-
), f"batch_size mismatch: {context_mask.shape[0]} != {batch_size}"
|
| 421 |
-
# Unsqueeze it to make it of shape [batch_size, 1, 1, context_seq_len]
|
| 422 |
-
context_mask = context_mask.view(batch_size, 1, 1, -1)
|
| 423 |
-
|
| 424 |
-
if num_gen_seq > 1:
|
| 425 |
-
assert (
|
| 426 |
-
batch_size == 1
|
| 427 |
-
), f"num_gen_seq > 1 is only supported for a single prompt, got {len(prompt_tokens)} prompts"
|
| 428 |
-
log.debug(f"Generating {num_gen_seq} sequences with the same prompt")
|
| 429 |
-
assert (
|
| 430 |
-
num_gen_seq <= params.max_batch_size
|
| 431 |
-
), f"num_gen_seq={num_gen_seq} exceeds max_batch_size={params.max_batch_size}"
|
| 432 |
-
# repeat the prompt tokens for num_gen_seq times
|
| 433 |
-
prompt_tokens = prompt_tokens.repeat(num_gen_seq, 1)
|
| 434 |
-
assert prompt_tokens.shape == (
|
| 435 |
-
num_gen_seq,
|
| 436 |
-
prompt_len,
|
| 437 |
-
), f"prompt_tokens must be of shape (num_gen_seq, seq_len), got {prompt_tokens.shape}"
|
| 438 |
-
batch_size = len(prompt_tokens)
|
| 439 |
-
|
| 440 |
-
# create an empty tensor of the expected final shape and fill in the current tokens
|
| 441 |
-
empty = torch.empty(batch_size, total_len, dtype=prompt_tokens.dtype, device=prompt_tokens.device)
|
| 442 |
-
empty[:, :prompt_len] = prompt_tokens
|
| 443 |
-
seq = empty
|
| 444 |
-
input_pos = torch.arange(0, prompt_len, device="cuda")
|
| 445 |
-
|
| 446 |
-
if verbose:
|
| 447 |
-
prefill_start = time.time()
|
| 448 |
-
|
| 449 |
-
if images is not None:
|
| 450 |
-
images = images.to(device=prompt_tokens.device, dtype=torch.bfloat16)
|
| 451 |
-
prompt_token_embeddings = self.embed_vision_language_features(prompt_tokens, images)
|
| 452 |
-
else:
|
| 453 |
-
prompt_token_embeddings = None
|
| 454 |
-
|
| 455 |
-
if context is not None:
|
| 456 |
-
context = context.to(device=prompt_tokens.device, dtype=self.precision)
|
| 457 |
-
|
| 458 |
-
# Prefill stage
|
| 459 |
-
next_token = self.prefill(
|
| 460 |
-
self.model,
|
| 461 |
-
input_pos=input_pos,
|
| 462 |
-
tokens=prompt_tokens if prompt_token_embeddings is None else None,
|
| 463 |
-
token_embeddings=prompt_token_embeddings,
|
| 464 |
-
temperature=temperature,
|
| 465 |
-
top_k=top_k,
|
| 466 |
-
top_p=top_p,
|
| 467 |
-
context=context,
|
| 468 |
-
context_mask=context_mask,
|
| 469 |
-
)
|
| 470 |
-
if verbose:
|
| 471 |
-
prefill_time = time.time() - prefill_start
|
| 472 |
-
|
| 473 |
-
seq[:, [prompt_len]] = next_token.to(dtype=seq.dtype)
|
| 474 |
-
input_pos = torch.tensor([prompt_len], dtype=torch.long, device="cuda")
|
| 475 |
-
stop_tokens = self.tokenizer.stop_tokens if stop_tokens is None else stop_tokens
|
| 476 |
-
stop_tokens = torch.tensor(list(stop_tokens), dtype=torch.long, device="cuda")
|
| 477 |
-
|
| 478 |
-
if verbose:
|
| 479 |
-
decode_start = time.time()
|
| 480 |
-
# Decode stage
|
| 481 |
-
generated_tokens = decode_n_tokens(
|
| 482 |
-
self.model,
|
| 483 |
-
next_token.view(batch_size, -1),
|
| 484 |
-
input_pos,
|
| 485 |
-
max_gen_len - 1,
|
| 486 |
-
temperature=temperature,
|
| 487 |
-
top_k=top_k,
|
| 488 |
-
top_p=top_p,
|
| 489 |
-
stop_tokens=stop_tokens,
|
| 490 |
-
decode_one_token_function=self.decode_one_token,
|
| 491 |
-
context=context,
|
| 492 |
-
context_mask=context_mask,
|
| 493 |
-
)
|
| 494 |
-
gen_len = len(generated_tokens)
|
| 495 |
-
if verbose:
|
| 496 |
-
decode_time = time.time() - decode_start
|
| 497 |
-
prefill_throughput = prompt_len / prefill_time
|
| 498 |
-
decode_throughput = gen_len / decode_time
|
| 499 |
-
log.debug(f"[Prefill] Time: {prefill_time:.2f}s; Throughput: {prefill_throughput:.2f} tokens/s")
|
| 500 |
-
log.debug(f"[Decode] Time: {decode_time:.2f}s; Throughput: {decode_throughput:.2f} tokens/s")
|
| 501 |
-
|
| 502 |
-
generated_tokens = torch.cat(generated_tokens, dim=1)
|
| 503 |
-
|
| 504 |
-
log.debug(f"generated_tokens: {generated_tokens.shape}")
|
| 505 |
-
seq = seq[:, : prompt_len + 1 + gen_len]
|
| 506 |
-
seq[:, prompt_len + 1 :] = generated_tokens
|
| 507 |
-
if not echo:
|
| 508 |
-
seq = seq[:, prompt_len:]
|
| 509 |
-
|
| 510 |
-
torch.set_default_dtype(orig_precision) # Reset the default dtype to the original value
|
| 511 |
-
|
| 512 |
-
return seq, None
|
| 513 |
-
|
| 514 |
-
def embed_vision_language_features(self, input_ids: torch.Tensor, images: torch.tensor) -> torch.Tensor:
|
| 515 |
-
"""
|
| 516 |
-
Embed vision and language features into a combined representation.
|
| 517 |
-
|
| 518 |
-
Args:
|
| 519 |
-
input_ids (torch.Tensor): Input token IDs.
|
| 520 |
-
images (torch.tensor): Input images.
|
| 521 |
-
|
| 522 |
-
Returns:
|
| 523 |
-
torch.Tensor: Combined vision-language features.
|
| 524 |
-
|
| 525 |
-
Raises:
|
| 526 |
-
AssertionError: If vision encoder or mm projector is not initialized,
|
| 527 |
-
or if dimensions mismatch.
|
| 528 |
-
"""
|
| 529 |
-
# Ensure vision encoder and mm projector are initialized
|
| 530 |
-
assert self.vision_encoder is not None
|
| 531 |
-
assert self.mm_projector is not None
|
| 532 |
-
|
| 533 |
-
# Get image token ID and validate it
|
| 534 |
-
image_token_id = self.vision_encoder.image_token_id
|
| 535 |
-
assert isinstance(image_token_id, int) and image_token_id >= 0, f"Invalid image_token_id: {image_token_id}"
|
| 536 |
-
|
| 537 |
-
# Identify text and image locations in the input
|
| 538 |
-
text_locations = input_ids != image_token_id
|
| 539 |
-
image_locations = input_ids == image_token_id
|
| 540 |
-
|
| 541 |
-
# Process text features
|
| 542 |
-
text_features = self.model.tok_embeddings(input_ids[text_locations])
|
| 543 |
-
|
| 544 |
-
# Process image features
|
| 545 |
-
images = images.to(device=text_features.device, dtype=text_features.dtype)
|
| 546 |
-
vit_outputs = self.vision_encoder(images)
|
| 547 |
-
image_features = self.mm_projector(vit_outputs)
|
| 548 |
-
|
| 549 |
-
# Get dimensions
|
| 550 |
-
B, seq_len = input_ids.shape
|
| 551 |
-
N_total = B * seq_len
|
| 552 |
-
N_txt, D_txt = text_features.shape
|
| 553 |
-
N_img, N_patch, D_img = image_features.shape
|
| 554 |
-
|
| 555 |
-
# Reshape image features
|
| 556 |
-
image_features = image_features.reshape(N_img * N_patch, D_img)
|
| 557 |
-
|
| 558 |
-
# Validate dimensions
|
| 559 |
-
assert D_txt == D_img, f"Text features dim {D_txt} should be equal to image features dim {D_img}"
|
| 560 |
-
assert (
|
| 561 |
-
N_total == N_txt + N_img * N_patch
|
| 562 |
-
), f"seq_len {seq_len} should be equal to N_txt + N_img*N_Patch {(N_txt, N_img * N_patch, image_locations.sum().item())}"
|
| 563 |
-
|
| 564 |
-
# Combine text and image features
|
| 565 |
-
combined_features = torch.empty(
|
| 566 |
-
(B, seq_len, D_txt),
|
| 567 |
-
dtype=text_features.dtype,
|
| 568 |
-
device=text_features.device,
|
| 569 |
-
)
|
| 570 |
-
combined_features[text_locations, :] = text_features
|
| 571 |
-
combined_features[image_locations, :] = image_features
|
| 572 |
-
|
| 573 |
-
return combined_features
|
| 574 |
-
|
| 575 |
-
def state_dict(self, *args, **kwargs):
|
| 576 |
-
"""
|
| 577 |
-
Process the state dict (e.g., remove "_extra_state" keys imposed by TransformerEngine for FP8).
|
| 578 |
-
"""
|
| 579 |
-
state_dict = super().state_dict(*args, **kwargs)
|
| 580 |
-
return process_state_dict(state_dict)
|
| 581 |
-
|
| 582 |
-
def load_state_dict(self, state_dict: Dict[str, Any], strict: bool = True, assign: bool = False):
|
| 583 |
-
"""
|
| 584 |
-
Ignore the missing keys with substrings matching `substring_to_ignore` (e.g., "_extra_state" keys imposed by
|
| 585 |
-
TransformerEngine for FP8).
|
| 586 |
-
"""
|
| 587 |
-
state_dict = process_state_dict(state_dict)
|
| 588 |
-
missing_keys, unexpected_keys = super().load_state_dict(state_dict, strict=False, assign=assign)
|
| 589 |
-
actual_missing_keys = []
|
| 590 |
-
for key in missing_keys:
|
| 591 |
-
if not any(substring in key for substring in substrings_to_ignore):
|
| 592 |
-
actual_missing_keys.append(key)
|
| 593 |
-
if strict:
|
| 594 |
-
if len(actual_missing_keys) > 0 or len(unexpected_keys) > 0:
|
| 595 |
-
raise ValueError(f"Missing keys: {actual_missing_keys}\n\nUnexpected keys: {unexpected_keys}")
|
| 596 |
-
return _IncompatibleKeys(actual_missing_keys, unexpected_keys)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/4c860c42a1c3d8adc417e9593892491d0803fe51
DELETED
|
@@ -1,113 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import collections.abc as abc
|
| 17 |
-
import dataclasses
|
| 18 |
-
import logging
|
| 19 |
-
from typing import Any
|
| 20 |
-
|
| 21 |
-
import attrs
|
| 22 |
-
|
| 23 |
-
from .lazy_registry import _convert_target_to_string, locate
|
| 24 |
-
|
| 25 |
-
__all__ = ["dump_dataclass", "instantiate"]
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def is_dataclass_or_attrs(target):
|
| 29 |
-
return dataclasses.is_dataclass(target) or attrs.has(target)
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def dump_dataclass(obj: Any):
|
| 33 |
-
"""
|
| 34 |
-
Dump a dataclass recursively into a dict that can be later instantiated.
|
| 35 |
-
|
| 36 |
-
Args:
|
| 37 |
-
obj: a dataclass object
|
| 38 |
-
|
| 39 |
-
Returns:
|
| 40 |
-
dict
|
| 41 |
-
"""
|
| 42 |
-
assert dataclasses.is_dataclass(obj) and not isinstance(
|
| 43 |
-
obj, type
|
| 44 |
-
), "dump_dataclass() requires an instance of a dataclass."
|
| 45 |
-
ret = {"_target_": _convert_target_to_string(type(obj))}
|
| 46 |
-
for f in dataclasses.fields(obj):
|
| 47 |
-
v = getattr(obj, f.name)
|
| 48 |
-
if dataclasses.is_dataclass(v):
|
| 49 |
-
v = dump_dataclass(v)
|
| 50 |
-
if isinstance(v, (list, tuple)):
|
| 51 |
-
v = [dump_dataclass(x) if dataclasses.is_dataclass(x) else x for x in v]
|
| 52 |
-
ret[f.name] = v
|
| 53 |
-
return ret
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
def instantiate(cfg, *args, **kwargs):
|
| 57 |
-
"""
|
| 58 |
-
Recursively instantiate objects defined in dictionaries by
|
| 59 |
-
"_target_" and arguments.
|
| 60 |
-
|
| 61 |
-
Args:
|
| 62 |
-
cfg: a dict-like object with "_target_" that defines the caller, and
|
| 63 |
-
other keys that define the arguments
|
| 64 |
-
args: Optional positional parameters pass-through.
|
| 65 |
-
kwargs: Optional named parameters pass-through.
|
| 66 |
-
|
| 67 |
-
Returns:
|
| 68 |
-
object instantiated by cfg
|
| 69 |
-
"""
|
| 70 |
-
from omegaconf import DictConfig, ListConfig, OmegaConf
|
| 71 |
-
|
| 72 |
-
if isinstance(cfg, ListConfig):
|
| 73 |
-
lst = [instantiate(x) for x in cfg]
|
| 74 |
-
return ListConfig(lst, flags={"allow_objects": True})
|
| 75 |
-
if isinstance(cfg, list):
|
| 76 |
-
# Specialize for list, because many classes take
|
| 77 |
-
# list[objects] as arguments, such as ResNet, DatasetMapper
|
| 78 |
-
return [instantiate(x) for x in cfg]
|
| 79 |
-
|
| 80 |
-
# If input is a DictConfig backed by dataclasses (i.e. omegaconf's structured config),
|
| 81 |
-
# instantiate it to the actual dataclass.
|
| 82 |
-
if isinstance(cfg, DictConfig) and is_dataclass_or_attrs(cfg._metadata.object_type):
|
| 83 |
-
return OmegaConf.to_object(cfg)
|
| 84 |
-
|
| 85 |
-
if isinstance(cfg, abc.Mapping) and "_target_" in cfg:
|
| 86 |
-
# conceptually equivalent to hydra.utils.instantiate(cfg) with _convert_=all,
|
| 87 |
-
# but faster: https://github.com/facebookresearch/hydra/issues/1200
|
| 88 |
-
cfg = {k: instantiate(v) for k, v in cfg.items()}
|
| 89 |
-
cls = cfg.pop("_target_")
|
| 90 |
-
cls = instantiate(cls)
|
| 91 |
-
|
| 92 |
-
if isinstance(cls, str):
|
| 93 |
-
cls_name = cls
|
| 94 |
-
cls = locate(cls_name)
|
| 95 |
-
assert cls is not None, cls_name
|
| 96 |
-
else:
|
| 97 |
-
try:
|
| 98 |
-
cls_name = cls.__module__ + "." + cls.__qualname__
|
| 99 |
-
except Exception:
|
| 100 |
-
# target could be anything, so the above could fail
|
| 101 |
-
cls_name = str(cls)
|
| 102 |
-
assert callable(cls), f"_target_ {cls} does not define a callable object"
|
| 103 |
-
try:
|
| 104 |
-
# override config with kwargs
|
| 105 |
-
instantiate_kwargs = {}
|
| 106 |
-
instantiate_kwargs.update(cfg)
|
| 107 |
-
instantiate_kwargs.update(kwargs)
|
| 108 |
-
return cls(*args, **instantiate_kwargs)
|
| 109 |
-
except TypeError:
|
| 110 |
-
logger = logging.getLogger(__name__)
|
| 111 |
-
logger.error(f"Error when instantiating {cls_name}!")
|
| 112 |
-
raise
|
| 113 |
-
return cfg # return as-is if don't know what to do
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/4de12fae686821ebf94aec3420719e6432856cf4
DELETED
|
@@ -1,421 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import copy
|
| 17 |
-
from typing import Callable, List, Optional
|
| 18 |
-
|
| 19 |
-
from .ar_config_base_model import ModelConfig
|
| 20 |
-
from .ar_config_base_tokenizer import (
|
| 21 |
-
TextTokenizerConfig,
|
| 22 |
-
TokenizerConfig,
|
| 23 |
-
VideoTokenizerConfig,
|
| 24 |
-
create_discrete_video_fsq_tokenizer_state_dict_config,
|
| 25 |
-
)
|
| 26 |
-
from .ar_tokenizer_image_text_tokenizer import ImageTextTokenizer
|
| 27 |
-
from .ar_tokenizer_text_tokenizer import TextTokenizer
|
| 28 |
-
from .log import log
|
| 29 |
-
from .lazy_config_init import LazyCall as L
|
| 30 |
-
|
| 31 |
-
# Common architecture specifications
|
| 32 |
-
BASE_CONFIG = {"n_kv_heads": 8, "norm_type": "rmsnorm", "norm_eps": 1e-5, "ffn_hidden_size": 14336}
|
| 33 |
-
COSMOS_ARCHITECTURES = {
|
| 34 |
-
"4b": {
|
| 35 |
-
"n_layers": 16,
|
| 36 |
-
"dim": 4096,
|
| 37 |
-
"n_heads": 32,
|
| 38 |
-
},
|
| 39 |
-
"12b": {
|
| 40 |
-
"n_layers": 40,
|
| 41 |
-
"dim": 5120,
|
| 42 |
-
"n_heads": 32,
|
| 43 |
-
"head_dim": 128,
|
| 44 |
-
},
|
| 45 |
-
}
|
| 46 |
-
|
| 47 |
-
COSMOS_YARN_CONFIG = {
|
| 48 |
-
"original_latent_shape": [3, 40, 64],
|
| 49 |
-
"apply_yarn": True,
|
| 50 |
-
"yarn_beta_fast": 4,
|
| 51 |
-
"yarn_beta_slow": 1,
|
| 52 |
-
"yarn_scale": 2,
|
| 53 |
-
}
|
| 54 |
-
|
| 55 |
-
# Llama3 architecture specifications for different model sizes
|
| 56 |
-
LLAMA3_ARCHITECTURES = {
|
| 57 |
-
"8b": {
|
| 58 |
-
"n_layers": 32,
|
| 59 |
-
"dim": 4096,
|
| 60 |
-
"n_heads": 32,
|
| 61 |
-
"ffn_hidden_size": 14336,
|
| 62 |
-
},
|
| 63 |
-
}
|
| 64 |
-
# Llama3.1 uses YaRN for long context support (context of 128k tokens)
|
| 65 |
-
LLAMA_YARN_CONFIG = {
|
| 66 |
-
"apply_yarn": True,
|
| 67 |
-
"yarn_scale": 8,
|
| 68 |
-
"yarn_beta_fast": 4,
|
| 69 |
-
"yarn_beta_slow": 1,
|
| 70 |
-
}
|
| 71 |
-
|
| 72 |
-
# Mistral architecture specifications for different model sizes
|
| 73 |
-
MISTRAL_ARCHITECTURES = {
|
| 74 |
-
"12b": {
|
| 75 |
-
"n_layers": 40,
|
| 76 |
-
"dim": 5120,
|
| 77 |
-
"n_heads": 32,
|
| 78 |
-
"ffn_hidden_size": 14336,
|
| 79 |
-
"head_dim": 128,
|
| 80 |
-
},
|
| 81 |
-
}
|
| 82 |
-
|
| 83 |
-
PIXTRAL_VISION_ARCHITECTURES = {
|
| 84 |
-
"12b": {"vision_encoder": "pixtral-12b-vit", "mm_projector": "mlp"},
|
| 85 |
-
}
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
def get_model_arch_specs(model_size: str, model_family: str = "mistral", pretrained: bool = False) -> dict:
|
| 89 |
-
"""
|
| 90 |
-
Get the model architecture specifications for the given model size, model family and pretrained status.
|
| 91 |
-
|
| 92 |
-
Args:
|
| 93 |
-
model_size (str): Model size. Choices: "1b", "3b", "4b", "7b", etc.
|
| 94 |
-
model_family (str): Model family. Choices: "llama", "llama3", "llama3.1", "mistral"
|
| 95 |
-
pretrained (bool): Whether to load pretrained weights.
|
| 96 |
-
|
| 97 |
-
Returns:
|
| 98 |
-
dict: A dictionary containing the model architecture specifications.
|
| 99 |
-
"""
|
| 100 |
-
arch_specs = copy.deepcopy(BASE_CONFIG)
|
| 101 |
-
model_size = model_size.lower()
|
| 102 |
-
if model_family.startswith("cosmos"):
|
| 103 |
-
arch_specs.update(COSMOS_ARCHITECTURES[model_size])
|
| 104 |
-
elif model_family.startswith("llama"):
|
| 105 |
-
arch_specs.update(LLAMA3_ARCHITECTURES[model_size])
|
| 106 |
-
elif model_family in ["mistral", "pixtral"]:
|
| 107 |
-
arch_specs.update(MISTRAL_ARCHITECTURES[model_size])
|
| 108 |
-
if model_family == "pixtral":
|
| 109 |
-
arch_specs.update(PIXTRAL_VISION_ARCHITECTURES[model_size])
|
| 110 |
-
else:
|
| 111 |
-
raise ValueError(f"Model family {model_family} is not supported.")
|
| 112 |
-
|
| 113 |
-
if pretrained:
|
| 114 |
-
if model_family == "cosmos":
|
| 115 |
-
if model_size == "12b":
|
| 116 |
-
arch_specs.update(COSMOS_YARN_CONFIG)
|
| 117 |
-
log.debug(f"Using YaRN for RoPE extension with config: {COSMOS_YARN_CONFIG}")
|
| 118 |
-
else:
|
| 119 |
-
pass
|
| 120 |
-
elif model_family in ["llama", "llama3"]:
|
| 121 |
-
pretrained_specs = {
|
| 122 |
-
"rope_theta": 500000,
|
| 123 |
-
"max_seq_len": 8192,
|
| 124 |
-
"vocab_size": 128256,
|
| 125 |
-
}
|
| 126 |
-
arch_specs.update(pretrained_specs)
|
| 127 |
-
elif model_family == "llama3.1":
|
| 128 |
-
pretrained_specs = {
|
| 129 |
-
"rope_theta": 500000,
|
| 130 |
-
"max_seq_len": 131072,
|
| 131 |
-
"original_seq_len": 8192,
|
| 132 |
-
"vocab_size": 128256,
|
| 133 |
-
**LLAMA_YARN_CONFIG,
|
| 134 |
-
}
|
| 135 |
-
arch_specs.update(pretrained_specs)
|
| 136 |
-
elif model_family == "mistral":
|
| 137 |
-
assert model_size == "12b", "We only support Mistral-Nemo-12B model."
|
| 138 |
-
pretrained_specs = {
|
| 139 |
-
"rope_theta": 1000000,
|
| 140 |
-
"max_seq_len": 128000,
|
| 141 |
-
"vocab_size": 131072,
|
| 142 |
-
}
|
| 143 |
-
arch_specs.update(pretrained_specs)
|
| 144 |
-
elif model_family == "pixtral":
|
| 145 |
-
assert model_size == "12b", "We only support Pixtral 12B model."
|
| 146 |
-
pretrained_specs = {"rope_theta": 1000000000, "max_seq_len": 128000, "vocab_size": 131072}
|
| 147 |
-
arch_specs.update(pretrained_specs)
|
| 148 |
-
else:
|
| 149 |
-
raise ValueError(f"Model family {model_family} doesn't have a pretrained config.")
|
| 150 |
-
|
| 151 |
-
return arch_specs
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
def create_text_model_config(
|
| 155 |
-
model_ckpt_path: str,
|
| 156 |
-
tokenizer_path: str,
|
| 157 |
-
model_family: str = "mistral",
|
| 158 |
-
model_size: str = "12b",
|
| 159 |
-
is_instruct_model: bool = True,
|
| 160 |
-
max_seq_len: int = None,
|
| 161 |
-
max_batch_size: int = 1,
|
| 162 |
-
rope_dim: str = "1D",
|
| 163 |
-
add_special_tokens: bool = True,
|
| 164 |
-
pytorch_rope_version: str = None,
|
| 165 |
-
) -> dict:
|
| 166 |
-
"""Create a text model for training or inference.
|
| 167 |
-
Args:
|
| 168 |
-
model_ckpt_path (str): Path to the model checkpoint.
|
| 169 |
-
tokenizer_path (str): Path to the tokenizer folder.
|
| 170 |
-
model_family (str): Model family. Choices: "llama", "llama3", "llama3.1", "mistral".
|
| 171 |
-
model_size (str): Model size. Choices: "1b", "3b", "4b", "7b", "8b", "72b", etc.
|
| 172 |
-
is_instruct_model (bool): Whether the model is an instruct model.
|
| 173 |
-
inference (bool): Whether to create the model for inference.
|
| 174 |
-
max_seq_len (int): Maximum sequence length.
|
| 175 |
-
max_batch_size (int): Maximum batch size.
|
| 176 |
-
rope_dim (str): RoPE dimension. Choices: "1D", "3D".
|
| 177 |
-
add_special_tokens (bool): Whether to add special tokens.
|
| 178 |
-
Returns:
|
| 179 |
-
dict: A dictionary containing the model configuration, which can be used to instantiate the model object.
|
| 180 |
-
"""
|
| 181 |
-
# Model size specific parameters
|
| 182 |
-
model_arch_specs = get_model_arch_specs(model_family=model_family, model_size=model_size, pretrained=True)
|
| 183 |
-
if max_seq_len is not None:
|
| 184 |
-
# Override the max_seq_len if provided
|
| 185 |
-
model_arch_specs["max_seq_len"] = max_seq_len
|
| 186 |
-
if pytorch_rope_version is not None:
|
| 187 |
-
model_arch_specs["pytorch_rope_version"] = pytorch_rope_version
|
| 188 |
-
model_config = ModelConfig(
|
| 189 |
-
max_batch_size=max_batch_size,
|
| 190 |
-
precision="bfloat16",
|
| 191 |
-
ckpt_path=model_ckpt_path,
|
| 192 |
-
use_qk_normalization=False,
|
| 193 |
-
rope_dim=rope_dim,
|
| 194 |
-
**model_arch_specs,
|
| 195 |
-
)
|
| 196 |
-
|
| 197 |
-
tokenizer_config = TokenizerConfig(
|
| 198 |
-
text_tokenizer=TextTokenizerConfig(
|
| 199 |
-
config=L(TextTokenizer)(
|
| 200 |
-
model_family=model_family,
|
| 201 |
-
is_instruct_model=is_instruct_model,
|
| 202 |
-
local_path=tokenizer_path,
|
| 203 |
-
),
|
| 204 |
-
data_key="text",
|
| 205 |
-
tokenizer_offset=model_config.vocab_size,
|
| 206 |
-
tokenize_here=False,
|
| 207 |
-
vocab_size=model_config.vocab_size,
|
| 208 |
-
),
|
| 209 |
-
seq_len=model_config.max_seq_len,
|
| 210 |
-
training_type="text_only",
|
| 211 |
-
add_special_tokens=add_special_tokens,
|
| 212 |
-
)
|
| 213 |
-
return model_config, tokenizer_config
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
def create_vision_language_model_config(
|
| 217 |
-
model_ckpt_path: str,
|
| 218 |
-
tokenizer_ckpt_path: str,
|
| 219 |
-
model_family: str = "pixtral",
|
| 220 |
-
model_size: str = "12b",
|
| 221 |
-
is_instruct_model: bool = True,
|
| 222 |
-
max_batch_size: int = 1,
|
| 223 |
-
rope_dim: str = "1D",
|
| 224 |
-
add_special_tokens: bool = True,
|
| 225 |
-
max_seq_len: int = None,
|
| 226 |
-
vision_encoder_in_channels: int = 3,
|
| 227 |
-
fuse_qkv: bool = False,
|
| 228 |
-
pytorch_rope_version: str = None,
|
| 229 |
-
) -> dict:
|
| 230 |
-
"""Create a vision-language model for training or inference.
|
| 231 |
-
Args:
|
| 232 |
-
model_ckpt_path (str): Path to the model checkpoint.
|
| 233 |
-
tokenizer_ckpt_path (str): Path to the tokenizer checkpoint.
|
| 234 |
-
model_family (str): Model family. Choices: "pixtral".
|
| 235 |
-
model_size (str): Model size. Choices: "12b".
|
| 236 |
-
is_instruct_model (bool): Whether the model is an instruct model.
|
| 237 |
-
rope_dim (str): RoPE dimension. Choices: "1D".
|
| 238 |
-
add_special_tokens (bool): Whether to add special tokens.
|
| 239 |
-
max_seq_len (int): Maximum sequence length.
|
| 240 |
-
vision_encoder_in_channels (int): Number of channels in the input image for the vision encoder. Default is 3, you can specify to int larger than 3. E.g. if you have 4 channel images where last channel is binary mask, set this to 4.
|
| 241 |
-
fuse_qkv (bool): Whether to fuse the QKV linear layers.
|
| 242 |
-
Returns:
|
| 243 |
-
dict: A dictionary containing the model configuration, which can be used to instantiate the model object.
|
| 244 |
-
"""
|
| 245 |
-
# Model size specific parameters
|
| 246 |
-
model_arch_specs = get_model_arch_specs(model_family=model_family, model_size=model_size, pretrained=True)
|
| 247 |
-
if max_seq_len is not None:
|
| 248 |
-
# Override the max_seq_len if provided
|
| 249 |
-
model_arch_specs["max_seq_len"] = max_seq_len
|
| 250 |
-
if pytorch_rope_version is not None:
|
| 251 |
-
model_arch_specs["pytorch_rope_version"] = pytorch_rope_version
|
| 252 |
-
|
| 253 |
-
model_config = ModelConfig(
|
| 254 |
-
max_batch_size=max_batch_size,
|
| 255 |
-
precision="bfloat16",
|
| 256 |
-
ckpt_path=model_ckpt_path,
|
| 257 |
-
use_qk_normalization=False,
|
| 258 |
-
rope_dim=rope_dim,
|
| 259 |
-
vision_encoder_in_channels=vision_encoder_in_channels,
|
| 260 |
-
fuse_qkv=fuse_qkv,
|
| 261 |
-
**model_arch_specs,
|
| 262 |
-
)
|
| 263 |
-
# Vision-language tokenizer
|
| 264 |
-
tokenizer_config = TokenizerConfig(
|
| 265 |
-
text_tokenizer=TextTokenizerConfig(
|
| 266 |
-
config=L(ImageTextTokenizer)(
|
| 267 |
-
model_family=model_family,
|
| 268 |
-
is_instruct_model=is_instruct_model,
|
| 269 |
-
image_processor_path=tokenizer_ckpt_path,
|
| 270 |
-
tokenizer_path=tokenizer_ckpt_path,
|
| 271 |
-
),
|
| 272 |
-
data_key="image_text_interleaved",
|
| 273 |
-
tokenizer_offset=model_config.vocab_size,
|
| 274 |
-
tokenize_here=False,
|
| 275 |
-
vocab_size=model_config.vocab_size,
|
| 276 |
-
),
|
| 277 |
-
seq_len=model_config.max_seq_len,
|
| 278 |
-
training_type="image_text_interleaved",
|
| 279 |
-
add_special_tokens=add_special_tokens,
|
| 280 |
-
)
|
| 281 |
-
return model_config, tokenizer_config
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
def create_video2world_model_config(
|
| 285 |
-
model_ckpt_path: str,
|
| 286 |
-
tokenizer_ckpt_path: str,
|
| 287 |
-
model_family: str = "cosmos",
|
| 288 |
-
model_size: str = "4b",
|
| 289 |
-
pixel_chunk_duration: int = 9,
|
| 290 |
-
num_video_frames: int = 36,
|
| 291 |
-
compression_ratio: List[int] = [8, 16, 16],
|
| 292 |
-
original_seq_len: int = 8192,
|
| 293 |
-
num_condition_latents_t: int = 1,
|
| 294 |
-
num_tokens_to_ignore: int = -1,
|
| 295 |
-
batch_size: int = 2,
|
| 296 |
-
video_tokenizer_config_creator: Callable = create_discrete_video_fsq_tokenizer_state_dict_config,
|
| 297 |
-
rope_dim: str = "3D",
|
| 298 |
-
add_special_tokens: bool = True,
|
| 299 |
-
video_height: int = 384,
|
| 300 |
-
video_width: int = 640,
|
| 301 |
-
use_qk_normalization: bool = True,
|
| 302 |
-
insert_cross_attn: bool = False,
|
| 303 |
-
insert_cross_attn_every_k_layers: int = 1,
|
| 304 |
-
context_dim: int = 1024,
|
| 305 |
-
training_type: str = "video_to_video",
|
| 306 |
-
pad_to_multiple_of: Optional[int] = 64,
|
| 307 |
-
vocab_size: int = 64000,
|
| 308 |
-
apply_abs_pos_emb: bool = False,
|
| 309 |
-
) -> dict:
|
| 310 |
-
"""Create a video-to-world model config.
|
| 311 |
-
Args:
|
| 312 |
-
model_family (str): Model family. Choices: "llama", "llama3", "llama3.1", "mistral".
|
| 313 |
-
model_size (str): Model size. Choices: "1b", "8b", "3b".
|
| 314 |
-
pixel_chunk_duration (int): Number of frames in each chunk.
|
| 315 |
-
num_video_frames (int): Number of video frames.
|
| 316 |
-
compression_ratio (List[int]): Compression ratio for the video frames. Choices: [8, 16, 16] or [4, 8, 8].
|
| 317 |
-
original_seq_len (int): Original sequence length.
|
| 318 |
-
apply_yarn (bool): Whether to apply YaRN for long context scaling.
|
| 319 |
-
yarn_beta_fast (Optional[int]): Fast beta for YaRN.
|
| 320 |
-
yarn_beta_slow (Optional[int]): Slow beta for YaRN.
|
| 321 |
-
yarn_scale (Optional[int]): Scale factor for ctx extension.
|
| 322 |
-
use_qk_normalization (bool): Whether to use Query-Key normalization.
|
| 323 |
-
training_type (str): Type of training task.
|
| 324 |
-
batch_size (int): Batch size.
|
| 325 |
-
video_tokenizer_config_creator (Callable): Method that takes "pixel_chunk_duration: int" and "version: str" as arguments and returns video tokenizer config
|
| 326 |
-
video_tokenizer_version (str): Version of the video tokenizer.
|
| 327 |
-
num_condition_latents_t (int): Number of conditioning latent channels
|
| 328 |
-
num_tokens_to_ignore (int) = Number of tokens to ignore. This takes the precedence
|
| 329 |
-
video_height (int): Height of the video frame. Defaults to 384.
|
| 330 |
-
video_width (int): Width of the video frame. Defaults to 640.
|
| 331 |
-
rope_dim (str): RoPE dimension. Choices: "1D", "3D".
|
| 332 |
-
add_special_tokens (bool): Whether to add special tokens, use False for 2D/3D RoPE.
|
| 333 |
-
pad_to_multiple_of (int): Pad the token sequence length to the nearest multiple of this number. Defaults to 64.
|
| 334 |
-
vocab_size (int): Vocabulary size.
|
| 335 |
-
apply_abs_pos_emb (bool): Whether to apply absolute positional embeddings.
|
| 336 |
-
Returns:
|
| 337 |
-
dict: A dictionary containing the model configuration representing the model object, can be instantiated.
|
| 338 |
-
"""
|
| 339 |
-
assert (
|
| 340 |
-
pixel_chunk_duration % compression_ratio[0] == 1
|
| 341 |
-
), f"pixel_chunk_duration({pixel_chunk_duration}) should be k*n + 1 (k={compression_ratio[0]})"
|
| 342 |
-
latent_chunk_duration = (pixel_chunk_duration - 1) // compression_ratio[0] + 1
|
| 343 |
-
latent_height = video_height // compression_ratio[1]
|
| 344 |
-
latent_width = video_width // compression_ratio[2]
|
| 345 |
-
# Do some math to compute the video latent shape and sequence length
|
| 346 |
-
assert (
|
| 347 |
-
num_video_frames % pixel_chunk_duration == 0
|
| 348 |
-
), f"num_video_frames {num_video_frames} should be divisible by pixel_chunk_duration {pixel_chunk_duration}"
|
| 349 |
-
video_latent_shape = [
|
| 350 |
-
num_video_frames // pixel_chunk_duration * latent_chunk_duration,
|
| 351 |
-
latent_height,
|
| 352 |
-
latent_width,
|
| 353 |
-
]
|
| 354 |
-
# product of video_latent_shape
|
| 355 |
-
num_token_video_latent = video_latent_shape[0] * video_latent_shape[1] * video_latent_shape[2]
|
| 356 |
-
if add_special_tokens:
|
| 357 |
-
seq_len = num_token_video_latent + 3 # Sequence length per batch, max_seq_len + 3
|
| 358 |
-
seq_len = (seq_len + 63) // 64 * 64 # Round up to multiple of 64
|
| 359 |
-
# for text to video, we need to add <bov> token to indicate the start of the video
|
| 360 |
-
elif training_type == "text_to_video":
|
| 361 |
-
seq_len = num_token_video_latent + 1
|
| 362 |
-
else:
|
| 363 |
-
seq_len = num_token_video_latent
|
| 364 |
-
|
| 365 |
-
if seq_len % pad_to_multiple_of != 0:
|
| 366 |
-
# Round up to the nearest multiple of pad_to_multiple_of
|
| 367 |
-
seq_len = ((seq_len + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
|
| 368 |
-
|
| 369 |
-
# Model size specific parameters
|
| 370 |
-
model_arch_specs = get_model_arch_specs(model_family=model_family, model_size=model_size, pretrained=True)
|
| 371 |
-
|
| 372 |
-
# Whether skip the loss for first chunk or not, note the first token is already skipped when computing the loss
|
| 373 |
-
# If num_tokens_to_ignore is specified, use it.
|
| 374 |
-
# Else compute it from num_condition_latents_t
|
| 375 |
-
if num_tokens_to_ignore < 0:
|
| 376 |
-
num_tokens_to_ignore = latent_height * latent_width * num_condition_latents_t
|
| 377 |
-
if not add_special_tokens and num_condition_latents_t > 0:
|
| 378 |
-
# If there are no special tokens (bov), do a -1 so that you can compute the loss
|
| 379 |
-
# from the first token of the next chunk
|
| 380 |
-
num_tokens_to_ignore -= 1
|
| 381 |
-
|
| 382 |
-
model_config = ModelConfig(
|
| 383 |
-
video_height=video_height,
|
| 384 |
-
video_width=video_width,
|
| 385 |
-
max_seq_len=seq_len,
|
| 386 |
-
max_batch_size=batch_size,
|
| 387 |
-
precision="bfloat16",
|
| 388 |
-
ckpt_path=model_ckpt_path,
|
| 389 |
-
use_qk_normalization=use_qk_normalization,
|
| 390 |
-
vocab_size=64000,
|
| 391 |
-
original_seq_len=original_seq_len,
|
| 392 |
-
video_latent_shape=video_latent_shape,
|
| 393 |
-
num_video_frames=num_video_frames,
|
| 394 |
-
rope_dim=rope_dim,
|
| 395 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
| 396 |
-
insert_cross_attn=insert_cross_attn,
|
| 397 |
-
insert_cross_attn_every_k_layers=insert_cross_attn_every_k_layers,
|
| 398 |
-
context_dim=context_dim,
|
| 399 |
-
apply_abs_pos_emb=apply_abs_pos_emb,
|
| 400 |
-
**model_arch_specs,
|
| 401 |
-
)
|
| 402 |
-
|
| 403 |
-
video_tokenizer_config = video_tokenizer_config_creator(
|
| 404 |
-
tokenizer_ckpt_path, pixel_chunk_duration, compression_ratio
|
| 405 |
-
)
|
| 406 |
-
tokenizer_config = TokenizerConfig(
|
| 407 |
-
text_tokenizer=None,
|
| 408 |
-
video_tokenizer=VideoTokenizerConfig(
|
| 409 |
-
config=video_tokenizer_config,
|
| 410 |
-
data_key="video",
|
| 411 |
-
tokenizer_offset=0, # Since there is no text embeddings in the model. Note this only apply when the model is trained from scratch. If we use text pretrained model, the offset will be vocab_size of text token.
|
| 412 |
-
tokenize_here=True,
|
| 413 |
-
max_seq_len=num_token_video_latent,
|
| 414 |
-
vocab_size=vocab_size,
|
| 415 |
-
),
|
| 416 |
-
seq_len=seq_len,
|
| 417 |
-
training_type=training_type,
|
| 418 |
-
add_special_tokens=add_special_tokens,
|
| 419 |
-
pad_to_multiple_of=pad_to_multiple_of,
|
| 420 |
-
)
|
| 421 |
-
return model_config, tokenizer_config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/53dea6ed871052e987bf5094f869778412202323
DELETED
|
@@ -1,360 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import argparse
|
| 17 |
-
import json
|
| 18 |
-
import math
|
| 19 |
-
import os
|
| 20 |
-
from pathlib import Path
|
| 21 |
-
from typing import List
|
| 22 |
-
|
| 23 |
-
import numpy as np
|
| 24 |
-
import torch
|
| 25 |
-
import torchvision
|
| 26 |
-
from PIL import Image
|
| 27 |
-
|
| 28 |
-
from .ar_config_inference_inference_config import SamplingConfig
|
| 29 |
-
from .log import log
|
| 30 |
-
|
| 31 |
-
_IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", "webp"]
|
| 32 |
-
_VIDEO_EXTENSIONS = [".mp4"]
|
| 33 |
-
_SUPPORTED_CONTEXT_LEN = [1, 9] # Input frames
|
| 34 |
-
NUM_TOTAL_FRAMES = 33
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
def add_common_arguments(parser):
|
| 38 |
-
"""Add common command line arguments.
|
| 39 |
-
|
| 40 |
-
Args:
|
| 41 |
-
parser (ArgumentParser): Argument parser to add arguments to
|
| 42 |
-
"""
|
| 43 |
-
parser.add_argument(
|
| 44 |
-
"--checkpoint_dir", type=str, default="checkpoints", help="Base directory containing model checkpoints"
|
| 45 |
-
)
|
| 46 |
-
parser.add_argument(
|
| 47 |
-
"--video_save_name",
|
| 48 |
-
type=str,
|
| 49 |
-
default="output",
|
| 50 |
-
help="Output filename for generating a single video",
|
| 51 |
-
)
|
| 52 |
-
parser.add_argument("--video_save_folder", type=str, default="outputs/", help="Output folder for saving videos")
|
| 53 |
-
parser.add_argument(
|
| 54 |
-
"--input_image_or_video_path",
|
| 55 |
-
type=str,
|
| 56 |
-
help="Input path for input image or video",
|
| 57 |
-
)
|
| 58 |
-
parser.add_argument(
|
| 59 |
-
"--batch_input_path",
|
| 60 |
-
type=str,
|
| 61 |
-
help="Input folder containing all input images or videos",
|
| 62 |
-
)
|
| 63 |
-
parser.add_argument(
|
| 64 |
-
"--num_input_frames",
|
| 65 |
-
type=int,
|
| 66 |
-
default=9,
|
| 67 |
-
help="Number of input frames for world generation",
|
| 68 |
-
choices=_SUPPORTED_CONTEXT_LEN,
|
| 69 |
-
)
|
| 70 |
-
parser.add_argument("--temperature", type=float, default=1.0, help="Temperature for sampling")
|
| 71 |
-
parser.add_argument("--top_p", type=float, default=0.8, help="Top-p value for sampling")
|
| 72 |
-
parser.add_argument("--seed", type=int, default=0, help="Random seed")
|
| 73 |
-
parser.add_argument("--disable_diffusion_decoder", action="store_true", help="Disable diffusion decoder")
|
| 74 |
-
parser.add_argument(
|
| 75 |
-
"--offload_guardrail_models",
|
| 76 |
-
action="store_true",
|
| 77 |
-
help="Offload guardrail models after inference",
|
| 78 |
-
)
|
| 79 |
-
parser.add_argument(
|
| 80 |
-
"--offload_diffusion_decoder",
|
| 81 |
-
action="store_true",
|
| 82 |
-
help="Offload diffusion decoder after inference",
|
| 83 |
-
)
|
| 84 |
-
parser.add_argument(
|
| 85 |
-
"--offload_ar_model",
|
| 86 |
-
action="store_true",
|
| 87 |
-
help="Offload AR model after inference",
|
| 88 |
-
)
|
| 89 |
-
parser.add_argument(
|
| 90 |
-
"--offload_tokenizer",
|
| 91 |
-
action="store_true",
|
| 92 |
-
help="Offload discrete tokenizer model after inference",
|
| 93 |
-
)
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
def validate_args(args: argparse.Namespace, inference_type: str):
|
| 97 |
-
"""Validate command line arguments for base and video2world generation."""
|
| 98 |
-
assert inference_type in [
|
| 99 |
-
"base",
|
| 100 |
-
"video2world",
|
| 101 |
-
], "Invalid inference_type, must be 'base' or 'video2world'"
|
| 102 |
-
if args.input_type in ["image", "text_and_image"] and args.num_input_frames != 1:
|
| 103 |
-
args.num_input_frames = 1
|
| 104 |
-
log.info(f"Set num_input_frames to 1 for {args.input_type} input")
|
| 105 |
-
|
| 106 |
-
if args.num_input_frames == 1:
|
| 107 |
-
if "4B" in args.ar_model_dir:
|
| 108 |
-
log.warning(
|
| 109 |
-
"The failure rate for 4B model with image input is ~15%. 12B / 13B model have a smaller failure rate. Please be cautious and refer to README.md for more details."
|
| 110 |
-
)
|
| 111 |
-
elif "5B" in args.ar_model_dir:
|
| 112 |
-
log.warning(
|
| 113 |
-
"The failure rate for 5B model with image input is ~7%. 12B / 13B model have a smaller failure rate. Please be cautious and refer to README.md for more details."
|
| 114 |
-
)
|
| 115 |
-
|
| 116 |
-
# Validate prompt/image/video args for single or batch generation
|
| 117 |
-
assert (
|
| 118 |
-
args.input_image_or_video_path or args.batch_input_path
|
| 119 |
-
), "--input_image_or_video_path or --batch_input_path must be provided."
|
| 120 |
-
if inference_type == "video2world" and (not args.batch_input_path):
|
| 121 |
-
assert args.prompt, "--prompt is required for single video generation."
|
| 122 |
-
args.data_resolution = [640, 1024]
|
| 123 |
-
|
| 124 |
-
# Validate number of GPUs
|
| 125 |
-
num_gpus = int(os.getenv("WORLD_SIZE", 1))
|
| 126 |
-
assert num_gpus <= 1, "We support only single GPU inference for now"
|
| 127 |
-
|
| 128 |
-
# Create output folder
|
| 129 |
-
Path(args.video_save_folder).mkdir(parents=True, exist_ok=True)
|
| 130 |
-
|
| 131 |
-
sampling_config = SamplingConfig(
|
| 132 |
-
echo=True,
|
| 133 |
-
temperature=args.temperature,
|
| 134 |
-
top_p=args.top_p,
|
| 135 |
-
compile_sampling=True,
|
| 136 |
-
)
|
| 137 |
-
return sampling_config
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
def resize_input(video: torch.Tensor, resolution: list[int]):
|
| 141 |
-
r"""
|
| 142 |
-
Function to perform aspect ratio preserving resizing and center cropping.
|
| 143 |
-
This is needed to make the video into target resolution.
|
| 144 |
-
Args:
|
| 145 |
-
video (torch.Tensor): Input video tensor
|
| 146 |
-
resolution (list[int]): Data resolution
|
| 147 |
-
Returns:
|
| 148 |
-
Cropped video
|
| 149 |
-
"""
|
| 150 |
-
|
| 151 |
-
orig_h, orig_w = video.shape[2], video.shape[3]
|
| 152 |
-
target_h, target_w = resolution
|
| 153 |
-
|
| 154 |
-
scaling_ratio = max((target_w / orig_w), (target_h / orig_h))
|
| 155 |
-
resizing_shape = (int(math.ceil(scaling_ratio * orig_h)), int(math.ceil(scaling_ratio * orig_w)))
|
| 156 |
-
video_resized = torchvision.transforms.functional.resize(video, resizing_shape)
|
| 157 |
-
video_cropped = torchvision.transforms.functional.center_crop(video_resized, resolution)
|
| 158 |
-
return video_cropped
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
def load_image_from_list(flist, data_resolution: List[int]) -> dict:
|
| 162 |
-
"""
|
| 163 |
-
Function to load images from a list of image paths.
|
| 164 |
-
Args:
|
| 165 |
-
flist (List[str]): List of image paths
|
| 166 |
-
data_resolution (List[int]): Data resolution
|
| 167 |
-
Returns:
|
| 168 |
-
Dict containing input images
|
| 169 |
-
"""
|
| 170 |
-
all_videos = dict()
|
| 171 |
-
for img_path in flist:
|
| 172 |
-
ext = os.path.splitext(img_path)[1]
|
| 173 |
-
if ext in _IMAGE_EXTENSIONS:
|
| 174 |
-
# Read the image
|
| 175 |
-
img = Image.open(img_path)
|
| 176 |
-
|
| 177 |
-
# Convert to tensor
|
| 178 |
-
img = torchvision.transforms.functional.to_tensor(img)
|
| 179 |
-
static_vid = img.unsqueeze(0).repeat(NUM_TOTAL_FRAMES, 1, 1, 1)
|
| 180 |
-
static_vid = static_vid * 2 - 1
|
| 181 |
-
|
| 182 |
-
log.debug(
|
| 183 |
-
f"Resizing input image of shape ({static_vid.shape[2]}, {static_vid.shape[3]}) -> ({data_resolution[0]}, {data_resolution[1]})"
|
| 184 |
-
)
|
| 185 |
-
static_vid = resize_input(static_vid, data_resolution)
|
| 186 |
-
fname = os.path.basename(img_path)
|
| 187 |
-
all_videos[fname] = static_vid.transpose(0, 1).unsqueeze(0)
|
| 188 |
-
|
| 189 |
-
return all_videos
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
def read_input_images(batch_input_path: str, data_resolution: List[int]) -> dict:
|
| 193 |
-
"""
|
| 194 |
-
Function to read input images from a JSONL file.
|
| 195 |
-
|
| 196 |
-
Args:
|
| 197 |
-
batch_input_path (str): Path to JSONL file containing visual input paths
|
| 198 |
-
data_resolution (list[int]): Data resolution
|
| 199 |
-
|
| 200 |
-
Returns:
|
| 201 |
-
Dict containing input images
|
| 202 |
-
"""
|
| 203 |
-
# Read visual inputs from JSONL
|
| 204 |
-
flist = []
|
| 205 |
-
with open(batch_input_path, "r") as f:
|
| 206 |
-
for line in f:
|
| 207 |
-
data = json.loads(line.strip())
|
| 208 |
-
flist.append(data["visual_input"])
|
| 209 |
-
|
| 210 |
-
return load_image_from_list(flist, data_resolution=data_resolution)
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
def read_input_image(input_path: str, data_resolution: List[int]) -> dict:
|
| 214 |
-
"""
|
| 215 |
-
Function to read input image.
|
| 216 |
-
Args:
|
| 217 |
-
input_path (str): Path to input image
|
| 218 |
-
data_resolution (List[int]): Data resolution
|
| 219 |
-
Returns:
|
| 220 |
-
Dict containing input image
|
| 221 |
-
"""
|
| 222 |
-
flist = [input_path]
|
| 223 |
-
return load_image_from_list(flist, data_resolution=data_resolution)
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
def read_input_videos(batch_input_path: str, data_resolution: List[int], num_input_frames: int) -> dict:
|
| 227 |
-
r"""
|
| 228 |
-
Function to read input videos.
|
| 229 |
-
Args:
|
| 230 |
-
batch_input_path (str): Path to JSONL file containing visual input paths
|
| 231 |
-
data_resolution (list[int]): Data resolution
|
| 232 |
-
Returns:
|
| 233 |
-
Dict containing input videos
|
| 234 |
-
"""
|
| 235 |
-
# Read visual inputs from JSONL
|
| 236 |
-
flist = []
|
| 237 |
-
with open(batch_input_path, "r") as f:
|
| 238 |
-
for line in f:
|
| 239 |
-
data = json.loads(line.strip())
|
| 240 |
-
flist.append(data["visual_input"])
|
| 241 |
-
return load_videos_from_list(flist, data_resolution=data_resolution, num_input_frames=num_input_frames)
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
def read_input_video(input_path: str, data_resolution: List[int], num_input_frames: int) -> dict:
|
| 245 |
-
"""
|
| 246 |
-
Function to read input video.
|
| 247 |
-
Args:
|
| 248 |
-
input_path (str): Path to input video
|
| 249 |
-
data_resolution (List[int]): Data resolution
|
| 250 |
-
num_input_frames (int): Number of frames in context
|
| 251 |
-
Returns:
|
| 252 |
-
Dict containing input video
|
| 253 |
-
"""
|
| 254 |
-
flist = [input_path]
|
| 255 |
-
return load_videos_from_list(flist, data_resolution=data_resolution, num_input_frames=num_input_frames)
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
def load_videos_from_list(flist: List[str], data_resolution: List[int], num_input_frames: int) -> dict:
|
| 259 |
-
"""
|
| 260 |
-
Function to load videos from a list of video paths.
|
| 261 |
-
Args:
|
| 262 |
-
flist (List[str]): List of video paths
|
| 263 |
-
data_resolution (List[int]): Data resolution
|
| 264 |
-
num_input_frames (int): Number of frames in context
|
| 265 |
-
Returns:
|
| 266 |
-
Dict containing input videos
|
| 267 |
-
"""
|
| 268 |
-
all_videos = dict()
|
| 269 |
-
|
| 270 |
-
for video_path in flist:
|
| 271 |
-
ext = os.path.splitext(video_path)[-1]
|
| 272 |
-
if ext in _VIDEO_EXTENSIONS:
|
| 273 |
-
video, _, _ = torchvision.io.read_video(video_path, pts_unit="sec")
|
| 274 |
-
video = video.float() / 255.0
|
| 275 |
-
video = video * 2 - 1
|
| 276 |
-
|
| 277 |
-
# Resize the videos to the required dimension
|
| 278 |
-
nframes_in_video = video.shape[0]
|
| 279 |
-
if nframes_in_video < num_input_frames:
|
| 280 |
-
fname = os.path.basename(video_path)
|
| 281 |
-
log.warning(
|
| 282 |
-
f"Video {fname} has {nframes_in_video} frames, less than the requried {num_input_frames} frames. Skipping."
|
| 283 |
-
)
|
| 284 |
-
continue
|
| 285 |
-
|
| 286 |
-
video = video[-num_input_frames:, :, :, :]
|
| 287 |
-
|
| 288 |
-
# Pad the video to NUM_TOTAL_FRAMES (because the tokenizer expects inputs of NUM_TOTAL_FRAMES)
|
| 289 |
-
video = torch.cat(
|
| 290 |
-
(video, video[-1, :, :, :].unsqueeze(0).repeat(NUM_TOTAL_FRAMES - num_input_frames, 1, 1, 1)),
|
| 291 |
-
dim=0,
|
| 292 |
-
)
|
| 293 |
-
|
| 294 |
-
video = video.permute(0, 3, 1, 2)
|
| 295 |
-
|
| 296 |
-
log.debug(
|
| 297 |
-
f"Resizing input video of shape ({video.shape[2]}, {video.shape[3]}) -> ({data_resolution[0]}, {data_resolution[1]})"
|
| 298 |
-
)
|
| 299 |
-
video = resize_input(video, data_resolution)
|
| 300 |
-
|
| 301 |
-
fname = os.path.basename(video_path)
|
| 302 |
-
all_videos[fname] = video.transpose(0, 1).unsqueeze(0)
|
| 303 |
-
|
| 304 |
-
return all_videos
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
def load_vision_input(
|
| 308 |
-
input_type: str,
|
| 309 |
-
batch_input_path: str,
|
| 310 |
-
input_image_or_video_path: str,
|
| 311 |
-
data_resolution: List[int],
|
| 312 |
-
num_input_frames: int,
|
| 313 |
-
):
|
| 314 |
-
"""
|
| 315 |
-
Function to load vision input.
|
| 316 |
-
Note: We pad the frames of the input image/video to NUM_TOTAL_FRAMES here, and feed the padded video tensors to the video tokenizer to obtain tokens. The tokens will be truncated based on num_input_frames when feeding to the autoregressive model.
|
| 317 |
-
Args:
|
| 318 |
-
input_type (str): Type of input
|
| 319 |
-
batch_input_path (str): Folder containing input images or videos
|
| 320 |
-
input_image_or_video_path (str): Path to input image or video
|
| 321 |
-
data_resolution (List[int]): Data resolution
|
| 322 |
-
num_input_frames (int): Number of frames in context
|
| 323 |
-
Returns:
|
| 324 |
-
Dict containing input videos
|
| 325 |
-
"""
|
| 326 |
-
if batch_input_path:
|
| 327 |
-
log.info(f"Reading batch inputs from path: {batch_input_path}")
|
| 328 |
-
if input_type == "image" or input_type == "text_and_image":
|
| 329 |
-
input_videos = read_input_images(batch_input_path, data_resolution=data_resolution)
|
| 330 |
-
elif input_type == "video" or input_type == "text_and_video":
|
| 331 |
-
input_videos = read_input_videos(
|
| 332 |
-
batch_input_path,
|
| 333 |
-
data_resolution=data_resolution,
|
| 334 |
-
num_input_frames=num_input_frames,
|
| 335 |
-
)
|
| 336 |
-
else:
|
| 337 |
-
raise ValueError(f"Invalid input type {input_type}")
|
| 338 |
-
else:
|
| 339 |
-
if input_type == "image" or input_type == "text_and_image":
|
| 340 |
-
input_videos = read_input_image(input_image_or_video_path, data_resolution=data_resolution)
|
| 341 |
-
elif input_type == "video" or input_type == "text_and_video":
|
| 342 |
-
input_videos = read_input_video(
|
| 343 |
-
input_image_or_video_path,
|
| 344 |
-
data_resolution=data_resolution,
|
| 345 |
-
num_input_frames=num_input_frames,
|
| 346 |
-
)
|
| 347 |
-
else:
|
| 348 |
-
raise ValueError(f"Invalid input type {input_type}")
|
| 349 |
-
return input_videos
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
def prepare_video_batch_for_saving(video_batch: List[torch.Tensor]) -> List[np.ndarray]:
|
| 353 |
-
"""
|
| 354 |
-
Function to convert output tensors to numpy format for saving.
|
| 355 |
-
Args:
|
| 356 |
-
video_batch (List[torch.Tensor]): List of output tensors
|
| 357 |
-
Returns:
|
| 358 |
-
List of numpy arrays
|
| 359 |
-
"""
|
| 360 |
-
return [(video * 255).to(torch.uint8).permute(1, 2, 3, 0).cpu().numpy() for video in video_batch]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/54ff4d48b535d2a1f27bbcc75c20ef16821b11e1
DELETED
|
@@ -1,341 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from dataclasses import dataclass
|
| 17 |
-
from typing import Callable, Dict, Optional, Tuple, Union
|
| 18 |
-
|
| 19 |
-
from .misc import misc
|
| 20 |
-
import torch
|
| 21 |
-
from torch import Tensor
|
| 22 |
-
|
| 23 |
-
from .df_conditioner import VideoExtendCondition
|
| 24 |
-
from .df_config_base_conditioner import VideoCondBoolConfig
|
| 25 |
-
from .df_df_functional_batch_ops import batch_mul
|
| 26 |
-
from .df_model_model_t2w import DiffusionT2WModel
|
| 27 |
-
from .log import log
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
@dataclass
|
| 31 |
-
class VideoDenoisePrediction:
|
| 32 |
-
x0: torch.Tensor # clean data prediction
|
| 33 |
-
eps: Optional[torch.Tensor] = None # noise prediction
|
| 34 |
-
logvar: Optional[torch.Tensor] = None # log variance of noise prediction, can be used a confidence / uncertainty
|
| 35 |
-
xt: Optional[torch.Tensor] = None # input to the network, before muliply with c_in
|
| 36 |
-
x0_pred_replaced: Optional[torch.Tensor] = None # x0 prediction with condition region replaced by gt_latent
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
class DiffusionV2WModel(DiffusionT2WModel):
|
| 40 |
-
def __init__(self, config):
|
| 41 |
-
super().__init__(config)
|
| 42 |
-
|
| 43 |
-
def augment_conditional_latent_frames(
|
| 44 |
-
self,
|
| 45 |
-
condition: VideoExtendCondition,
|
| 46 |
-
cfg_video_cond_bool: VideoCondBoolConfig,
|
| 47 |
-
gt_latent: Tensor,
|
| 48 |
-
condition_video_augment_sigma_in_inference: float = 0.001,
|
| 49 |
-
sigma: Tensor = None,
|
| 50 |
-
seed: int = 1,
|
| 51 |
-
) -> Union[VideoExtendCondition, Tensor]:
|
| 52 |
-
"""Augments the conditional frames with noise during inference.
|
| 53 |
-
|
| 54 |
-
Args:
|
| 55 |
-
condition (VideoExtendCondition): condition object
|
| 56 |
-
condition_video_indicator: binary tensor indicating the region is condition(value=1) or generation(value=0). Bx1xTx1x1 tensor.
|
| 57 |
-
condition_video_input_mask: input mask for the network input, indicating the condition region. B,1,T,H,W tensor. will be concat with the input for the network.
|
| 58 |
-
cfg_video_cond_bool (VideoCondBoolConfig): video condition bool config
|
| 59 |
-
gt_latent (Tensor): ground truth latent tensor in shape B,C,T,H,W
|
| 60 |
-
condition_video_augment_sigma_in_inference (float): sigma for condition video augmentation in inference
|
| 61 |
-
sigma (Tensor): noise level for the generation region
|
| 62 |
-
seed (int): random seed for reproducibility
|
| 63 |
-
Returns:
|
| 64 |
-
VideoExtendCondition: updated condition object
|
| 65 |
-
condition_video_augment_sigma: sigma for the condition region, feed to the network
|
| 66 |
-
augment_latent (Tensor): augmented latent tensor in shape B,C,T,H,W
|
| 67 |
-
|
| 68 |
-
"""
|
| 69 |
-
|
| 70 |
-
# Inference only, use fixed sigma for the condition region
|
| 71 |
-
assert (
|
| 72 |
-
condition_video_augment_sigma_in_inference is not None
|
| 73 |
-
), "condition_video_augment_sigma_in_inference should be provided"
|
| 74 |
-
augment_sigma = condition_video_augment_sigma_in_inference
|
| 75 |
-
|
| 76 |
-
if augment_sigma >= sigma.flatten()[0]:
|
| 77 |
-
# This is a inference trick! If the sampling sigma is smaller than the augment sigma, we will start denoising the condition region together.
|
| 78 |
-
# This is achieved by setting all region as `generation`, i.e. value=0
|
| 79 |
-
log.debug("augment_sigma larger than sigma or other frame, remove condition")
|
| 80 |
-
condition.condition_video_indicator = condition.condition_video_indicator * 0
|
| 81 |
-
|
| 82 |
-
augment_sigma = torch.tensor([augment_sigma], **self.tensor_kwargs)
|
| 83 |
-
|
| 84 |
-
# Now apply the augment_sigma to the gt_latent
|
| 85 |
-
|
| 86 |
-
noise = misc.arch_invariant_rand(
|
| 87 |
-
gt_latent.shape,
|
| 88 |
-
torch.float32,
|
| 89 |
-
self.tensor_kwargs["device"],
|
| 90 |
-
seed,
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
augment_latent = gt_latent + noise * augment_sigma[:, None, None, None, None]
|
| 94 |
-
|
| 95 |
-
_, _, c_in_augment, _ = self.scaling(sigma=augment_sigma)
|
| 96 |
-
|
| 97 |
-
# Multiply the whole latent with c_in_augment
|
| 98 |
-
augment_latent_cin = batch_mul(augment_latent, c_in_augment)
|
| 99 |
-
|
| 100 |
-
# Since the whole latent will multiply with c_in later, we devide the value to cancel the effect
|
| 101 |
-
_, _, c_in, _ = self.scaling(sigma=sigma)
|
| 102 |
-
augment_latent_cin = batch_mul(augment_latent_cin, 1 / c_in)
|
| 103 |
-
|
| 104 |
-
return condition, augment_latent_cin
|
| 105 |
-
|
| 106 |
-
def denoise(
|
| 107 |
-
self,
|
| 108 |
-
noise_x: Tensor,
|
| 109 |
-
sigma: Tensor,
|
| 110 |
-
condition: VideoExtendCondition,
|
| 111 |
-
condition_video_augment_sigma_in_inference: float = 0.001,
|
| 112 |
-
seed: int = 1,
|
| 113 |
-
) -> VideoDenoisePrediction:
|
| 114 |
-
"""Denoises input tensor using conditional video generation.
|
| 115 |
-
|
| 116 |
-
Args:
|
| 117 |
-
noise_x (Tensor): Noisy input tensor.
|
| 118 |
-
sigma (Tensor): Noise level.
|
| 119 |
-
condition (VideoExtendCondition): Condition for denoising.
|
| 120 |
-
condition_video_augment_sigma_in_inference (float): sigma for condition video augmentation in inference
|
| 121 |
-
seed (int): Random seed for reproducibility
|
| 122 |
-
Returns:
|
| 123 |
-
VideoDenoisePrediction containing:
|
| 124 |
-
- x0: Denoised prediction
|
| 125 |
-
- eps: Noise prediction
|
| 126 |
-
- logvar: Log variance of noise prediction
|
| 127 |
-
- xt: Input before c_in multiplication
|
| 128 |
-
- x0_pred_replaced: x0 prediction with condition regions replaced by ground truth
|
| 129 |
-
"""
|
| 130 |
-
|
| 131 |
-
assert (
|
| 132 |
-
condition.gt_latent is not None
|
| 133 |
-
), f"find None gt_latent in condition, likely didn't call self.add_condition_video_indicator_and_video_input_mask when preparing the condition or this is a image batch but condition.data_type is wrong, get {noise_x.shape}"
|
| 134 |
-
gt_latent = condition.gt_latent
|
| 135 |
-
cfg_video_cond_bool: VideoCondBoolConfig = self.config.conditioner.video_cond_bool
|
| 136 |
-
|
| 137 |
-
condition_latent = gt_latent
|
| 138 |
-
|
| 139 |
-
# Augment the latent with different sigma value, and add the augment_sigma to the condition object if needed
|
| 140 |
-
condition, augment_latent = self.augment_conditional_latent_frames(
|
| 141 |
-
condition, cfg_video_cond_bool, condition_latent, condition_video_augment_sigma_in_inference, sigma, seed
|
| 142 |
-
)
|
| 143 |
-
condition_video_indicator = condition.condition_video_indicator # [B, 1, T, 1, 1]
|
| 144 |
-
|
| 145 |
-
# Compose the model input with condition region (augment_latent) and generation region (noise_x)
|
| 146 |
-
new_noise_xt = condition_video_indicator * augment_latent + (1 - condition_video_indicator) * noise_x
|
| 147 |
-
# Call the abse model
|
| 148 |
-
denoise_pred = super().denoise(new_noise_xt, sigma, condition)
|
| 149 |
-
|
| 150 |
-
x0_pred_replaced = condition_video_indicator * gt_latent + (1 - condition_video_indicator) * denoise_pred.x0
|
| 151 |
-
|
| 152 |
-
x0_pred = x0_pred_replaced
|
| 153 |
-
|
| 154 |
-
return VideoDenoisePrediction(
|
| 155 |
-
x0=x0_pred,
|
| 156 |
-
eps=batch_mul(noise_x - x0_pred, 1.0 / sigma),
|
| 157 |
-
logvar=denoise_pred.logvar,
|
| 158 |
-
xt=new_noise_xt,
|
| 159 |
-
x0_pred_replaced=x0_pred_replaced,
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
def generate_samples_from_batch(
|
| 163 |
-
self,
|
| 164 |
-
data_batch: Dict,
|
| 165 |
-
guidance: float = 1.5,
|
| 166 |
-
seed: int = 1,
|
| 167 |
-
state_shape: Tuple | None = None,
|
| 168 |
-
n_sample: int | None = None,
|
| 169 |
-
is_negative_prompt: bool = False,
|
| 170 |
-
num_steps: int = 35,
|
| 171 |
-
condition_latent: Union[torch.Tensor, None] = None,
|
| 172 |
-
num_condition_t: Union[int, None] = None,
|
| 173 |
-
condition_video_augment_sigma_in_inference: float = None,
|
| 174 |
-
add_input_frames_guidance: bool = False,
|
| 175 |
-
x_sigma_max: Optional[torch.Tensor] = None,
|
| 176 |
-
) -> Tensor:
|
| 177 |
-
"""Generates video samples conditioned on input frames.
|
| 178 |
-
|
| 179 |
-
Args:
|
| 180 |
-
data_batch: Input data dictionary
|
| 181 |
-
guidance: Classifier-free guidance scale
|
| 182 |
-
seed: Random seed for reproducibility
|
| 183 |
-
state_shape: Shape of output tensor (defaults to model's state shape)
|
| 184 |
-
n_sample: Number of samples to generate (defaults to batch size)
|
| 185 |
-
is_negative_prompt: Whether to use negative prompting
|
| 186 |
-
num_steps: Number of denoising steps
|
| 187 |
-
condition_latent: Conditioning frames tensor (B,C,T,H,W)
|
| 188 |
-
num_condition_t: Number of frames to condition on
|
| 189 |
-
condition_video_augment_sigma_in_inference: Noise level for condition augmentation
|
| 190 |
-
add_input_frames_guidance: Whether to apply guidance to input frames
|
| 191 |
-
x_sigma_max: Maximum noise level tensor
|
| 192 |
-
|
| 193 |
-
Returns:
|
| 194 |
-
Generated video samples tensor
|
| 195 |
-
"""
|
| 196 |
-
|
| 197 |
-
if n_sample is None:
|
| 198 |
-
input_key = self.input_data_key
|
| 199 |
-
n_sample = data_batch[input_key].shape[0]
|
| 200 |
-
if state_shape is None:
|
| 201 |
-
log.debug(f"Default Video state shape is used. {self.state_shape}")
|
| 202 |
-
state_shape = self.state_shape
|
| 203 |
-
|
| 204 |
-
assert condition_latent is not None, "condition_latent should be provided"
|
| 205 |
-
|
| 206 |
-
x0_fn = self.get_x0_fn_from_batch_with_condition_latent(
|
| 207 |
-
data_batch,
|
| 208 |
-
guidance,
|
| 209 |
-
is_negative_prompt=is_negative_prompt,
|
| 210 |
-
condition_latent=condition_latent,
|
| 211 |
-
num_condition_t=num_condition_t,
|
| 212 |
-
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
|
| 213 |
-
add_input_frames_guidance=add_input_frames_guidance,
|
| 214 |
-
seed=seed,
|
| 215 |
-
)
|
| 216 |
-
if x_sigma_max is None:
|
| 217 |
-
x_sigma_max = (
|
| 218 |
-
misc.arch_invariant_rand(
|
| 219 |
-
(n_sample,) + tuple(state_shape),
|
| 220 |
-
torch.float32,
|
| 221 |
-
self.tensor_kwargs["device"],
|
| 222 |
-
seed,
|
| 223 |
-
)
|
| 224 |
-
* self.sde.sigma_max
|
| 225 |
-
)
|
| 226 |
-
|
| 227 |
-
samples = self.sampler(x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=self.sde.sigma_max)
|
| 228 |
-
return samples
|
| 229 |
-
|
| 230 |
-
def get_x0_fn_from_batch_with_condition_latent(
|
| 231 |
-
self,
|
| 232 |
-
data_batch: Dict,
|
| 233 |
-
guidance: float = 1.5,
|
| 234 |
-
is_negative_prompt: bool = False,
|
| 235 |
-
condition_latent: torch.Tensor = None,
|
| 236 |
-
num_condition_t: Union[int, None] = None,
|
| 237 |
-
condition_video_augment_sigma_in_inference: float = None,
|
| 238 |
-
add_input_frames_guidance: bool = False,
|
| 239 |
-
seed: int = 1,
|
| 240 |
-
) -> Callable:
|
| 241 |
-
"""Creates denoising function for conditional video generation.
|
| 242 |
-
|
| 243 |
-
Args:
|
| 244 |
-
data_batch: Input data dictionary
|
| 245 |
-
guidance: Classifier-free guidance scale
|
| 246 |
-
is_negative_prompt: Whether to use negative prompting
|
| 247 |
-
condition_latent: Conditioning frames tensor (B,C,T,H,W)
|
| 248 |
-
num_condition_t: Number of frames to condition on
|
| 249 |
-
condition_video_augment_sigma_in_inference: Noise level for condition augmentation
|
| 250 |
-
add_input_frames_guidance: Whether to apply guidance to input frames
|
| 251 |
-
seed: Random seed for reproducibility
|
| 252 |
-
|
| 253 |
-
Returns:
|
| 254 |
-
Function that takes noisy input and noise level and returns denoised prediction
|
| 255 |
-
"""
|
| 256 |
-
if is_negative_prompt:
|
| 257 |
-
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
|
| 258 |
-
else:
|
| 259 |
-
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
|
| 260 |
-
|
| 261 |
-
condition.video_cond_bool = True
|
| 262 |
-
condition = self.add_condition_video_indicator_and_video_input_mask(
|
| 263 |
-
condition_latent, condition, num_condition_t
|
| 264 |
-
)
|
| 265 |
-
|
| 266 |
-
uncondition.video_cond_bool = False if add_input_frames_guidance else True
|
| 267 |
-
uncondition = self.add_condition_video_indicator_and_video_input_mask(
|
| 268 |
-
condition_latent, uncondition, num_condition_t
|
| 269 |
-
)
|
| 270 |
-
|
| 271 |
-
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
|
| 272 |
-
cond_x0 = self.denoise(
|
| 273 |
-
noise_x,
|
| 274 |
-
sigma,
|
| 275 |
-
condition,
|
| 276 |
-
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
|
| 277 |
-
seed=seed,
|
| 278 |
-
).x0_pred_replaced
|
| 279 |
-
uncond_x0 = self.denoise(
|
| 280 |
-
noise_x,
|
| 281 |
-
sigma,
|
| 282 |
-
uncondition,
|
| 283 |
-
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
|
| 284 |
-
seed=seed,
|
| 285 |
-
).x0_pred_replaced
|
| 286 |
-
|
| 287 |
-
return cond_x0 + guidance * (cond_x0 - uncond_x0)
|
| 288 |
-
|
| 289 |
-
return x0_fn
|
| 290 |
-
|
| 291 |
-
def add_condition_video_indicator_and_video_input_mask(
|
| 292 |
-
self, latent_state: torch.Tensor, condition: VideoExtendCondition, num_condition_t: Union[int, None] = None
|
| 293 |
-
) -> VideoExtendCondition:
|
| 294 |
-
"""Adds conditioning masks to VideoExtendCondition object.
|
| 295 |
-
|
| 296 |
-
Creates binary indicators and input masks for conditional video generation.
|
| 297 |
-
|
| 298 |
-
Args:
|
| 299 |
-
latent_state: Input latent tensor (B,C,T,H,W)
|
| 300 |
-
condition: VideoExtendCondition object to update
|
| 301 |
-
num_condition_t: Number of frames to condition on
|
| 302 |
-
|
| 303 |
-
Returns:
|
| 304 |
-
Updated VideoExtendCondition with added masks:
|
| 305 |
-
- condition_video_indicator: Binary tensor marking condition regions
|
| 306 |
-
- condition_video_input_mask: Input mask for network
|
| 307 |
-
- gt_latent: Ground truth latent tensor
|
| 308 |
-
"""
|
| 309 |
-
T = latent_state.shape[2]
|
| 310 |
-
latent_dtype = latent_state.dtype
|
| 311 |
-
condition_video_indicator = torch.zeros(1, 1, T, 1, 1, device=latent_state.device).type(
|
| 312 |
-
latent_dtype
|
| 313 |
-
) # 1 for condition region
|
| 314 |
-
|
| 315 |
-
# Only in inference to decide the condition region
|
| 316 |
-
assert num_condition_t is not None, "num_condition_t should be provided"
|
| 317 |
-
assert num_condition_t <= T, f"num_condition_t should be less than T, get {num_condition_t}, {T}"
|
| 318 |
-
log.debug(
|
| 319 |
-
f"condition_location first_n, num_condition_t {num_condition_t}, condition.video_cond_bool {condition.video_cond_bool}"
|
| 320 |
-
)
|
| 321 |
-
condition_video_indicator[:, :, :num_condition_t] += 1.0
|
| 322 |
-
|
| 323 |
-
condition.gt_latent = latent_state
|
| 324 |
-
condition.condition_video_indicator = condition_video_indicator
|
| 325 |
-
|
| 326 |
-
B, C, T, H, W = latent_state.shape
|
| 327 |
-
# Create additional input_mask channel, this will be concatenated to the input of the network
|
| 328 |
-
# See design doc section (Implementation detail A.1 and A.2) for visualization
|
| 329 |
-
ones_padding = torch.ones((B, 1, T, H, W), dtype=latent_state.dtype, device=latent_state.device)
|
| 330 |
-
zeros_padding = torch.zeros((B, 1, T, H, W), dtype=latent_state.dtype, device=latent_state.device)
|
| 331 |
-
assert condition.video_cond_bool is not None, "video_cond_bool should be set"
|
| 332 |
-
|
| 333 |
-
# The input mask indicate whether the input is conditional region or not
|
| 334 |
-
if condition.video_cond_bool: # Condition one given video frames
|
| 335 |
-
condition.condition_video_input_mask = (
|
| 336 |
-
condition_video_indicator * ones_padding + (1 - condition_video_indicator) * zeros_padding
|
| 337 |
-
)
|
| 338 |
-
else: # Unconditional case, use for cfg
|
| 339 |
-
condition.condition_video_input_mask = zeros_padding
|
| 340 |
-
|
| 341 |
-
return condition
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/578cd9ecfca36e5376fef8da5106652c6ca85b68
DELETED
|
@@ -1,262 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import math
|
| 17 |
-
from typing import Optional, Union
|
| 18 |
-
|
| 19 |
-
import torch
|
| 20 |
-
from torch import nn
|
| 21 |
-
|
| 22 |
-
from .ar_module_embedding import RotaryPositionEmbedding
|
| 23 |
-
from .ar_module_normalization import create_norm
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
class Attention(nn.Module):
|
| 27 |
-
"""
|
| 28 |
-
Attenion layer with KV cache.
|
| 29 |
-
"""
|
| 30 |
-
|
| 31 |
-
def __init__(
|
| 32 |
-
self,
|
| 33 |
-
n_heads: int,
|
| 34 |
-
n_kv_heads: Union[int, None],
|
| 35 |
-
dim: int,
|
| 36 |
-
max_batch_size: int,
|
| 37 |
-
max_seq_len: int,
|
| 38 |
-
context_dim: Optional[int] = None,
|
| 39 |
-
use_qk_normalization: bool = False,
|
| 40 |
-
norm_type: str = "rmsnorm",
|
| 41 |
-
norm_eps: float = 1e-5,
|
| 42 |
-
causal_mask: Optional[bool] = True,
|
| 43 |
-
head_dim: Optional[int] = None,
|
| 44 |
-
fuse_qkv: bool = False,
|
| 45 |
-
precision: str = "bfloat16",
|
| 46 |
-
attn_type: str = "self",
|
| 47 |
-
):
|
| 48 |
-
"""
|
| 49 |
-
Initializes the GQA module.
|
| 50 |
-
|
| 51 |
-
Args:
|
| 52 |
-
n_heads (int): The number of attention heads.
|
| 53 |
-
n_kv_heads (int, optional): The number of key-value attention heads. None defaults to n_heads.
|
| 54 |
-
dim (int): The dimensionality of the input and output.
|
| 55 |
-
max_batch_size (int): The maximum batch size.
|
| 56 |
-
max_seq_len (int): The maximum sequence length.
|
| 57 |
-
context_dim (int, optional): The dimensionality of the context for cross-attn. Defaults to None.
|
| 58 |
-
use_qk_normalization (bool, optional): Whether to apply QK normalization. Defaults to False.
|
| 59 |
-
norm_type (str, optional): The type of normalization layer. Defaults to "rmsnorm".
|
| 60 |
-
norm_eps (float, optional): The epsilon value for normalization. Defaults to 1e-5.
|
| 61 |
-
causal_mask (bool, optional): Whether to use causal mask. Defaults to True.
|
| 62 |
-
head_dim (int, optional): The dimensionality of each attention head. If None, defaults to dim // n_heads.
|
| 63 |
-
fuse_qkv (bool, optional): Whether to fuse QKV. Defaults to False.
|
| 64 |
-
precision (str, optional): The precision of the module. Defaults to "bfloat16".
|
| 65 |
-
attn_type (str, optional): The type of attention. Defaults to "self".
|
| 66 |
-
"""
|
| 67 |
-
super().__init__()
|
| 68 |
-
assert attn_type in ["self", "cross", "full"], f"Invalid attention type: {attn_type}"
|
| 69 |
-
self.attn_type = attn_type
|
| 70 |
-
context_dim = dim if context_dim is None else context_dim
|
| 71 |
-
|
| 72 |
-
self.dim = dim
|
| 73 |
-
self.context_dim = context_dim
|
| 74 |
-
self.n_kv_heads = n_heads if n_kv_heads is None else n_kv_heads
|
| 75 |
-
self.n_local_kv_heads = self.n_kv_heads
|
| 76 |
-
self.n_local_heads = n_heads
|
| 77 |
-
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
| 78 |
-
self.head_dim = dim // n_heads if head_dim is None else head_dim
|
| 79 |
-
self.causal_mask = causal_mask
|
| 80 |
-
self.fuse_qkv = fuse_qkv
|
| 81 |
-
self.precision = precision
|
| 82 |
-
|
| 83 |
-
if fuse_qkv:
|
| 84 |
-
assert context_dim == dim, f"Fuse QKV requires context_dim ({context_dim}) to be equal to dim ({dim})"
|
| 85 |
-
self.total_local_head_dim = (self.n_local_heads + 2 * self.n_local_kv_heads) * self.head_dim
|
| 86 |
-
self.wqkv = nn.Linear(dim, self.total_local_head_dim, bias=False)
|
| 87 |
-
# Register hook to load fused QKV weights
|
| 88 |
-
self._register_load_state_dict_pre_hook(self.load_hook)
|
| 89 |
-
else:
|
| 90 |
-
self.wq = nn.Linear(dim, self.n_local_heads * self.head_dim, bias=False)
|
| 91 |
-
self.wk = nn.Linear(context_dim, self.n_local_kv_heads * self.head_dim, bias=False)
|
| 92 |
-
self.wv = nn.Linear(context_dim, self.n_local_kv_heads * self.head_dim, bias=False)
|
| 93 |
-
self.wo = nn.Linear(self.n_local_heads * self.head_dim, dim, bias=False)
|
| 94 |
-
|
| 95 |
-
self.max_batch_size = max_batch_size
|
| 96 |
-
self.max_seq_len = max_seq_len
|
| 97 |
-
|
| 98 |
-
if self.attn_type == "self":
|
| 99 |
-
# Cache for key and value tensors
|
| 100 |
-
self.init_kv_cache()
|
| 101 |
-
|
| 102 |
-
# QK normalization layers
|
| 103 |
-
if use_qk_normalization:
|
| 104 |
-
self.q_norm = create_norm(norm_type, dim=self.head_dim, eps=norm_eps)
|
| 105 |
-
self.k_norm = create_norm(norm_type, dim=self.head_dim, eps=norm_eps)
|
| 106 |
-
|
| 107 |
-
self.use_qk_normalization = use_qk_normalization
|
| 108 |
-
|
| 109 |
-
self.to(dtype=getattr(torch, self.precision))
|
| 110 |
-
|
| 111 |
-
def load_hook(self, state_dict, prefix, *args):
|
| 112 |
-
if prefix + "wq.weight" in state_dict:
|
| 113 |
-
wq = state_dict.pop(prefix + "wq.weight")
|
| 114 |
-
wk = state_dict.pop(prefix + "wk.weight")
|
| 115 |
-
wv = state_dict.pop(prefix + "wv.weight")
|
| 116 |
-
state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv])
|
| 117 |
-
|
| 118 |
-
def init_kv_cache(self, dtype=None):
|
| 119 |
-
cache_shape = (self.max_batch_size, self.n_local_kv_heads, self.max_seq_len, self.head_dim)
|
| 120 |
-
if dtype is None:
|
| 121 |
-
dtype = getattr(torch, self.precision)
|
| 122 |
-
if self.attn_type == "self":
|
| 123 |
-
self.cache_k = torch.zeros(cache_shape, dtype=dtype).cuda()
|
| 124 |
-
self.cache_v = torch.zeros(cache_shape, dtype=dtype).cuda()
|
| 125 |
-
|
| 126 |
-
def forward(
|
| 127 |
-
self,
|
| 128 |
-
x: torch.Tensor,
|
| 129 |
-
rope: RotaryPositionEmbedding,
|
| 130 |
-
input_pos: torch.Tensor,
|
| 131 |
-
mask: Optional[torch.Tensor] = None,
|
| 132 |
-
context: Optional[torch.Tensor] = None,
|
| 133 |
-
):
|
| 134 |
-
"""
|
| 135 |
-
Forward pass of GQA.
|
| 136 |
-
|
| 137 |
-
Args:
|
| 138 |
-
x: The input tensor of shape (batch_size, seq_len, dim).
|
| 139 |
-
rope: The rotary positional embedding module.
|
| 140 |
-
input_pos: The starting position of the current sequence.
|
| 141 |
-
mask: The attention mask tensor.
|
| 142 |
-
context: The context tensor of shape (batch_size, context_len, dim).
|
| 143 |
-
|
| 144 |
-
Returns:
|
| 145 |
-
The output tensor after applying GQA.
|
| 146 |
-
"""
|
| 147 |
-
bsz, seqlen, _ = x.shape
|
| 148 |
-
|
| 149 |
-
# Use one single module to handle both self-attn and cross-attn
|
| 150 |
-
context = x if context is None else context
|
| 151 |
-
context_len = seqlen if context is None else context.shape[1]
|
| 152 |
-
|
| 153 |
-
if self.fuse_qkv:
|
| 154 |
-
q_size = self.n_local_heads * self.head_dim
|
| 155 |
-
kv_size = self.n_local_kv_heads * self.head_dim
|
| 156 |
-
xq, xk, xv = self.wqkv(x).split([q_size, kv_size, kv_size], dim=-1)
|
| 157 |
-
else:
|
| 158 |
-
# Compute query, key, and value projections
|
| 159 |
-
xq, xk, xv = self.wq(x), self.wk(context), self.wv(context)
|
| 160 |
-
|
| 161 |
-
# Reshape projections
|
| 162 |
-
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
|
| 163 |
-
xk = xk.view(bsz, context_len, self.n_local_kv_heads, self.head_dim)
|
| 164 |
-
xv = xv.view(bsz, context_len, self.n_local_kv_heads, self.head_dim)
|
| 165 |
-
|
| 166 |
-
# QK normalization
|
| 167 |
-
if self.use_qk_normalization:
|
| 168 |
-
xq = self.q_norm(xq)
|
| 169 |
-
xk = self.k_norm(xk)
|
| 170 |
-
|
| 171 |
-
# Apply rotary positional embeddings to queries and keys
|
| 172 |
-
# Only apply RoPE to self-attention!
|
| 173 |
-
if self.attn_type in ["self", "full"]:
|
| 174 |
-
xq, xk = rope(xq, xk, input_pos, seqlen)
|
| 175 |
-
|
| 176 |
-
xq, xk, xv = map(lambda x: x.transpose(1, 2), (xq, xk, xv))
|
| 177 |
-
# xq: (bs, n_local_heads, seqlen, head_dim)
|
| 178 |
-
# xk: (bs, n_kv_heads, cache_len + context_len, head_dim)
|
| 179 |
-
# xv: (bs, n_kv_heads, cache_len + context_len, head_dim)
|
| 180 |
-
if self.attn_type == "self":
|
| 181 |
-
# Update cache with current key and value tensors
|
| 182 |
-
assert input_pos is not None
|
| 183 |
-
self.cache_k[:bsz, :, input_pos] = xk
|
| 184 |
-
self.cache_v[:bsz, :, input_pos] = xv
|
| 185 |
-
keys, values = (
|
| 186 |
-
self.cache_k[:bsz, :, :],
|
| 187 |
-
self.cache_v[:bsz, :, :],
|
| 188 |
-
)
|
| 189 |
-
else:
|
| 190 |
-
keys, values = xk, xv
|
| 191 |
-
|
| 192 |
-
# Repeat keys and values if necessary
|
| 193 |
-
keys = keys.repeat_interleave(self.n_rep, dim=1) # (bs, n_local_heads, cache_len + context_len, head_dim)
|
| 194 |
-
values = values.repeat_interleave(self.n_rep, dim=1) # (bs, n_local_heads, cache_len + context_len, head_dim)
|
| 195 |
-
|
| 196 |
-
# For self-attention, `is_causal` should be set to False when KV cache is pre-computed and used,
|
| 197 |
-
# since the masking is handled outside this attention module.
|
| 198 |
-
# For cross-attention, it's always full-attn without causal mask
|
| 199 |
-
is_causal = False
|
| 200 |
-
output = scaled_dot_product_attention(
|
| 201 |
-
xq,
|
| 202 |
-
keys,
|
| 203 |
-
values,
|
| 204 |
-
head_dim=self.head_dim,
|
| 205 |
-
mask=mask,
|
| 206 |
-
is_causal=is_causal,
|
| 207 |
-
dropout_p=0.0,
|
| 208 |
-
)
|
| 209 |
-
output = output.view(bsz, seqlen, -1)
|
| 210 |
-
output = self.wo(output)
|
| 211 |
-
return output
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
def scaled_dot_product_attention(
|
| 215 |
-
q: torch.Tensor,
|
| 216 |
-
k: torch.Tensor,
|
| 217 |
-
v: torch.Tensor,
|
| 218 |
-
head_dim: int,
|
| 219 |
-
mask: Optional[torch.Tensor] = None,
|
| 220 |
-
is_causal: Optional[bool] = None,
|
| 221 |
-
dropout_p: float = 0.0,
|
| 222 |
-
) -> torch.Tensor:
|
| 223 |
-
"""
|
| 224 |
-
PyTorch's native implementation of Flash Attention 2.
|
| 225 |
-
|
| 226 |
-
If `is_causal` is given, then the causal attention mask is applied accordingly:
|
| 227 |
-
- If `is_causal` is True, the standard upper-left causal attention masking is applied.
|
| 228 |
-
- If `is_causal` is False, no attention mask is applied, unless an explicit mask tensor is
|
| 229 |
-
provided (i.e., `mask is not None`).
|
| 230 |
-
|
| 231 |
-
If `is_causal` is not given (i.e., `is_causal is None`), then the attention mask is applied
|
| 232 |
-
based on the provided mask tensor:
|
| 233 |
-
- If no explicit attention mask is given (i.e., `mask is None`), `is_causal` is set to True,
|
| 234 |
-
leading to the standard upper-left causal attention masking.
|
| 235 |
-
- If an attention mask is given (i.e., `mask is not None`), the provided mask is used,
|
| 236 |
-
and `is_causal` is set to False.
|
| 237 |
-
|
| 238 |
-
Args:
|
| 239 |
-
q (torch.Tensor): Query tensor
|
| 240 |
-
k (torch.Tensor): Key tensor
|
| 241 |
-
v (torch.Tensor): Value tensor
|
| 242 |
-
head_dim (int): Dimension of each attention head
|
| 243 |
-
mask (Optional[torch.Tensor], optional): Attention mask. Defaults to None.
|
| 244 |
-
is_causal (Optional[bool], optional): Whether to apply causal attention mask. Defaults to None.
|
| 245 |
-
dropout_p (float, optional): Dropout rate. Defaults to 0.0.
|
| 246 |
-
|
| 247 |
-
Returns:
|
| 248 |
-
torch.Tensor: Output tensor after applying scaled dot-product attention
|
| 249 |
-
"""
|
| 250 |
-
scale = 1.0 / math.sqrt(head_dim)
|
| 251 |
-
if is_causal is None:
|
| 252 |
-
is_causal = mask is None
|
| 253 |
-
y = torch.nn.functional.scaled_dot_product_attention(
|
| 254 |
-
q,
|
| 255 |
-
k,
|
| 256 |
-
v,
|
| 257 |
-
attn_mask=mask,
|
| 258 |
-
dropout_p=dropout_p,
|
| 259 |
-
scale=scale,
|
| 260 |
-
is_causal=is_causal,
|
| 261 |
-
)
|
| 262 |
-
return y.transpose(1, 2).contiguous()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/5877aa166d1d946b98ce604e2bd1a4284b884ae6
DELETED
|
@@ -1,318 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from typing import Any, Dict, List, Optional, Union
|
| 17 |
-
|
| 18 |
-
import numpy as np
|
| 19 |
-
import torch
|
| 20 |
-
import transformers
|
| 21 |
-
from transformers import AutoImageProcessor
|
| 22 |
-
from transformers.image_utils import ImageInput, is_valid_image, load_image
|
| 23 |
-
|
| 24 |
-
from .ar_tokenizer_text_tokenizer import TextTokenizer
|
| 25 |
-
from .log import log
|
| 26 |
-
|
| 27 |
-
# Configuration for different vision-language models
|
| 28 |
-
IMAGE_CONFIGS = {
|
| 29 |
-
"pixtral": {
|
| 30 |
-
"patch_size": 16,
|
| 31 |
-
"image_token": "[IMG]",
|
| 32 |
-
"image_break_token": "[IMG_BREAK]",
|
| 33 |
-
"image_end_token": "[IMG_END]",
|
| 34 |
-
}
|
| 35 |
-
}
|
| 36 |
-
|
| 37 |
-
# Chat template for Pixtral-12B-Instruct
|
| 38 |
-
PIXTRAL_CHAT_TEMPLATE = '{%- if messages[0]["role"] == "system" %}\n {%- set system_message = messages[0]["content"] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n {%- if (message[\'role\'] == \'user\') != (loop.index0 % 2 == 0) %}\n {{- raise_exception(\'After the optional system message, conversation roles must alternate user/assistant/user/assistant/...\') }}\n {%- endif %}\n {%- if message["role"] == "user" %}\n {%- if loop.last and system_message is defined %}\n {{- "[INST]" + system_message + "\n\n" }}\n {%- else %}\n {{- "[INST]" }}\n {%- endif %}\n {%- if message["content"] is not string %}\n {%- for chunk in message["content"] %}\n {%- if chunk["type"] == "text" %}\n {{- chunk["content"] }}\n {%- elif chunk["type"] == "image" %}\n {{- "[IMG]" }}\n {%- else %}\n {{- raise_exception("Unrecognized content type!") }}\n {%- endif %}\n {%- endfor %}\n {%- else %}\n {{- message["content"] }}\n {%- endif %}\n {{- "[/INST]" }}\n {%- elif message["role"] == "assistant" %}\n {{- message["content"] + eos_token}}\n {%- else %}\n {{- raise_exception("Only user and assistant roles are supported, with the exception of an initial optional system message!") }}\n {%- endif %}\n{%- endfor %}'
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
# Copied from transformers.models.pixtral.processing_pixtral.is_url
|
| 42 |
-
def is_url(val) -> bool:
|
| 43 |
-
"""Check if the given value is a URL."""
|
| 44 |
-
return isinstance(val, str) and val.startswith("http")
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
# Copied from transformers.models.pixtral.processing_pixtral.is_image_or_image_url
|
| 48 |
-
def is_image_or_image_url(elem):
|
| 49 |
-
"""Check if the given element is an image or an image URL."""
|
| 50 |
-
return is_url(elem) or is_valid_image(elem)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
def load_image_list(
|
| 54 |
-
image_list: List[Union[str, "PIL.Image.Image"]], timeout: Optional[float] = None
|
| 55 |
-
) -> List["PIL.Image.Image"]:
|
| 56 |
-
"""
|
| 57 |
-
Load a list of images.
|
| 58 |
-
|
| 59 |
-
Args:
|
| 60 |
-
image_list (List[Union[str, PIL.Image.Image]]): The list of images to load.
|
| 61 |
-
timeout (Optional[float]): The timeout for loading the image.
|
| 62 |
-
|
| 63 |
-
Returns:
|
| 64 |
-
List[PIL.Image.Image]: The list of loaded images.
|
| 65 |
-
"""
|
| 66 |
-
return [load_image(image, timeout=timeout) for image in image_list]
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
class ImageTextTokenizer(TextTokenizer):
|
| 70 |
-
"""
|
| 71 |
-
Image-text tokenizer class that extends the text tokenizer to support vision tokens as well.
|
| 72 |
-
"""
|
| 73 |
-
|
| 74 |
-
def __init__(
|
| 75 |
-
self,
|
| 76 |
-
model_family: str,
|
| 77 |
-
is_instruct_model: bool,
|
| 78 |
-
tokenizer_path: str,
|
| 79 |
-
image_processor_path: str,
|
| 80 |
-
):
|
| 81 |
-
"""
|
| 82 |
-
Initialize the ImageTextTokenizer.
|
| 83 |
-
|
| 84 |
-
Args:
|
| 85 |
-
model_family (str): The model family.
|
| 86 |
-
is_instruct_model (bool): Whether the model is an instruct model.
|
| 87 |
-
s3_credential_path (str): The path to the s3 credential file. Defaults to "credentials/pbss_dir.secret".
|
| 88 |
-
|
| 89 |
-
Raises:
|
| 90 |
-
AssertionError: If the model family is not supported or if the transformers version is incompatible.
|
| 91 |
-
"""
|
| 92 |
-
super().__init__(
|
| 93 |
-
model_family=model_family,
|
| 94 |
-
is_instruct_model=is_instruct_model,
|
| 95 |
-
local_path=tokenizer_path,
|
| 96 |
-
)
|
| 97 |
-
assert model_family in ["pixtral"], f"Unsupported model family: {model_family}"
|
| 98 |
-
if model_family == "pixtral":
|
| 99 |
-
# Need transformers>=4.45.0
|
| 100 |
-
assert transformers.__version__ >= "4.45.0", "Pixtral requires transformers>=4.45.0"
|
| 101 |
-
assert is_instruct_model, "Pixtral requires is_instruct_model=True"
|
| 102 |
-
if not hasattr(self.tokenizer, "chat_template") or self.tokenizer.chat_template is None:
|
| 103 |
-
setattr(self.tokenizer, "chat_template", PIXTRAL_CHAT_TEMPLATE)
|
| 104 |
-
log.debug(f"Pixtral tokenizer chat template set to: {PIXTRAL_CHAT_TEMPLATE}")
|
| 105 |
-
|
| 106 |
-
# Set up image-specific configurations
|
| 107 |
-
image_config = IMAGE_CONFIGS[model_family]
|
| 108 |
-
self.patch_size = image_config["patch_size"]
|
| 109 |
-
self.image_token = image_config["image_token"]
|
| 110 |
-
self.image_break_token = image_config["image_break_token"]
|
| 111 |
-
self.image_end_token = image_config["image_end_token"]
|
| 112 |
-
|
| 113 |
-
# Initialize the image processor
|
| 114 |
-
self.image_processor = AutoImageProcessor.from_pretrained(image_processor_path)
|
| 115 |
-
|
| 116 |
-
def encode(
|
| 117 |
-
self,
|
| 118 |
-
text: Union[str, List[str], List[int]],
|
| 119 |
-
*, # Enforce keyword-only arguments
|
| 120 |
-
images: Optional[ImageInput] = None,
|
| 121 |
-
image_kwargs: Optional[Dict[str, Any]] = None,
|
| 122 |
-
**text_kwargs,
|
| 123 |
-
) -> List[int]:
|
| 124 |
-
"""
|
| 125 |
-
Process the images and return the tokenized images and text.
|
| 126 |
-
|
| 127 |
-
Args:
|
| 128 |
-
text (`str`, `List[str]`, `List[List[str]]`):
|
| 129 |
-
The sequence or batch of sequences to be encoded.
|
| 130 |
-
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
| 131 |
-
The image or batch of images to be prepared.
|
| 132 |
-
image_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments for image processing.
|
| 133 |
-
**text_kwargs: Additional keyword arguments for text processing.
|
| 134 |
-
|
| 135 |
-
Returns:
|
| 136 |
-
A dictionary with the following fields:
|
| 137 |
-
- **input_ids** -- List of token ids to be fed to a model.
|
| 138 |
-
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model.
|
| 139 |
-
- **pixel_values** -- Pixel values to be fed to a model.
|
| 140 |
-
|
| 141 |
-
Raises:
|
| 142 |
-
ValueError: If the input images are in an invalid format.
|
| 143 |
-
"""
|
| 144 |
-
|
| 145 |
-
output_dict, image_inputs = {}, {}
|
| 146 |
-
if images is not None:
|
| 147 |
-
# Preprocess images
|
| 148 |
-
if is_image_or_image_url(images):
|
| 149 |
-
images = [[images]]
|
| 150 |
-
elif isinstance(images, list) and is_image_or_image_url(images[0]):
|
| 151 |
-
images = [images]
|
| 152 |
-
elif (
|
| 153 |
-
not isinstance(images, list)
|
| 154 |
-
and not isinstance(images[0], list)
|
| 155 |
-
and not is_image_or_image_url(images[0][0])
|
| 156 |
-
):
|
| 157 |
-
raise ValueError(
|
| 158 |
-
"Invalid input images. Please provide a single image or a list of images or a list of list of images."
|
| 159 |
-
)
|
| 160 |
-
|
| 161 |
-
# Load and process images
|
| 162 |
-
images = [load_image_list(sample) for sample in images]
|
| 163 |
-
image_kwargs = image_kwargs or {}
|
| 164 |
-
image_inputs = self.image_processor(images, patch_size=self.patch_size, return_tensors="np", **image_kwargs)
|
| 165 |
-
|
| 166 |
-
# Validate image inputs
|
| 167 |
-
assert "pixel_values" in image_inputs, "pixel_values not found in image_inputs"
|
| 168 |
-
assert "image_sizes" in image_inputs, "image_sizes not found in image_inputs"
|
| 169 |
-
assert len(image_inputs.keys()) == 2, "Only one key is allowed in image_inputs, got {}".format(
|
| 170 |
-
image_inputs.keys()
|
| 171 |
-
)
|
| 172 |
-
|
| 173 |
-
# Extract pixel values and image sizes
|
| 174 |
-
pixel_values = image_inputs["pixel_values"][0]
|
| 175 |
-
image_sizes = image_inputs["image_sizes"][0]
|
| 176 |
-
unique_sizes = np.unique(image_sizes, axis=0)
|
| 177 |
-
|
| 178 |
-
assert len(unique_sizes) == 1, "All images must have the same size, got {}".format(unique_sizes)
|
| 179 |
-
|
| 180 |
-
# Convert pixel values to PyTorch tensor
|
| 181 |
-
pixel_values = np.asarray(pixel_values)
|
| 182 |
-
pixel_values = torch.from_numpy(pixel_values)
|
| 183 |
-
output_dict["pixel_values"] = pixel_values
|
| 184 |
-
output_dict["image_sizes"] = image_sizes
|
| 185 |
-
|
| 186 |
-
# Expand image tokens in text
|
| 187 |
-
if image_inputs.get("pixel_values") is not None:
|
| 188 |
-
replace_strings = []
|
| 189 |
-
# Calculate the number of tokens needed for each image and create a placeholder
|
| 190 |
-
for image_size in image_sizes:
|
| 191 |
-
height, width = image_size
|
| 192 |
-
num_height_tokens = height // self.patch_size
|
| 193 |
-
num_width_tokens = width // self.patch_size
|
| 194 |
-
replace_tokens = [[self.image_token] * num_width_tokens + [self.image_break_token]] * num_height_tokens
|
| 195 |
-
# Flatten list
|
| 196 |
-
replace_tokens = [item for sublist in replace_tokens for item in sublist]
|
| 197 |
-
replace_tokens[-1] = self.image_end_token
|
| 198 |
-
replace_str = "".join(replace_tokens)
|
| 199 |
-
replace_strings.append(replace_str)
|
| 200 |
-
text = text.replace(self.image_token, "<placeholder>", 1)
|
| 201 |
-
|
| 202 |
-
# Replace placeholders with actual image token sequences
|
| 203 |
-
while "<placeholder>" in text:
|
| 204 |
-
replace_str = replace_strings.pop(0)
|
| 205 |
-
text = text.replace("<placeholder>", replace_str, 1)
|
| 206 |
-
|
| 207 |
-
# Encode the text
|
| 208 |
-
text_inputs = super(ImageTextTokenizer, self).encode(text, **text_kwargs)
|
| 209 |
-
|
| 210 |
-
output_dict["input_ids"] = text_inputs
|
| 211 |
-
return output_dict
|
| 212 |
-
|
| 213 |
-
def apply_chat_template(
|
| 214 |
-
self,
|
| 215 |
-
conversation: List[Dict[str, Any]] | List[List[Dict[str, Any]]],
|
| 216 |
-
*,
|
| 217 |
-
images: Optional[ImageInput] = None,
|
| 218 |
-
image_kwargs: Optional[Dict[str, Any]] = None,
|
| 219 |
-
add_generation_prompt: bool = False,
|
| 220 |
-
tokenize: bool = True,
|
| 221 |
-
padding: bool = False,
|
| 222 |
-
truncation: bool = False,
|
| 223 |
-
max_length: Optional[int] = None,
|
| 224 |
-
return_tensors: Optional[str] = None,
|
| 225 |
-
return_dict: bool = True,
|
| 226 |
-
return_assistant_tokens_mask: bool = False,
|
| 227 |
-
generation_prefix: str = "",
|
| 228 |
-
tokenizer_kwargs: Optional[Dict[str, Any]] = None,
|
| 229 |
-
**kwargs,
|
| 230 |
-
):
|
| 231 |
-
"""
|
| 232 |
-
Apply the chat template to the conversation.
|
| 233 |
-
|
| 234 |
-
Args:
|
| 235 |
-
conversation (List[Dict[str, Any]] | List[List[Dict[str, Any]]]): The conversation to process.
|
| 236 |
-
images (Optional[ImageInput]): Images to include in the conversation.
|
| 237 |
-
image_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments for image processing.
|
| 238 |
-
add_generation_prompt (bool): Whether to add a generation prompt.
|
| 239 |
-
tokenize (bool): Whether to tokenize the output.
|
| 240 |
-
padding (bool): Whether to pad the output.
|
| 241 |
-
truncation (bool): Whether to truncate the output.
|
| 242 |
-
max_length (Optional[int]): Maximum length of the output.
|
| 243 |
-
return_tensors (Optional[str]): The type of tensors to return.
|
| 244 |
-
return_dict (bool): Whether to return a dictionary.
|
| 245 |
-
return_assistant_tokens_mask (bool): Whether to return the assistant tokens mask.
|
| 246 |
-
generation_prefix (str): Prefix to add before asking model to generate. Helpful to guide the generation. Defaults to "".
|
| 247 |
-
tokenizer_kwargs (Optional[Dict[str, Any]]): Additional keyword arguments for the tokenizer.
|
| 248 |
-
**kwargs: Additional keyword arguments.
|
| 249 |
-
|
| 250 |
-
Returns:
|
| 251 |
-
The processed conversation with applied chat template.
|
| 252 |
-
|
| 253 |
-
Raises:
|
| 254 |
-
AssertionError: If return_dict is False or if the conversation format is invalid.
|
| 255 |
-
"""
|
| 256 |
-
assert return_dict, "return_dict must be True for ImageTextTokenizer"
|
| 257 |
-
assert isinstance(conversation, list), "conversation must be a list"
|
| 258 |
-
if isinstance(conversation[0], list):
|
| 259 |
-
assert len(conversation) == 1, "Only support single-conversation input, got {}".format(conversation)
|
| 260 |
-
conversation = conversation[0]
|
| 261 |
-
|
| 262 |
-
# Extract images from the conversation if not provided
|
| 263 |
-
if images is None:
|
| 264 |
-
images = []
|
| 265 |
-
for msg in conversation:
|
| 266 |
-
if msg.get("images", None) is not None:
|
| 267 |
-
images = images + (msg["images"])
|
| 268 |
-
images = load_image_list(images)
|
| 269 |
-
# In case the input does not have images, will ignore
|
| 270 |
-
# Useful in feeding VLM inputs with and without images
|
| 271 |
-
if isinstance(images, list) and len(images) == 0:
|
| 272 |
-
images = None
|
| 273 |
-
|
| 274 |
-
# Apply the chat template to the text
|
| 275 |
-
text = super().apply_chat_template(
|
| 276 |
-
conversation,
|
| 277 |
-
tokenize=False,
|
| 278 |
-
add_generation_prompt=add_generation_prompt,
|
| 279 |
-
padding=padding,
|
| 280 |
-
truncation=truncation,
|
| 281 |
-
max_length=max_length,
|
| 282 |
-
return_tensors=return_tensors,
|
| 283 |
-
return_dict=False,
|
| 284 |
-
return_assistant_tokens_mask=return_assistant_tokens_mask,
|
| 285 |
-
generation_prefix=generation_prefix,
|
| 286 |
-
tokenizer_kwargs=tokenizer_kwargs,
|
| 287 |
-
**kwargs,
|
| 288 |
-
)
|
| 289 |
-
|
| 290 |
-
if tokenizer_kwargs is None:
|
| 291 |
-
tokenizer_kwargs = {}
|
| 292 |
-
|
| 293 |
-
# Encode the text and images
|
| 294 |
-
output = self.encode(
|
| 295 |
-
text,
|
| 296 |
-
images=images,
|
| 297 |
-
image_kwargs=image_kwargs,
|
| 298 |
-
tokenize=tokenize,
|
| 299 |
-
padding=padding,
|
| 300 |
-
truncation=truncation,
|
| 301 |
-
max_length=max_length,
|
| 302 |
-
add_special_tokens=False,
|
| 303 |
-
return_tensors=return_tensors,
|
| 304 |
-
**tokenizer_kwargs,
|
| 305 |
-
)
|
| 306 |
-
return output
|
| 307 |
-
|
| 308 |
-
@property
|
| 309 |
-
def model_input_names(self):
|
| 310 |
-
"""
|
| 311 |
-
Get the combined model input names from both the text tokenizer and image processor.
|
| 312 |
-
|
| 313 |
-
Returns:
|
| 314 |
-
List[str]: A list of unique input names.
|
| 315 |
-
"""
|
| 316 |
-
tokenizer_input_names = self.tokenizer.model_input_names
|
| 317 |
-
image_processor_input_names = self.image_processor.model_input_names
|
| 318 |
-
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/5d1bc4c8a22a942736ae6b73a4ebb21da4980adc
DELETED
|
@@ -1,117 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import numpy as np
|
| 17 |
-
import torch
|
| 18 |
-
from pytorch_retinaface.utils.nms.py_cpu_nms import py_cpu_nms
|
| 19 |
-
|
| 20 |
-
from .log import log
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
# Adapted from https://github.com/biubug6/Pytorch_Retinaface/blob/master/detect.py
|
| 24 |
-
def filter_detected_boxes(boxes, scores, confidence_threshold, nms_threshold, top_k, keep_top_k):
|
| 25 |
-
"""Filter boxes based on confidence score and remove overlapping boxes using NMS."""
|
| 26 |
-
# Keep detections with confidence above threshold
|
| 27 |
-
inds = np.where(scores > confidence_threshold)[0]
|
| 28 |
-
boxes = boxes[inds]
|
| 29 |
-
scores = scores[inds]
|
| 30 |
-
|
| 31 |
-
# Sort by confidence and keep top K detections
|
| 32 |
-
order = scores.argsort()[::-1][:top_k]
|
| 33 |
-
boxes = boxes[order]
|
| 34 |
-
scores = scores[order]
|
| 35 |
-
|
| 36 |
-
# Run non-maximum-suppression (NMS) to remove overlapping boxes
|
| 37 |
-
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
|
| 38 |
-
keep = py_cpu_nms(dets, nms_threshold)
|
| 39 |
-
dets = dets[keep, :]
|
| 40 |
-
dets = dets[:keep_top_k, :]
|
| 41 |
-
boxes = dets[:, :-1]
|
| 42 |
-
return boxes
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
# Adapted from https://github.com/biubug6/Pytorch_Retinaface/blob/master/utils/box_utils.py to handle batched inputs
|
| 46 |
-
def decode_batch(loc, priors, variances):
|
| 47 |
-
"""Decode batched locations from predictions using priors and variances.
|
| 48 |
-
|
| 49 |
-
Args:
|
| 50 |
-
loc (tensor): Batched location predictions for loc layers.
|
| 51 |
-
Shape: [batch_size, num_priors, 4]
|
| 52 |
-
priors (tensor): Prior boxes in center-offset form.
|
| 53 |
-
Shape: [num_priors, 4]
|
| 54 |
-
variances: (list[float]): Variances of prior boxes.
|
| 55 |
-
|
| 56 |
-
Return:
|
| 57 |
-
Decoded batched bounding box predictions
|
| 58 |
-
Shape: [batch_size, num_priors, 4]
|
| 59 |
-
"""
|
| 60 |
-
batch_size = loc.size(0)
|
| 61 |
-
priors = priors.unsqueeze(0).expand(batch_size, -1, -1)
|
| 62 |
-
|
| 63 |
-
boxes = torch.cat(
|
| 64 |
-
(
|
| 65 |
-
priors[:, :, :2] + loc[:, :, :2] * variances[0] * priors[:, :, 2:],
|
| 66 |
-
priors[:, :, 2:] * torch.exp(loc[:, :, 2:] * variances[1]),
|
| 67 |
-
),
|
| 68 |
-
dim=2,
|
| 69 |
-
)
|
| 70 |
-
|
| 71 |
-
boxes[:, :, :2] -= boxes[:, :, 2:] / 2
|
| 72 |
-
boxes[:, :, 2:] += boxes[:, :, :2]
|
| 73 |
-
return boxes
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
# Adapted from https://github.com/biubug6/Pytorch_Retinaface/blob/master/detect.py
|
| 77 |
-
def _check_keys(model, pretrained_state_dict):
|
| 78 |
-
ckpt_keys = set(pretrained_state_dict.keys())
|
| 79 |
-
model_keys = set(model.state_dict().keys())
|
| 80 |
-
used_pretrained_keys = model_keys & ckpt_keys
|
| 81 |
-
unused_pretrained_keys = ckpt_keys - model_keys
|
| 82 |
-
missing_keys = model_keys - ckpt_keys
|
| 83 |
-
log.debug("Missing keys:{}".format(len(missing_keys)))
|
| 84 |
-
log.debug("Unused checkpoint keys:{}".format(len(unused_pretrained_keys)))
|
| 85 |
-
log.debug("Used keys:{}".format(len(used_pretrained_keys)))
|
| 86 |
-
assert len(used_pretrained_keys) > 0, "load NONE from pretrained checkpoint"
|
| 87 |
-
return True
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
# Adapted from https://github.com/biubug6/Pytorch_Retinaface/blob/master/detect.py
|
| 91 |
-
def _remove_prefix(state_dict, prefix):
|
| 92 |
-
"""Old version of the model is stored with all names of parameters sharing common prefix 'module.'"""
|
| 93 |
-
log.debug("Removing prefix '{}'".format(prefix))
|
| 94 |
-
|
| 95 |
-
def f(x):
|
| 96 |
-
return x.split(prefix, 1)[-1] if x.startswith(prefix) else x
|
| 97 |
-
|
| 98 |
-
return {f(key): value for key, value in state_dict.items()}
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
# Adapted from https://github.com/biubug6/Pytorch_Retinaface/blob/master/detect.py
|
| 102 |
-
def load_model(model, pretrained_path, load_to_cpu):
|
| 103 |
-
log.debug("Loading pretrained model from {}".format(pretrained_path))
|
| 104 |
-
if load_to_cpu:
|
| 105 |
-
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage, weights_only=True)
|
| 106 |
-
else:
|
| 107 |
-
device = torch.cuda.current_device()
|
| 108 |
-
pretrained_dict = torch.load(
|
| 109 |
-
pretrained_path, map_location=lambda storage, loc: storage.cuda(device), weights_only=True
|
| 110 |
-
)
|
| 111 |
-
if "state_dict" in pretrained_dict.keys():
|
| 112 |
-
pretrained_dict = _remove_prefix(pretrained_dict["state_dict"], "module.")
|
| 113 |
-
else:
|
| 114 |
-
pretrained_dict = _remove_prefix(pretrained_dict, "module.")
|
| 115 |
-
_check_keys(model, pretrained_dict)
|
| 116 |
-
model.load_state_dict(pretrained_dict, strict=False)
|
| 117 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/5e5a5244c87516121f3e7686c924f8b1c66cd772
DELETED
|
@@ -1,360 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from typing import Optional
|
| 17 |
-
|
| 18 |
-
import torch
|
| 19 |
-
from einops import rearrange
|
| 20 |
-
|
| 21 |
-
from .ar_tokenizer_quantizers import FSQuantizer
|
| 22 |
-
|
| 23 |
-
# Make sure jit model output consistenly during consecutive calls
|
| 24 |
-
# Check here: https://github.com/pytorch/pytorch/issues/74534
|
| 25 |
-
torch._C._jit_set_texpr_fuser_enabled(False)
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def load_jit_model(jit_filepath: str = None, device: str = "cuda") -> torch.jit.ScriptModule:
|
| 29 |
-
"""Loads a torch.jit.ScriptModule from a filepath.
|
| 30 |
-
|
| 31 |
-
Args:
|
| 32 |
-
jit_filepath: The filepath to the JIT-compiled model.
|
| 33 |
-
device: The device to load the model onto, default=cuda.
|
| 34 |
-
Returns:
|
| 35 |
-
The JIT compiled model loaded to device and on eval mode.
|
| 36 |
-
"""
|
| 37 |
-
# Make sure jit model output consistenly during consecutive calls
|
| 38 |
-
# Check here: https://github.com/pytorch/pytorch/issues/74534
|
| 39 |
-
torch._C._jit_set_texpr_fuser_enabled(False)
|
| 40 |
-
|
| 41 |
-
model = torch.jit.load(jit_filepath)
|
| 42 |
-
return model.eval().to(device)
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
class BaseDiscreteVideoFSQTokenizer(torch.nn.Module):
|
| 46 |
-
"""
|
| 47 |
-
A base class for Discrete Video FSQ Tokenizer that handles data type conversions, and normalization
|
| 48 |
-
using provided mean and standard deviation values for latent space representation.
|
| 49 |
-
Derived classes should load pre-trained encoder and decoder components into a encoder and decoder attributes.
|
| 50 |
-
|
| 51 |
-
Attributes:
|
| 52 |
-
encoder (Module | Callable): Encoder loaded from storage.
|
| 53 |
-
decoder (Module | Callable): Decoder loaded from storage.
|
| 54 |
-
dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.
|
| 55 |
-
|
| 56 |
-
Args:
|
| 57 |
-
name (str): Name of the model, used for differentiating cache file paths.
|
| 58 |
-
latent_ch (int, optional): Number of latent channels (default is 6).
|
| 59 |
-
is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
|
| 60 |
-
pixel_chunk_duration (int): The duration (in number of frames) of each chunk of video data at the pixel level.
|
| 61 |
-
latent_chunk_duration (int): The duration (in number of frames) of each chunk at the latent representation level.
|
| 62 |
-
max_enc_batch_size (int): The maximum batch size to process in one go to avoid memory overflow.
|
| 63 |
-
level (list[int]): The level defined in FSQ quantizer.
|
| 64 |
-
compression_ratio (list[int]): The compression factor for (T, H, W).
|
| 65 |
-
"""
|
| 66 |
-
|
| 67 |
-
def __init__(
|
| 68 |
-
self,
|
| 69 |
-
name: str,
|
| 70 |
-
latent_ch: int = 6,
|
| 71 |
-
is_bf16: bool = True,
|
| 72 |
-
pixel_chunk_duration: int = 25,
|
| 73 |
-
latent_chunk_duration: int = 4,
|
| 74 |
-
max_enc_batch_size: int = 8,
|
| 75 |
-
max_dec_batch_size: int = 4,
|
| 76 |
-
levels: list[int] = [8, 8, 8, 5, 5, 5],
|
| 77 |
-
compression_ratio: list[int] = [8, 16, 16],
|
| 78 |
-
):
|
| 79 |
-
super().__init__()
|
| 80 |
-
self.channel = latent_ch
|
| 81 |
-
self.name = name
|
| 82 |
-
dtype = torch.bfloat16 if is_bf16 else torch.float32
|
| 83 |
-
self.dtype = dtype
|
| 84 |
-
self.pixel_chunk_duration = pixel_chunk_duration
|
| 85 |
-
self.latent_chunk_duration = latent_chunk_duration
|
| 86 |
-
self.max_enc_batch_size = max_enc_batch_size
|
| 87 |
-
self.max_dec_batch_size = max_dec_batch_size
|
| 88 |
-
self.levels = levels
|
| 89 |
-
self.compress_ratio = compression_ratio
|
| 90 |
-
self.fsq_quantizer = FSQuantizer(levels)
|
| 91 |
-
|
| 92 |
-
@property
|
| 93 |
-
def latent_ch(self) -> int:
|
| 94 |
-
"""
|
| 95 |
-
Returns the number of latent channels in the tokenizer.
|
| 96 |
-
"""
|
| 97 |
-
return self.channel
|
| 98 |
-
|
| 99 |
-
@torch.no_grad()
|
| 100 |
-
def encode(self, state: torch.Tensor, pixel_chunk_duration: Optional[int] = None) -> torch.Tensor:
|
| 101 |
-
B, C, T, H, W = state.shape
|
| 102 |
-
if pixel_chunk_duration is None:
|
| 103 |
-
# Use the default pixel chunk duration and latent chunk duration
|
| 104 |
-
pixel_chunk_duration = self.pixel_chunk_duration
|
| 105 |
-
latent_chunk_duration = self.latent_chunk_duration
|
| 106 |
-
else:
|
| 107 |
-
# Update the latent chunk duration based on the given pixel chunk duration
|
| 108 |
-
latent_chunk_duration = 1 + (pixel_chunk_duration - 1) // self.compress_ratio[0]
|
| 109 |
-
|
| 110 |
-
assert (
|
| 111 |
-
T % pixel_chunk_duration == 0
|
| 112 |
-
), f"Temporal dimension {T} is not divisible by chunk_length {pixel_chunk_duration}"
|
| 113 |
-
state = rearrange(state, "b c (n t) h w -> (b n) c t h w", t=pixel_chunk_duration)
|
| 114 |
-
|
| 115 |
-
# use max_enc_batch_size to avoid OOM
|
| 116 |
-
if state.shape[0] > self.max_enc_batch_size:
|
| 117 |
-
quantized_out_list = []
|
| 118 |
-
indices_list = []
|
| 119 |
-
for i in range(0, state.shape[0], self.max_enc_batch_size):
|
| 120 |
-
indices, quantized_out, _ = self.encoder(state[i : i + self.max_enc_batch_size].to(self.dtype))
|
| 121 |
-
quantized_out_list.append(quantized_out)
|
| 122 |
-
indices_list.append(indices)
|
| 123 |
-
quantized_out = torch.cat(quantized_out_list, dim=0)
|
| 124 |
-
indices = torch.cat(indices_list, dim=0)
|
| 125 |
-
else:
|
| 126 |
-
indices, quantized_out, _ = self.encoder(state.to(self.dtype))
|
| 127 |
-
assert quantized_out.shape[2] == latent_chunk_duration
|
| 128 |
-
return rearrange(quantized_out, "(b n) c t h w -> b c (n t) h w", b=B), rearrange(
|
| 129 |
-
indices, "(b n) t h w -> b (n t) h w", b=B
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
@torch.no_grad()
|
| 133 |
-
def decode(self, indices: torch.Tensor, pixel_chunk_duration: Optional[int] = None) -> torch.Tensor:
|
| 134 |
-
B, T, _, _ = indices.shape
|
| 135 |
-
if pixel_chunk_duration is None:
|
| 136 |
-
pixel_chunk_duration = self.pixel_chunk_duration
|
| 137 |
-
latent_chunk_duration = self.latent_chunk_duration
|
| 138 |
-
else:
|
| 139 |
-
latent_chunk_duration = 1 + (pixel_chunk_duration - 1) // self.compress_ratio[0]
|
| 140 |
-
assert (
|
| 141 |
-
T % latent_chunk_duration == 0
|
| 142 |
-
), f"Temporal dimension {T} is not divisible by chunk_length {latent_chunk_duration}"
|
| 143 |
-
indices = rearrange(indices, "b (n t) h w -> (b n) t h w", t=latent_chunk_duration)
|
| 144 |
-
|
| 145 |
-
# use max_dec_batch_size to avoid OOM
|
| 146 |
-
if indices.shape[0] > self.max_dec_batch_size:
|
| 147 |
-
state = []
|
| 148 |
-
for i in range(0, indices.shape[0], self.max_dec_batch_size):
|
| 149 |
-
state.append(self.decoder(indices[i : i + self.max_dec_batch_size]))
|
| 150 |
-
state = torch.cat(state, dim=0)
|
| 151 |
-
else:
|
| 152 |
-
state = self.decoder(indices)
|
| 153 |
-
|
| 154 |
-
assert state.shape[2] == pixel_chunk_duration
|
| 155 |
-
return rearrange(state, "(b n) c t h w -> b c (n t) h w", b=B)
|
| 156 |
-
|
| 157 |
-
def reset_dtype(self, *args, **kwargs):
|
| 158 |
-
"""
|
| 159 |
-
Resets the data type of the encoder and decoder to the model's default data type.
|
| 160 |
-
|
| 161 |
-
Args:
|
| 162 |
-
*args, **kwargs: Unused, present to allow flexibility in method calls.
|
| 163 |
-
"""
|
| 164 |
-
del args, kwargs
|
| 165 |
-
self.decoder.to(self.dtype)
|
| 166 |
-
self.encoder.to(self.dtype)
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
class DiscreteVideoFSQJITTokenizer(BaseDiscreteVideoFSQTokenizer):
|
| 170 |
-
"""
|
| 171 |
-
A JIT compiled Discrete Video FSQ Tokenizer that loads pre-trained encoder
|
| 172 |
-
and decoder components from a remote store, handles data type conversions, and normalization
|
| 173 |
-
using provided mean and standard deviation values for latent space representation.
|
| 174 |
-
|
| 175 |
-
Attributes:
|
| 176 |
-
encoder (Module): The JIT compiled encoder loaded from storage.
|
| 177 |
-
decoder (Module): The JIT compiled decoder loaded from storage.
|
| 178 |
-
dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.
|
| 179 |
-
|
| 180 |
-
Args:
|
| 181 |
-
enc_fp (str): File path to the encoder's JIT file on the remote store.
|
| 182 |
-
dec_fp (str): File path to the decoder's JIT file on the remote store.
|
| 183 |
-
name (str): Name of the model, used for differentiating cache file paths.
|
| 184 |
-
latent_ch (int, optional): Number of latent channels (default is 6).
|
| 185 |
-
is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
|
| 186 |
-
pixel_chunk_duration (int): The duration (in number of frames) of each chunk of video data at the pixel level.
|
| 187 |
-
latent_chunk_duration (int): The duration (in number of frames) of each chunk at the latent representation level.
|
| 188 |
-
max_enc_batch_size (int): The maximum batch size to process in one go to avoid memory overflow.
|
| 189 |
-
level (list[int]): The level defined in FSQ quantizer.
|
| 190 |
-
compression_ratio (list[int]): The compression factor for (T, H, W).
|
| 191 |
-
"""
|
| 192 |
-
|
| 193 |
-
def __init__(
|
| 194 |
-
self,
|
| 195 |
-
enc_fp: str,
|
| 196 |
-
dec_fp: str,
|
| 197 |
-
name: str,
|
| 198 |
-
latent_ch: int = 6,
|
| 199 |
-
is_bf16: bool = True,
|
| 200 |
-
pixel_chunk_duration: int = 25,
|
| 201 |
-
latent_chunk_duration: int = 4,
|
| 202 |
-
max_enc_batch_size: int = 8,
|
| 203 |
-
max_dec_batch_size: int = 4,
|
| 204 |
-
levels: list[int] = [8, 8, 8, 5, 5, 5],
|
| 205 |
-
compression_ratio: list[int] = [8, 16, 16],
|
| 206 |
-
):
|
| 207 |
-
super().__init__(
|
| 208 |
-
name,
|
| 209 |
-
latent_ch,
|
| 210 |
-
is_bf16,
|
| 211 |
-
pixel_chunk_duration,
|
| 212 |
-
latent_chunk_duration,
|
| 213 |
-
max_enc_batch_size,
|
| 214 |
-
max_dec_batch_size,
|
| 215 |
-
levels,
|
| 216 |
-
compression_ratio,
|
| 217 |
-
)
|
| 218 |
-
|
| 219 |
-
self.load_encoder(enc_fp)
|
| 220 |
-
self.load_decoder(dec_fp)
|
| 221 |
-
|
| 222 |
-
def load_encoder(self, enc_fp: str) -> None:
|
| 223 |
-
"""
|
| 224 |
-
Load the encoder from the remote store.
|
| 225 |
-
|
| 226 |
-
Args:
|
| 227 |
-
- enc_fp (str): File path to the encoder's JIT file on the remote store.
|
| 228 |
-
"""
|
| 229 |
-
self.encoder = load_jit_model(enc_fp, device="cuda")
|
| 230 |
-
self.encoder.eval()
|
| 231 |
-
for param in self.encoder.parameters():
|
| 232 |
-
param.requires_grad = False
|
| 233 |
-
self.encoder.to(self.dtype)
|
| 234 |
-
|
| 235 |
-
def load_decoder(self, dec_fp: str) -> None:
|
| 236 |
-
"""
|
| 237 |
-
Load the decoder from the remote store.
|
| 238 |
-
|
| 239 |
-
Args:
|
| 240 |
-
- dec_fp (str): File path to the decoder's JIT file on the remote store.
|
| 241 |
-
"""
|
| 242 |
-
self.decoder = load_jit_model(dec_fp, device="cuda")
|
| 243 |
-
self.decoder.eval()
|
| 244 |
-
for param in self.decoder.parameters():
|
| 245 |
-
param.requires_grad = False
|
| 246 |
-
self.decoder.to(self.dtype)
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
class DiscreteVideoFSQStateDictTokenizer(BaseDiscreteVideoFSQTokenizer):
|
| 250 |
-
"""
|
| 251 |
-
A Discrete Video FSQ Tokenizer that loads weights from pre-trained JITed encoder
|
| 252 |
-
into as nn.Module so that encoder can be "torch.compile()" and JITed decoder, so it can be torch.compiled,
|
| 253 |
-
handles data type conversions, and normalization using provided mean and standard deviation values for latent
|
| 254 |
-
space representation.
|
| 255 |
-
|
| 256 |
-
Attributes:
|
| 257 |
-
tokenizer_module (Module): Tokenizer module with weights loaded from JIT checkpoints
|
| 258 |
-
encoder (Callable): tokenizer_module's encode method
|
| 259 |
-
decoder (Callable): tokenizer_module's decode method
|
| 260 |
-
dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.
|
| 261 |
-
|
| 262 |
-
Args:
|
| 263 |
-
enc_fp (str): File path to the encoder's JIT file on the remote store.
|
| 264 |
-
dec_fp (str): File path to the decoder's JIT file on the remote store.
|
| 265 |
-
tokenizer_module (Module): Tokenizer module that will have it's weights loaded
|
| 266 |
-
name (str): Name of the model, used for differentiating cache file paths.
|
| 267 |
-
latent_ch (int, optional): Number of latent channels (default is 6).
|
| 268 |
-
is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
|
| 269 |
-
pixel_chunk_duration (int): The duration (in number of frames) of each chunk of video data at the pixel level.
|
| 270 |
-
latent_chunk_duration (int): The duration (in number of frames) of each chunk at the latent representation level.
|
| 271 |
-
max_enc_batch_size (int): The maximum batch size to process in one go to avoid memory overflow.
|
| 272 |
-
level (list[int]): The level defined in FSQ quantizer.
|
| 273 |
-
compression_ratio (list[int]): The compression factor for (T, H, W).
|
| 274 |
-
"""
|
| 275 |
-
|
| 276 |
-
def __init__(
|
| 277 |
-
self,
|
| 278 |
-
enc_fp: str,
|
| 279 |
-
dec_fp: str,
|
| 280 |
-
tokenizer_module: torch.nn.Module,
|
| 281 |
-
name: str,
|
| 282 |
-
latent_ch: int = 6,
|
| 283 |
-
is_bf16: bool = True,
|
| 284 |
-
pixel_chunk_duration: int = 25,
|
| 285 |
-
latent_chunk_duration: int = 4,
|
| 286 |
-
max_enc_batch_size: int = 8,
|
| 287 |
-
max_dec_batch_size: int = 4,
|
| 288 |
-
levels: list[int] = [8, 8, 8, 5, 5, 5],
|
| 289 |
-
compression_ratio: list[int] = [8, 16, 16],
|
| 290 |
-
):
|
| 291 |
-
super().__init__(
|
| 292 |
-
name,
|
| 293 |
-
latent_ch,
|
| 294 |
-
is_bf16,
|
| 295 |
-
pixel_chunk_duration,
|
| 296 |
-
latent_chunk_duration,
|
| 297 |
-
max_enc_batch_size,
|
| 298 |
-
max_dec_batch_size,
|
| 299 |
-
levels,
|
| 300 |
-
compression_ratio,
|
| 301 |
-
)
|
| 302 |
-
|
| 303 |
-
self.load_encoder_and_decoder(enc_fp, dec_fp, tokenizer_module)
|
| 304 |
-
|
| 305 |
-
def load_encoder_and_decoder(self, enc_fp: str, dec_fp: str, tokenizer_module: torch.nn.Module) -> None:
|
| 306 |
-
"""
|
| 307 |
-
Load the encoder from the remote store.
|
| 308 |
-
|
| 309 |
-
Args:
|
| 310 |
-
- enc_fp (str): File path to the encoder's JIT file on the remote store.
|
| 311 |
-
- def_fp (str): File path to the decoder's JIT file on the remote store.
|
| 312 |
-
- tokenizer_module (Module): Tokenizer module that was used to create JIT checkpoints
|
| 313 |
-
"""
|
| 314 |
-
self.decoder = load_jit_model(dec_fp)
|
| 315 |
-
|
| 316 |
-
self.decoder.eval()
|
| 317 |
-
for param in self.decoder.parameters():
|
| 318 |
-
param.requires_grad = False
|
| 319 |
-
self.decoder.to(self.dtype)
|
| 320 |
-
|
| 321 |
-
encoder_sd = load_jit_model(enc_fp).state_dict()
|
| 322 |
-
|
| 323 |
-
del tokenizer_module.post_quant_conv
|
| 324 |
-
del tokenizer_module.decoder
|
| 325 |
-
|
| 326 |
-
state_dict = {
|
| 327 |
-
k: v
|
| 328 |
-
for k, v in (encoder_sd).items()
|
| 329 |
-
# Variables captured by JIT
|
| 330 |
-
if k
|
| 331 |
-
not in (
|
| 332 |
-
"encoder.patcher3d.wavelets",
|
| 333 |
-
"encoder.patcher3d._arange",
|
| 334 |
-
"encoder.patcher3d.patch_size_buffer",
|
| 335 |
-
"quantizer._levels",
|
| 336 |
-
"quantizer._basis",
|
| 337 |
-
"quantizer.implicit_codebook",
|
| 338 |
-
)
|
| 339 |
-
}
|
| 340 |
-
|
| 341 |
-
tokenizer_module.load_state_dict(state_dict)
|
| 342 |
-
|
| 343 |
-
tokenizer_module.eval()
|
| 344 |
-
for param in tokenizer_module.parameters():
|
| 345 |
-
param.requires_grad = False
|
| 346 |
-
tokenizer_module.to(self.dtype)
|
| 347 |
-
|
| 348 |
-
self.tokenizer_module = tokenizer_module
|
| 349 |
-
self.encoder = self.tokenizer_module.encode
|
| 350 |
-
|
| 351 |
-
def reset_dtype(self, *args, **kwargs):
|
| 352 |
-
"""
|
| 353 |
-
Resets the data type of the encoder and decoder to the model's default data type.
|
| 354 |
-
|
| 355 |
-
Args:
|
| 356 |
-
*args, **kwargs: Unused, present to allow flexibility in method calls.
|
| 357 |
-
"""
|
| 358 |
-
del args, kwargs
|
| 359 |
-
self.decoder.to(self.dtype)
|
| 360 |
-
self.tokenizer_module.to(self.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/602ea1cb383d8263be06829a466cfb3ba9f97856
DELETED
|
@@ -1,52 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from omegaconf import DictConfig, OmegaConf
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
class CustomSimpleNamespace:
|
| 20 |
-
"""
|
| 21 |
-
A simple namespace class that supports both attribute-style and dictionary-style access.
|
| 22 |
-
"""
|
| 23 |
-
|
| 24 |
-
def __init__(self, d):
|
| 25 |
-
self._d = d
|
| 26 |
-
|
| 27 |
-
def __getattr__(self, attr):
|
| 28 |
-
# Attribute-style access: config.key
|
| 29 |
-
try:
|
| 30 |
-
return self._d[attr]
|
| 31 |
-
except KeyError:
|
| 32 |
-
raise AttributeError(f"'CustomSimpleNamespace' object has no attribute '{attr}'")
|
| 33 |
-
|
| 34 |
-
def __getitem__(self, key):
|
| 35 |
-
# Dictionary-style access: config['key']
|
| 36 |
-
return self._d[key]
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def maybe_convert_to_namespace(config):
|
| 40 |
-
"""
|
| 41 |
-
This function cast a OmegaConf's DictConfig or a standard dict to CustomSimpleNamespace, which supports both
|
| 42 |
-
attribute-style and dictionary-style access.
|
| 43 |
-
Note: We need to convert OmegaConf's DictConfig since it is not compatible with torch.compile.
|
| 44 |
-
"""
|
| 45 |
-
# If input is OmegaConf's DictConfig, convert to a standard dict
|
| 46 |
-
if isinstance(config, DictConfig):
|
| 47 |
-
config = OmegaConf.to_container(config, resolve=True)
|
| 48 |
-
|
| 49 |
-
if isinstance(config, dict):
|
| 50 |
-
return CustomSimpleNamespace(config)
|
| 51 |
-
else:
|
| 52 |
-
return config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/61f10fe07227a01d582e17f89a9b5089aa506006
DELETED
|
@@ -1,88 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import torch
|
| 17 |
-
import torch.nn as nn
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def create_norm(norm_type: str, dim: int, eps: float = 1e-6):
|
| 21 |
-
"""
|
| 22 |
-
Creates the specified normalization layer based on the norm_type.
|
| 23 |
-
Adopted from TorchTriton: https://github.com/pytorch/torchtitan/blob/main/torchtitan/models/norms.py
|
| 24 |
-
|
| 25 |
-
Args:
|
| 26 |
-
norm_type (str): The type of normalization layer to create.
|
| 27 |
-
Supported types: 1. rmsnorm 2. fused_rmsnorm 3. layernorm 4. np_layernorm
|
| 28 |
-
dim (int): The dimension of the normalization layer.
|
| 29 |
-
eps (float, optional): The epsilon value for numerical stability. Defaults to 1e-6.
|
| 30 |
-
|
| 31 |
-
Returns:
|
| 32 |
-
The created normalization layer.
|
| 33 |
-
|
| 34 |
-
Raises:
|
| 35 |
-
NotImplementedError: If an unknown norm_type is provided.
|
| 36 |
-
"""
|
| 37 |
-
norm_type = norm_type.lower() # Normalize to lowercase
|
| 38 |
-
|
| 39 |
-
if norm_type == "layernorm":
|
| 40 |
-
return nn.LayerNorm(dim, eps=eps, bias=False)
|
| 41 |
-
elif norm_type == "np_layernorm":
|
| 42 |
-
return nn.LayerNorm(dim, eps=eps, elementwise_affine=False, bias=False)
|
| 43 |
-
elif norm_type == "rmsnorm":
|
| 44 |
-
return RMSNorm(dim, eps=eps, compile=False)
|
| 45 |
-
elif norm_type == "compiled_rmsnorm":
|
| 46 |
-
return RMSNorm(dim, eps=eps, compile=True)
|
| 47 |
-
elif norm_type == "fused_rmsnorm":
|
| 48 |
-
raise NotImplementedError("Fused RMSNorm is not supported yet.")
|
| 49 |
-
else:
|
| 50 |
-
raise NotImplementedError(f"Unknown norm_type: '{norm_type}'")
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
class RMSNorm(nn.Module):
|
| 54 |
-
"""
|
| 55 |
-
Initialize the RMSNorm normalization layer.
|
| 56 |
-
Reference implementation: https://github.com/pytorch/torchtitan/blob/main/torchtitan/models/norms.py
|
| 57 |
-
|
| 58 |
-
Args:
|
| 59 |
-
dim (int): The dimension of the input tensor.
|
| 60 |
-
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
| 61 |
-
compile (bool, optional): Whether to compile the forward function. Default is False.
|
| 62 |
-
|
| 63 |
-
Attributes:
|
| 64 |
-
eps (float): A small value added to the denominator for numerical stability.
|
| 65 |
-
weight (nn.Parameter): Learnable scaling parameter.
|
| 66 |
-
|
| 67 |
-
"""
|
| 68 |
-
|
| 69 |
-
def __init__(self, dim: int, eps: float = 1e-6, compile: bool = False):
|
| 70 |
-
super().__init__()
|
| 71 |
-
self.eps = eps
|
| 72 |
-
self.weight = nn.Parameter(torch.ones(dim))
|
| 73 |
-
self.rmsnorm_fn = torch.compile(self.compute_rmsnorm, fullgraph=True) if compile else self.compute_rmsnorm
|
| 74 |
-
|
| 75 |
-
@staticmethod
|
| 76 |
-
def compute_rmsnorm(x: torch.Tensor, weight: torch.Tensor, eps: float):
|
| 77 |
-
def _norm(x, eps):
|
| 78 |
-
# Computes the root-mean-square norm of the input tensor.
|
| 79 |
-
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
| 80 |
-
|
| 81 |
-
output = _norm(x.float(), eps).type_as(x)
|
| 82 |
-
return output * weight
|
| 83 |
-
|
| 84 |
-
def forward(self, x: torch.Tensor):
|
| 85 |
-
return self.rmsnorm_fn(x, self.weight, self.eps)
|
| 86 |
-
|
| 87 |
-
def reset_parameters(self):
|
| 88 |
-
torch.nn.init.ones_(self.weight)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/68e9cbb58aa1a39cd62c15a01b3e6526a49b66b0
DELETED
|
@@ -1,728 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import argparse
|
| 17 |
-
import importlib
|
| 18 |
-
from contextlib import contextmanager
|
| 19 |
-
from typing import List, NamedTuple, Optional, Tuple
|
| 20 |
-
|
| 21 |
-
from .misc import misc
|
| 22 |
-
import einops
|
| 23 |
-
import imageio
|
| 24 |
-
import numpy as np
|
| 25 |
-
import torch
|
| 26 |
-
import torchvision.transforms.functional as transforms_F
|
| 27 |
-
|
| 28 |
-
from .df_model_model_t2w import DiffusionT2WModel
|
| 29 |
-
from .df_model_model_v2w import DiffusionV2WModel
|
| 30 |
-
from .log import log
|
| 31 |
-
from .config_helper import get_config_module, override
|
| 32 |
-
from .io import load_from_fileobj
|
| 33 |
-
|
| 34 |
-
TORCH_VERSION: Tuple[int, ...] = tuple(int(x) for x in torch.__version__.split(".")[:2])
|
| 35 |
-
if TORCH_VERSION >= (1, 11):
|
| 36 |
-
from torch.ao import quantization
|
| 37 |
-
from torch.ao.quantization import FakeQuantizeBase, ObserverBase
|
| 38 |
-
elif (
|
| 39 |
-
TORCH_VERSION >= (1, 8)
|
| 40 |
-
and hasattr(torch.quantization, "FakeQuantizeBase")
|
| 41 |
-
and hasattr(torch.quantization, "ObserverBase")
|
| 42 |
-
):
|
| 43 |
-
from torch import quantization
|
| 44 |
-
from torch.quantization import FakeQuantizeBase, ObserverBase
|
| 45 |
-
|
| 46 |
-
DEFAULT_AUGMENT_SIGMA = 0.001
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
def add_common_arguments(parser):
|
| 50 |
-
"""Add common command line arguments for text2world and video2world generation.
|
| 51 |
-
|
| 52 |
-
Args:
|
| 53 |
-
parser (ArgumentParser): Argument parser to add arguments to
|
| 54 |
-
|
| 55 |
-
The arguments include:
|
| 56 |
-
- checkpoint_dir: Base directory containing model weights
|
| 57 |
-
- tokenizer_dir: Directory containing tokenizer weights
|
| 58 |
-
- video_save_name: Output video filename for single video generation
|
| 59 |
-
- video_save_folder: Output directory for batch video generation
|
| 60 |
-
- prompt: Text prompt for single video generation
|
| 61 |
-
- batch_input_path: Path to JSONL file with input prompts for batch video generation
|
| 62 |
-
- negative_prompt: Text prompt describing undesired attributes
|
| 63 |
-
- num_steps: Number of diffusion sampling steps
|
| 64 |
-
- guidance: Classifier-free guidance scale
|
| 65 |
-
- num_video_frames: Number of frames to generate
|
| 66 |
-
- height/width: Output video dimensions
|
| 67 |
-
- fps: Output video frame rate
|
| 68 |
-
- seed: Random seed for reproducibility
|
| 69 |
-
- Various model offloading flags
|
| 70 |
-
"""
|
| 71 |
-
parser.add_argument(
|
| 72 |
-
"--checkpoint_dir", type=str, default="checkpoints", help="Base directory containing model checkpoints"
|
| 73 |
-
)
|
| 74 |
-
parser.add_argument(
|
| 75 |
-
"--tokenizer_dir",
|
| 76 |
-
type=str,
|
| 77 |
-
default="Cosmos-1.0-Tokenizer-CV8x8x8",
|
| 78 |
-
help="Tokenizer weights directory relative to checkpoint_dir",
|
| 79 |
-
)
|
| 80 |
-
parser.add_argument(
|
| 81 |
-
"--video_save_name",
|
| 82 |
-
type=str,
|
| 83 |
-
default="output",
|
| 84 |
-
help="Output filename for generating a single video",
|
| 85 |
-
)
|
| 86 |
-
parser.add_argument(
|
| 87 |
-
"--video_save_folder",
|
| 88 |
-
type=str,
|
| 89 |
-
default="outputs/",
|
| 90 |
-
help="Output folder for generating a batch of videos",
|
| 91 |
-
)
|
| 92 |
-
parser.add_argument(
|
| 93 |
-
"--prompt",
|
| 94 |
-
type=str,
|
| 95 |
-
help="Text prompt for generating a single video",
|
| 96 |
-
)
|
| 97 |
-
parser.add_argument(
|
| 98 |
-
"--batch_input_path",
|
| 99 |
-
type=str,
|
| 100 |
-
help="Path to a JSONL file of input prompts for generating a batch of videos",
|
| 101 |
-
)
|
| 102 |
-
parser.add_argument(
|
| 103 |
-
"--negative_prompt",
|
| 104 |
-
type=str,
|
| 105 |
-
default="The video captures a series of frames showing ugly scenes, static with no motion, motion blur, "
|
| 106 |
-
"over-saturation, shaky footage, low resolution, grainy texture, pixelated images, poorly lit areas, "
|
| 107 |
-
"underexposed and overexposed scenes, poor color balance, washed out colors, choppy sequences, "
|
| 108 |
-
"jerky movements, low frame rate, artifacting, color banding, unnatural transitions, outdated special "
|
| 109 |
-
"effects, fake elements, unconvincing visuals, poorly edited content, jump cuts, visual noise, and "
|
| 110 |
-
"flickering. Overall, the video is of poor quality.",
|
| 111 |
-
help="Negative prompt for the video",
|
| 112 |
-
)
|
| 113 |
-
parser.add_argument("--num_steps", type=int, default=35, help="Number of diffusion sampling steps")
|
| 114 |
-
parser.add_argument("--guidance", type=float, default=7, help="Guidance scale value")
|
| 115 |
-
parser.add_argument(
|
| 116 |
-
"--num_video_frames", type=int, default=121, choices=[121], help="Number of video frames to sample"
|
| 117 |
-
)
|
| 118 |
-
parser.add_argument("--height", type=int, default=704, help="Height of video to sample")
|
| 119 |
-
parser.add_argument("--width", type=int, default=1280, help="Width of video to sample")
|
| 120 |
-
parser.add_argument("--fps", type=int, default=24, help="FPS of the sampled video")
|
| 121 |
-
parser.add_argument("--seed", type=int, default=1, help="Random seed")
|
| 122 |
-
parser.add_argument(
|
| 123 |
-
"--disable_prompt_upsampler",
|
| 124 |
-
action="store_true",
|
| 125 |
-
help="Disable prompt upsampling",
|
| 126 |
-
)
|
| 127 |
-
parser.add_argument(
|
| 128 |
-
"--offload_diffusion_transformer",
|
| 129 |
-
action="store_true",
|
| 130 |
-
help="Offload DiT after inference",
|
| 131 |
-
)
|
| 132 |
-
parser.add_argument(
|
| 133 |
-
"--offload_tokenizer",
|
| 134 |
-
action="store_true",
|
| 135 |
-
help="Offload tokenizer after inference",
|
| 136 |
-
)
|
| 137 |
-
parser.add_argument(
|
| 138 |
-
"--offload_text_encoder_model",
|
| 139 |
-
action="store_true",
|
| 140 |
-
help="Offload text encoder model after inference",
|
| 141 |
-
)
|
| 142 |
-
parser.add_argument(
|
| 143 |
-
"--offload_prompt_upsampler",
|
| 144 |
-
action="store_true",
|
| 145 |
-
help="Offload prompt upsampler after inference",
|
| 146 |
-
)
|
| 147 |
-
parser.add_argument(
|
| 148 |
-
"--offload_guardrail_models",
|
| 149 |
-
action="store_true",
|
| 150 |
-
help="Offload guardrail models after inference",
|
| 151 |
-
)
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
def validate_args(args: argparse.Namespace, inference_type: str) -> None:
|
| 155 |
-
"""Validate command line arguments for text2world and video2world generation."""
|
| 156 |
-
assert inference_type in [
|
| 157 |
-
"text2world",
|
| 158 |
-
"video2world",
|
| 159 |
-
], "Invalid inference_type, must be 'text2world' or 'video2world'"
|
| 160 |
-
|
| 161 |
-
# Validate prompt/image/video args for single or batch generation
|
| 162 |
-
if inference_type == "text2world" or (inference_type == "video2world" and args.disable_prompt_upsampler):
|
| 163 |
-
assert args.prompt or args.batch_input_path, "--prompt or --batch_input_path must be provided."
|
| 164 |
-
if inference_type == "video2world" and not args.batch_input_path:
|
| 165 |
-
assert (
|
| 166 |
-
args.input_image_or_video_path
|
| 167 |
-
), "--input_image_or_video_path must be provided for single video generation."
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
class _IncompatibleKeys(
|
| 171 |
-
NamedTuple(
|
| 172 |
-
"IncompatibleKeys",
|
| 173 |
-
[
|
| 174 |
-
("missing_keys", List[str]),
|
| 175 |
-
("unexpected_keys", List[str]),
|
| 176 |
-
("incorrect_shapes", List[Tuple[str, Tuple[int], Tuple[int]]]),
|
| 177 |
-
],
|
| 178 |
-
)
|
| 179 |
-
):
|
| 180 |
-
pass
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
def non_strict_load_model(model: torch.nn.Module, checkpoint_state_dict: dict) -> _IncompatibleKeys:
|
| 184 |
-
"""Load a model checkpoint with non-strict matching, handling shape mismatches.
|
| 185 |
-
|
| 186 |
-
Args:
|
| 187 |
-
model (torch.nn.Module): Model to load weights into
|
| 188 |
-
checkpoint_state_dict (dict): State dict from checkpoint
|
| 189 |
-
|
| 190 |
-
Returns:
|
| 191 |
-
_IncompatibleKeys: Named tuple containing:
|
| 192 |
-
- missing_keys: Keys present in model but missing from checkpoint
|
| 193 |
-
- unexpected_keys: Keys present in checkpoint but not in model
|
| 194 |
-
- incorrect_shapes: Keys with mismatched tensor shapes
|
| 195 |
-
|
| 196 |
-
The function handles special cases like:
|
| 197 |
-
- Uninitialized parameters
|
| 198 |
-
- Quantization observers
|
| 199 |
-
- TransformerEngine FP8 states
|
| 200 |
-
"""
|
| 201 |
-
# workaround https://github.com/pytorch/pytorch/issues/24139
|
| 202 |
-
model_state_dict = model.state_dict()
|
| 203 |
-
incorrect_shapes = []
|
| 204 |
-
for k in list(checkpoint_state_dict.keys()):
|
| 205 |
-
if k in model_state_dict:
|
| 206 |
-
if "_extra_state" in k: # Key introduced by TransformerEngine for FP8
|
| 207 |
-
log.debug(f"Skipping key {k} introduced by TransformerEngine for FP8 in the checkpoint.")
|
| 208 |
-
continue
|
| 209 |
-
model_param = model_state_dict[k]
|
| 210 |
-
# Allow mismatch for uninitialized parameters
|
| 211 |
-
if TORCH_VERSION >= (1, 8) and isinstance(model_param, torch.nn.parameter.UninitializedParameter):
|
| 212 |
-
continue
|
| 213 |
-
if not isinstance(model_param, torch.Tensor):
|
| 214 |
-
raise ValueError(
|
| 215 |
-
f"Find non-tensor parameter {k} in the model. type: {type(model_param)} {type(checkpoint_state_dict[k])}, please check if this key is safe to skip or not."
|
| 216 |
-
)
|
| 217 |
-
|
| 218 |
-
shape_model = tuple(model_param.shape)
|
| 219 |
-
shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
|
| 220 |
-
if shape_model != shape_checkpoint:
|
| 221 |
-
has_observer_base_classes = (
|
| 222 |
-
TORCH_VERSION >= (1, 8)
|
| 223 |
-
and hasattr(quantization, "ObserverBase")
|
| 224 |
-
and hasattr(quantization, "FakeQuantizeBase")
|
| 225 |
-
)
|
| 226 |
-
if has_observer_base_classes:
|
| 227 |
-
# Handle the special case of quantization per channel observers,
|
| 228 |
-
# where buffer shape mismatches are expected.
|
| 229 |
-
def _get_module_for_key(model: torch.nn.Module, key: str) -> torch.nn.Module:
|
| 230 |
-
# foo.bar.param_or_buffer_name -> [foo, bar]
|
| 231 |
-
key_parts = key.split(".")[:-1]
|
| 232 |
-
cur_module = model
|
| 233 |
-
for key_part in key_parts:
|
| 234 |
-
cur_module = getattr(cur_module, key_part)
|
| 235 |
-
return cur_module
|
| 236 |
-
|
| 237 |
-
cls_to_skip = (
|
| 238 |
-
ObserverBase,
|
| 239 |
-
FakeQuantizeBase,
|
| 240 |
-
)
|
| 241 |
-
target_module = _get_module_for_key(model, k)
|
| 242 |
-
if isinstance(target_module, cls_to_skip):
|
| 243 |
-
# Do not remove modules with expected shape mismatches
|
| 244 |
-
# them from the state_dict loading. They have special logic
|
| 245 |
-
# in _load_from_state_dict to handle the mismatches.
|
| 246 |
-
continue
|
| 247 |
-
|
| 248 |
-
incorrect_shapes.append((k, shape_checkpoint, shape_model))
|
| 249 |
-
checkpoint_state_dict.pop(k)
|
| 250 |
-
incompatible = model.load_state_dict(checkpoint_state_dict, strict=False)
|
| 251 |
-
# Remove keys with "_extra_state" suffix, which are non-parameter items introduced by TransformerEngine for FP8 handling
|
| 252 |
-
missing_keys = [k for k in incompatible.missing_keys if "_extra_state" not in k]
|
| 253 |
-
unexpected_keys = [k for k in incompatible.unexpected_keys if "_extra_state" not in k]
|
| 254 |
-
return _IncompatibleKeys(
|
| 255 |
-
missing_keys=missing_keys,
|
| 256 |
-
unexpected_keys=unexpected_keys,
|
| 257 |
-
incorrect_shapes=incorrect_shapes,
|
| 258 |
-
)
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
@contextmanager
|
| 262 |
-
def skip_init_linear():
|
| 263 |
-
# skip init of nn.Linear
|
| 264 |
-
orig_reset_parameters = torch.nn.Linear.reset_parameters
|
| 265 |
-
torch.nn.Linear.reset_parameters = lambda x: x
|
| 266 |
-
xavier_uniform_ = torch.nn.init.xavier_uniform_
|
| 267 |
-
torch.nn.init.xavier_uniform_ = lambda x: x
|
| 268 |
-
yield
|
| 269 |
-
torch.nn.Linear.reset_parameters = orig_reset_parameters
|
| 270 |
-
torch.nn.init.xavier_uniform_ = xavier_uniform_
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
def load_model_by_config(
|
| 274 |
-
config_job_name,
|
| 275 |
-
config_file="projects/cosmos_video/config/config.py",
|
| 276 |
-
model_class=DiffusionT2WModel,
|
| 277 |
-
):
|
| 278 |
-
config_module = get_config_module(config_file)
|
| 279 |
-
config = importlib.import_module(config_module).make_config()
|
| 280 |
-
|
| 281 |
-
config = override(config, ["--", f"experiment={config_job_name}"])
|
| 282 |
-
|
| 283 |
-
# Check that the config is valid
|
| 284 |
-
config.validate()
|
| 285 |
-
# Freeze the config so developers don't change it during training.
|
| 286 |
-
config.freeze() # type: ignore
|
| 287 |
-
|
| 288 |
-
# Initialize model
|
| 289 |
-
with skip_init_linear():
|
| 290 |
-
model = model_class(config.model)
|
| 291 |
-
return model
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
def load_network_model(model: DiffusionT2WModel, ckpt_path: str):
|
| 295 |
-
with skip_init_linear():
|
| 296 |
-
model.set_up_model()
|
| 297 |
-
net_state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=True)
|
| 298 |
-
log.debug(non_strict_load_model(model.model, net_state_dict))
|
| 299 |
-
model.cuda()
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
def load_tokenizer_model(model: DiffusionT2WModel, tokenizer_dir: str):
|
| 303 |
-
with skip_init_linear():
|
| 304 |
-
model.set_up_tokenizer(tokenizer_dir)
|
| 305 |
-
model.cuda()
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
def prepare_data_batch(
|
| 309 |
-
height: int,
|
| 310 |
-
width: int,
|
| 311 |
-
num_frames: int,
|
| 312 |
-
fps: int,
|
| 313 |
-
prompt_embedding: torch.Tensor,
|
| 314 |
-
negative_prompt_embedding: Optional[torch.Tensor] = None,
|
| 315 |
-
):
|
| 316 |
-
"""Prepare input batch tensors for video generation.
|
| 317 |
-
|
| 318 |
-
Args:
|
| 319 |
-
height (int): Height of video frames
|
| 320 |
-
width (int): Width of video frames
|
| 321 |
-
num_frames (int): Number of frames to generate
|
| 322 |
-
fps (int): Frames per second
|
| 323 |
-
prompt_embedding (torch.Tensor): Encoded text prompt embeddings
|
| 324 |
-
negative_prompt_embedding (torch.Tensor, optional): Encoded negative prompt embeddings
|
| 325 |
-
|
| 326 |
-
Returns:
|
| 327 |
-
dict: Batch dictionary containing:
|
| 328 |
-
- video: Zero tensor of target video shape
|
| 329 |
-
- t5_text_mask: Attention mask for text embeddings
|
| 330 |
-
- image_size: Target frame dimensions
|
| 331 |
-
- fps: Target frame rate
|
| 332 |
-
- num_frames: Number of frames
|
| 333 |
-
- padding_mask: Frame padding mask
|
| 334 |
-
- t5_text_embeddings: Prompt embeddings
|
| 335 |
-
- neg_t5_text_embeddings: Negative prompt embeddings (if provided)
|
| 336 |
-
- neg_t5_text_mask: Mask for negative embeddings (if provided)
|
| 337 |
-
"""
|
| 338 |
-
# Create base data batch
|
| 339 |
-
data_batch = {
|
| 340 |
-
"video": torch.zeros((1, 3, num_frames, height, width), dtype=torch.uint8).cuda(),
|
| 341 |
-
"t5_text_mask": torch.ones(1, 512, dtype=torch.bfloat16).cuda(),
|
| 342 |
-
"image_size": torch.tensor([[height, width, height, width]] * 1, dtype=torch.bfloat16).cuda(),
|
| 343 |
-
"fps": torch.tensor([fps] * 1, dtype=torch.bfloat16).cuda(),
|
| 344 |
-
"num_frames": torch.tensor([num_frames] * 1, dtype=torch.bfloat16).cuda(),
|
| 345 |
-
"padding_mask": torch.zeros((1, 1, height, width), dtype=torch.bfloat16).cuda(),
|
| 346 |
-
}
|
| 347 |
-
|
| 348 |
-
# Handle text embeddings
|
| 349 |
-
|
| 350 |
-
t5_embed = prompt_embedding.to(dtype=torch.bfloat16).cuda()
|
| 351 |
-
data_batch["t5_text_embeddings"] = t5_embed
|
| 352 |
-
|
| 353 |
-
if negative_prompt_embedding is not None:
|
| 354 |
-
neg_t5_embed = negative_prompt_embedding.to(dtype=torch.bfloat16).cuda()
|
| 355 |
-
data_batch["neg_t5_text_embeddings"] = neg_t5_embed
|
| 356 |
-
data_batch["neg_t5_text_mask"] = torch.ones(1, 512, dtype=torch.bfloat16).cuda()
|
| 357 |
-
|
| 358 |
-
return data_batch
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
def get_video_batch(model, prompt_embedding, negative_prompt_embedding, height, width, fps, num_video_frames):
|
| 362 |
-
"""Prepare complete input batch for video generation including latent dimensions.
|
| 363 |
-
|
| 364 |
-
Args:
|
| 365 |
-
model: Diffusion model instance
|
| 366 |
-
prompt_embedding (torch.Tensor): Text prompt embeddings
|
| 367 |
-
negative_prompt_embedding (torch.Tensor): Negative prompt embeddings
|
| 368 |
-
height (int): Output video height
|
| 369 |
-
width (int): Output video width
|
| 370 |
-
fps (int): Output video frame rate
|
| 371 |
-
num_video_frames (int): Number of frames to generate
|
| 372 |
-
|
| 373 |
-
Returns:
|
| 374 |
-
tuple:
|
| 375 |
-
- data_batch (dict): Complete model input batch
|
| 376 |
-
- state_shape (list): Shape of latent state [C,T,H,W] accounting for VAE compression
|
| 377 |
-
"""
|
| 378 |
-
raw_video_batch = prepare_data_batch(
|
| 379 |
-
height=height,
|
| 380 |
-
width=width,
|
| 381 |
-
num_frames=num_video_frames,
|
| 382 |
-
fps=fps,
|
| 383 |
-
prompt_embedding=prompt_embedding,
|
| 384 |
-
negative_prompt_embedding=negative_prompt_embedding,
|
| 385 |
-
)
|
| 386 |
-
state_shape = [
|
| 387 |
-
model.tokenizer.channel,
|
| 388 |
-
model.tokenizer.get_latent_num_frames(num_video_frames),
|
| 389 |
-
height // model.tokenizer.spatial_compression_factor,
|
| 390 |
-
width // model.tokenizer.spatial_compression_factor,
|
| 391 |
-
]
|
| 392 |
-
return raw_video_batch, state_shape
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
def generate_world_from_text(
|
| 396 |
-
model: DiffusionT2WModel,
|
| 397 |
-
state_shape: list[int],
|
| 398 |
-
is_negative_prompt: bool,
|
| 399 |
-
data_batch: dict,
|
| 400 |
-
guidance: float,
|
| 401 |
-
num_steps: int,
|
| 402 |
-
seed: int,
|
| 403 |
-
):
|
| 404 |
-
"""Generate video from text prompt using diffusion model.
|
| 405 |
-
|
| 406 |
-
Args:
|
| 407 |
-
model (DiffusionT2WModel): Text-to-video diffusion model
|
| 408 |
-
state_shape (list[int]): Latent state dimensions [C,T,H,W]
|
| 409 |
-
is_negative_prompt (bool): Whether negative prompt is provided
|
| 410 |
-
data_batch (dict): Model input batch with embeddings
|
| 411 |
-
guidance (float): Classifier-free guidance scale
|
| 412 |
-
num_steps (int): Number of diffusion sampling steps
|
| 413 |
-
seed (int): Random seed for reproducibility
|
| 414 |
-
|
| 415 |
-
Returns:
|
| 416 |
-
np.ndarray: Generated video frames [T,H,W,C], range [0,255]
|
| 417 |
-
|
| 418 |
-
The function:
|
| 419 |
-
1. Initializes random latent with maximum noise
|
| 420 |
-
2. Performs guided diffusion sampling
|
| 421 |
-
3. Decodes latents to pixel space
|
| 422 |
-
"""
|
| 423 |
-
x_sigma_max = (
|
| 424 |
-
misc.arch_invariant_rand(
|
| 425 |
-
(1,) + tuple(state_shape),
|
| 426 |
-
torch.float32,
|
| 427 |
-
model.tensor_kwargs["device"],
|
| 428 |
-
seed,
|
| 429 |
-
)
|
| 430 |
-
* model.sde.sigma_max
|
| 431 |
-
)
|
| 432 |
-
|
| 433 |
-
# Generate video
|
| 434 |
-
sample = model.generate_samples_from_batch(
|
| 435 |
-
data_batch,
|
| 436 |
-
guidance=guidance,
|
| 437 |
-
state_shape=state_shape,
|
| 438 |
-
num_steps=num_steps,
|
| 439 |
-
is_negative_prompt=is_negative_prompt,
|
| 440 |
-
seed=seed,
|
| 441 |
-
x_sigma_max=x_sigma_max,
|
| 442 |
-
)
|
| 443 |
-
|
| 444 |
-
return sample
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
def generate_world_from_video(
|
| 448 |
-
model: DiffusionV2WModel,
|
| 449 |
-
state_shape: list[int],
|
| 450 |
-
is_negative_prompt: bool,
|
| 451 |
-
data_batch: dict,
|
| 452 |
-
guidance: float,
|
| 453 |
-
num_steps: int,
|
| 454 |
-
seed: int,
|
| 455 |
-
condition_latent: torch.Tensor,
|
| 456 |
-
num_input_frames: int,
|
| 457 |
-
) -> Tuple[np.array, list, list]:
|
| 458 |
-
"""Generate video using a conditioning video/image input.
|
| 459 |
-
|
| 460 |
-
Args:
|
| 461 |
-
model (DiffusionV2WModel): The diffusion model instance
|
| 462 |
-
state_shape (list[int]): Shape of the latent state [C,T,H,W]
|
| 463 |
-
is_negative_prompt (bool): Whether negative prompt is provided
|
| 464 |
-
data_batch (dict): Batch containing model inputs including text embeddings
|
| 465 |
-
guidance (float): Classifier-free guidance scale for sampling
|
| 466 |
-
num_steps (int): Number of diffusion sampling steps
|
| 467 |
-
seed (int): Random seed for generation
|
| 468 |
-
condition_latent (torch.Tensor): Latent tensor from conditioning video/image file
|
| 469 |
-
num_input_frames (int): Number of input frames
|
| 470 |
-
|
| 471 |
-
Returns:
|
| 472 |
-
np.array: Generated video frames in shape [T,H,W,C], range [0,255]
|
| 473 |
-
"""
|
| 474 |
-
assert not model.config.conditioner.video_cond_bool.sample_tokens_start_from_p_or_i, "not supported"
|
| 475 |
-
augment_sigma = DEFAULT_AUGMENT_SIGMA
|
| 476 |
-
|
| 477 |
-
if condition_latent.shape[2] < state_shape[1]:
|
| 478 |
-
# Padding condition latent to state shape
|
| 479 |
-
b, c, t, h, w = condition_latent.shape
|
| 480 |
-
condition_latent = torch.cat(
|
| 481 |
-
[
|
| 482 |
-
condition_latent,
|
| 483 |
-
condition_latent.new_zeros(b, c, state_shape[1] - t, h, w),
|
| 484 |
-
],
|
| 485 |
-
dim=2,
|
| 486 |
-
).contiguous()
|
| 487 |
-
num_of_latent_condition = compute_num_latent_frames(model, num_input_frames)
|
| 488 |
-
|
| 489 |
-
x_sigma_max = (
|
| 490 |
-
misc.arch_invariant_rand(
|
| 491 |
-
(1,) + tuple(state_shape),
|
| 492 |
-
torch.float32,
|
| 493 |
-
model.tensor_kwargs["device"],
|
| 494 |
-
seed,
|
| 495 |
-
)
|
| 496 |
-
* model.sde.sigma_max
|
| 497 |
-
)
|
| 498 |
-
|
| 499 |
-
sample = model.generate_samples_from_batch(
|
| 500 |
-
data_batch,
|
| 501 |
-
guidance=guidance,
|
| 502 |
-
state_shape=state_shape,
|
| 503 |
-
num_steps=num_steps,
|
| 504 |
-
is_negative_prompt=is_negative_prompt,
|
| 505 |
-
seed=seed,
|
| 506 |
-
condition_latent=condition_latent,
|
| 507 |
-
num_condition_t=num_of_latent_condition,
|
| 508 |
-
condition_video_augment_sigma_in_inference=augment_sigma,
|
| 509 |
-
x_sigma_max=x_sigma_max,
|
| 510 |
-
)
|
| 511 |
-
return sample
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
def read_video_or_image_into_frames_BCTHW(
|
| 515 |
-
input_path: str,
|
| 516 |
-
input_path_format: str = "mp4",
|
| 517 |
-
H: int = None,
|
| 518 |
-
W: int = None,
|
| 519 |
-
normalize: bool = True,
|
| 520 |
-
max_frames: int = -1,
|
| 521 |
-
also_return_fps: bool = False,
|
| 522 |
-
) -> torch.Tensor:
|
| 523 |
-
"""Read video or image file and convert to tensor format.
|
| 524 |
-
|
| 525 |
-
Args:
|
| 526 |
-
input_path (str): Path to input video/image file
|
| 527 |
-
input_path_format (str): Format of input file (default: "mp4")
|
| 528 |
-
H (int, optional): Height to resize frames to
|
| 529 |
-
W (int, optional): Width to resize frames to
|
| 530 |
-
normalize (bool): Whether to normalize pixel values to [-1,1] (default: True)
|
| 531 |
-
max_frames (int): Maximum number of frames to read (-1 for all frames)
|
| 532 |
-
also_return_fps (bool): Whether to return fps along with frames
|
| 533 |
-
|
| 534 |
-
Returns:
|
| 535 |
-
torch.Tensor | tuple: Video tensor in shape [B,C,T,H,W], optionally with fps if requested
|
| 536 |
-
"""
|
| 537 |
-
log.debug(f"Reading video from {input_path}")
|
| 538 |
-
|
| 539 |
-
loaded_data = load_from_fileobj(input_path, format=input_path_format)
|
| 540 |
-
frames, meta_data = loaded_data
|
| 541 |
-
if input_path.endswith(".png") or input_path.endswith(".jpg") or input_path.endswith(".jpeg"):
|
| 542 |
-
frames = np.array(frames[0]) # HWC, [0,255]
|
| 543 |
-
if frames.shape[-1] > 3: # RGBA, set the transparent to white
|
| 544 |
-
# Separate the RGB and Alpha channels
|
| 545 |
-
rgb_channels = frames[..., :3]
|
| 546 |
-
alpha_channel = frames[..., 3] / 255.0 # Normalize alpha channel to [0, 1]
|
| 547 |
-
|
| 548 |
-
# Create a white background
|
| 549 |
-
white_bg = np.ones_like(rgb_channels) * 255 # White background in RGB
|
| 550 |
-
|
| 551 |
-
# Blend the RGB channels with the white background based on the alpha channel
|
| 552 |
-
frames = (rgb_channels * alpha_channel[..., None] + white_bg * (1 - alpha_channel[..., None])).astype(
|
| 553 |
-
np.uint8
|
| 554 |
-
)
|
| 555 |
-
frames = [frames]
|
| 556 |
-
fps = 0
|
| 557 |
-
else:
|
| 558 |
-
fps = int(meta_data.get("fps"))
|
| 559 |
-
if max_frames != -1:
|
| 560 |
-
frames = frames[:max_frames]
|
| 561 |
-
input_tensor = np.stack(frames, axis=0)
|
| 562 |
-
input_tensor = einops.rearrange(input_tensor, "t h w c -> t c h w")
|
| 563 |
-
if normalize:
|
| 564 |
-
input_tensor = input_tensor / 128.0 - 1.0
|
| 565 |
-
input_tensor = torch.from_numpy(input_tensor).bfloat16() # TCHW
|
| 566 |
-
log.debug(f"Raw data shape: {input_tensor.shape}")
|
| 567 |
-
if H is not None and W is not None:
|
| 568 |
-
input_tensor = transforms_F.resize(
|
| 569 |
-
input_tensor,
|
| 570 |
-
size=(H, W), # type: ignore
|
| 571 |
-
interpolation=transforms_F.InterpolationMode.BICUBIC,
|
| 572 |
-
antialias=True,
|
| 573 |
-
)
|
| 574 |
-
input_tensor = einops.rearrange(input_tensor, "(b t) c h w -> b c t h w", b=1)
|
| 575 |
-
if normalize:
|
| 576 |
-
input_tensor = input_tensor.to("cuda")
|
| 577 |
-
log.debug(f"Load shape {input_tensor.shape} value {input_tensor.min()}, {input_tensor.max()}")
|
| 578 |
-
if also_return_fps:
|
| 579 |
-
return input_tensor, fps
|
| 580 |
-
return input_tensor
|
| 581 |
-
|
| 582 |
-
|
| 583 |
-
def compute_num_latent_frames(model: DiffusionV2WModel, num_input_frames: int, downsample_factor=8) -> int:
|
| 584 |
-
"""This function computes the number of latent frames given the number of input frames.
|
| 585 |
-
Args:
|
| 586 |
-
model (DiffusionV2WModel): video generation model
|
| 587 |
-
num_input_frames (int): number of input frames
|
| 588 |
-
downsample_factor (int): downsample factor for temporal reduce
|
| 589 |
-
Returns:
|
| 590 |
-
int: number of latent frames
|
| 591 |
-
"""
|
| 592 |
-
num_latent_frames = (
|
| 593 |
-
num_input_frames
|
| 594 |
-
// model.tokenizer.video_vae.pixel_chunk_duration
|
| 595 |
-
* model.tokenizer.video_vae.latent_chunk_duration
|
| 596 |
-
)
|
| 597 |
-
if num_input_frames % model.tokenizer.video_vae.latent_chunk_duration == 1:
|
| 598 |
-
num_latent_frames += 1
|
| 599 |
-
elif num_input_frames % model.tokenizer.video_vae.latent_chunk_duration > 1:
|
| 600 |
-
assert (
|
| 601 |
-
num_input_frames % model.tokenizer.video_vae.pixel_chunk_duration - 1
|
| 602 |
-
) % downsample_factor == 0, f"num_input_frames % model.tokenizer.video_vae.pixel_chunk_duration - 1 must be divisible by {downsample_factor}"
|
| 603 |
-
num_latent_frames += (
|
| 604 |
-
1 + (num_input_frames % model.tokenizer.video_vae.pixel_chunk_duration - 1) // downsample_factor
|
| 605 |
-
)
|
| 606 |
-
|
| 607 |
-
return num_latent_frames
|
| 608 |
-
|
| 609 |
-
|
| 610 |
-
def create_condition_latent_from_input_frames(
|
| 611 |
-
model: DiffusionV2WModel,
|
| 612 |
-
input_frames: torch.Tensor,
|
| 613 |
-
num_frames_condition: int = 25,
|
| 614 |
-
):
|
| 615 |
-
"""Create condition latent for video generation from input frames.
|
| 616 |
-
|
| 617 |
-
Takes the last num_frames_condition frames from input as conditioning.
|
| 618 |
-
|
| 619 |
-
Args:
|
| 620 |
-
model (DiffusionV2WModel): Video generation model
|
| 621 |
-
input_frames (torch.Tensor): Input video tensor [B,C,T,H,W], range [-1,1]
|
| 622 |
-
num_frames_condition (int): Number of frames to use for conditioning
|
| 623 |
-
|
| 624 |
-
Returns:
|
| 625 |
-
tuple: (condition_latent, encode_input_frames) where:
|
| 626 |
-
- condition_latent (torch.Tensor): Encoded latent condition [B,C,T,H,W]
|
| 627 |
-
- encode_input_frames (torch.Tensor): Padded input frames used for encoding
|
| 628 |
-
"""
|
| 629 |
-
B, C, T, H, W = input_frames.shape
|
| 630 |
-
num_frames_encode = (
|
| 631 |
-
model.tokenizer.pixel_chunk_duration
|
| 632 |
-
) # (model.state_shape[1] - 1) / model.vae.pixel_chunk_duration + 1
|
| 633 |
-
log.debug(
|
| 634 |
-
f"num_frames_encode not set, set it based on pixel chunk duration and model state shape: {num_frames_encode}"
|
| 635 |
-
)
|
| 636 |
-
|
| 637 |
-
log.debug(
|
| 638 |
-
f"Create condition latent from input frames {input_frames.shape}, value {input_frames.min()}, {input_frames.max()}, dtype {input_frames.dtype}"
|
| 639 |
-
)
|
| 640 |
-
|
| 641 |
-
assert (
|
| 642 |
-
input_frames.shape[2] >= num_frames_condition
|
| 643 |
-
), f"input_frames not enough for condition, require at least {num_frames_condition}, get {input_frames.shape[2]}, {input_frames.shape}"
|
| 644 |
-
assert (
|
| 645 |
-
num_frames_encode >= num_frames_condition
|
| 646 |
-
), f"num_frames_encode should be larger than num_frames_condition, get {num_frames_encode}, {num_frames_condition}"
|
| 647 |
-
|
| 648 |
-
# Put the conditioal frames to the begining of the video, and pad the end with zero
|
| 649 |
-
condition_frames = input_frames[:, :, -num_frames_condition:]
|
| 650 |
-
padding_frames = condition_frames.new_zeros(B, C, num_frames_encode - num_frames_condition, H, W)
|
| 651 |
-
encode_input_frames = torch.cat([condition_frames, padding_frames], dim=2)
|
| 652 |
-
|
| 653 |
-
log.debug(
|
| 654 |
-
f"create latent with input shape {encode_input_frames.shape} including padding {num_frames_encode - num_frames_condition} at the end"
|
| 655 |
-
)
|
| 656 |
-
latent = model.encode(encode_input_frames)
|
| 657 |
-
return latent, encode_input_frames
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
def get_condition_latent(
|
| 661 |
-
model: DiffusionV2WModel,
|
| 662 |
-
input_image_or_video_path: str,
|
| 663 |
-
num_input_frames: int = 1,
|
| 664 |
-
state_shape: list[int] = None,
|
| 665 |
-
):
|
| 666 |
-
"""Get condition latent from input image/video file.
|
| 667 |
-
|
| 668 |
-
Args:
|
| 669 |
-
model (DiffusionV2WModel): Video generation model
|
| 670 |
-
input_image_or_video_path (str): Path to conditioning image/video
|
| 671 |
-
num_input_frames (int): Number of input frames for video2world prediction
|
| 672 |
-
|
| 673 |
-
Returns:
|
| 674 |
-
tuple: (condition_latent, input_frames) where:
|
| 675 |
-
- condition_latent (torch.Tensor): Encoded latent condition [B,C,T,H,W]
|
| 676 |
-
- input_frames (torch.Tensor): Input frames tensor [B,C,T,H,W]
|
| 677 |
-
"""
|
| 678 |
-
if state_shape is None:
|
| 679 |
-
state_shape = model.state_shape
|
| 680 |
-
assert num_input_frames > 0, "num_input_frames must be greater than 0"
|
| 681 |
-
|
| 682 |
-
H, W = (
|
| 683 |
-
state_shape[-2] * model.tokenizer.spatial_compression_factor,
|
| 684 |
-
state_shape[-1] * model.tokenizer.spatial_compression_factor,
|
| 685 |
-
)
|
| 686 |
-
|
| 687 |
-
input_path_format = input_image_or_video_path.split(".")[-1]
|
| 688 |
-
input_frames = read_video_or_image_into_frames_BCTHW(
|
| 689 |
-
input_image_or_video_path,
|
| 690 |
-
input_path_format=input_path_format,
|
| 691 |
-
H=H,
|
| 692 |
-
W=W,
|
| 693 |
-
)
|
| 694 |
-
|
| 695 |
-
condition_latent, _ = create_condition_latent_from_input_frames(model, input_frames, num_input_frames)
|
| 696 |
-
condition_latent = condition_latent.to(torch.bfloat16)
|
| 697 |
-
|
| 698 |
-
return condition_latent
|
| 699 |
-
|
| 700 |
-
|
| 701 |
-
def check_input_frames(input_path: str, required_frames: int) -> bool:
|
| 702 |
-
"""Check if input video/image has sufficient frames.
|
| 703 |
-
|
| 704 |
-
Args:
|
| 705 |
-
input_path: Path to input video or image
|
| 706 |
-
required_frames: Number of required frames
|
| 707 |
-
|
| 708 |
-
Returns:
|
| 709 |
-
np.ndarray of frames if valid, None if invalid
|
| 710 |
-
"""
|
| 711 |
-
if input_path.endswith((".jpg", ".jpeg", ".png")):
|
| 712 |
-
if required_frames > 1:
|
| 713 |
-
log.error(f"Input ({input_path}) is an image but {required_frames} frames are required")
|
| 714 |
-
return False
|
| 715 |
-
return True # Let the pipeline handle image loading
|
| 716 |
-
# For video input
|
| 717 |
-
try:
|
| 718 |
-
vid = imageio.get_reader(input_path, "ffmpeg")
|
| 719 |
-
frame_count = vid.count_frames()
|
| 720 |
-
|
| 721 |
-
if frame_count < required_frames:
|
| 722 |
-
log.error(f"Input video has {frame_count} frames but {required_frames} frames are required")
|
| 723 |
-
return False
|
| 724 |
-
else:
|
| 725 |
-
return True
|
| 726 |
-
except Exception as e:
|
| 727 |
-
log.error(f"Error reading video file {input_path}: {e}")
|
| 728 |
-
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/69f477ced9dfe59deda742bc507addf7d7268bdf
DELETED
|
@@ -1,223 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from __future__ import annotations
|
| 17 |
-
|
| 18 |
-
import collections
|
| 19 |
-
import collections.abc
|
| 20 |
-
import ctypes
|
| 21 |
-
import functools
|
| 22 |
-
import os
|
| 23 |
-
from datetime import timedelta
|
| 24 |
-
from typing import Any, Callable, Optional
|
| 25 |
-
|
| 26 |
-
import pynvml
|
| 27 |
-
import torch
|
| 28 |
-
import torch.distributed as dist
|
| 29 |
-
|
| 30 |
-
from .log import log
|
| 31 |
-
from .device import Device
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def init() -> int | None:
|
| 35 |
-
"""Initialize distributed training."""
|
| 36 |
-
# Set GPU affinity.
|
| 37 |
-
pynvml.nvmlInit()
|
| 38 |
-
local_rank = int(os.getenv("LOCAL_RANK", 0))
|
| 39 |
-
device = Device(local_rank)
|
| 40 |
-
os.sched_setaffinity(0, device.get_cpu_affinity())
|
| 41 |
-
# Set up NCCL communication.
|
| 42 |
-
os.environ["TORCH_NCCL_BLOCKING_WAIT"] = "0"
|
| 43 |
-
os.environ["TORCH_NCCL_ASYNC_ERROR_HANDLING"] = "1"
|
| 44 |
-
if dist.is_available():
|
| 45 |
-
if dist.is_initialized():
|
| 46 |
-
return torch.cuda.current_device()
|
| 47 |
-
torch.cuda.set_device(local_rank)
|
| 48 |
-
# Get the timeout value from environment variable
|
| 49 |
-
timeout_seconds = os.getenv("TORCH_NCCL_HEARTBEAT_TIMEOUT_SEC", 1800)
|
| 50 |
-
# Convert the timeout to an integer (if it isn't already) and then to a timedelta
|
| 51 |
-
timeout_timedelta = timedelta(seconds=int(timeout_seconds))
|
| 52 |
-
dist.init_process_group(backend="nccl", init_method="env://", timeout=timeout_timedelta)
|
| 53 |
-
log.critical(
|
| 54 |
-
f"Initialized distributed training with local rank {local_rank} with timeout {timeout_seconds}",
|
| 55 |
-
rank0_only=False,
|
| 56 |
-
)
|
| 57 |
-
# Increase the L2 fetch granularity for faster speed.
|
| 58 |
-
_libcudart = ctypes.CDLL("libcudart.so")
|
| 59 |
-
# Set device limit on the current device.
|
| 60 |
-
p_value = ctypes.cast((ctypes.c_int * 1)(), ctypes.POINTER(ctypes.c_int))
|
| 61 |
-
_libcudart.cudaDeviceSetLimit(ctypes.c_int(0x05), ctypes.c_int(128))
|
| 62 |
-
_libcudart.cudaDeviceGetLimit(p_value, ctypes.c_int(0x05))
|
| 63 |
-
log.info(f"Training with {get_world_size()} GPUs.")
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
def get_rank(group: Optional[dist.ProcessGroup] = None) -> int:
|
| 67 |
-
"""Get the rank (GPU device) of the worker.
|
| 68 |
-
|
| 69 |
-
Returns:
|
| 70 |
-
rank (int): The rank of the worker.
|
| 71 |
-
"""
|
| 72 |
-
rank = 0
|
| 73 |
-
if dist.is_available() and dist.is_initialized():
|
| 74 |
-
rank = dist.get_rank(group)
|
| 75 |
-
return rank
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
def get_world_size(group: Optional[dist.ProcessGroup] = None) -> int:
|
| 79 |
-
"""Get world size. How many GPUs are available in this job.
|
| 80 |
-
|
| 81 |
-
Returns:
|
| 82 |
-
world_size (int): The total number of GPUs available in this job.
|
| 83 |
-
"""
|
| 84 |
-
world_size = 1
|
| 85 |
-
if dist.is_available() and dist.is_initialized():
|
| 86 |
-
world_size = dist.get_world_size(group)
|
| 87 |
-
return world_size
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
def is_rank0() -> bool:
|
| 91 |
-
"""Check if current process is the master GPU.
|
| 92 |
-
|
| 93 |
-
Returns:
|
| 94 |
-
(bool): True if this function is called from the master GPU, else False.
|
| 95 |
-
"""
|
| 96 |
-
return get_rank() == 0
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
def rank0_only(func: Callable) -> Callable:
|
| 100 |
-
"""Apply this function only to the master GPU.
|
| 101 |
-
|
| 102 |
-
Example usage:
|
| 103 |
-
@rank0_only
|
| 104 |
-
def func(x):
|
| 105 |
-
return x + 3
|
| 106 |
-
|
| 107 |
-
Args:
|
| 108 |
-
func (Callable): a function.
|
| 109 |
-
|
| 110 |
-
Returns:
|
| 111 |
-
(Callable): A function wrapper executing the function only on the master GPU.
|
| 112 |
-
"""
|
| 113 |
-
|
| 114 |
-
@functools.wraps(func)
|
| 115 |
-
def wrapper(*args, **kwargs): # noqa: ANN202
|
| 116 |
-
if is_rank0():
|
| 117 |
-
return func(*args, **kwargs)
|
| 118 |
-
else:
|
| 119 |
-
return None
|
| 120 |
-
|
| 121 |
-
return wrapper
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
def barrier() -> None:
|
| 125 |
-
"""Barrier for all GPUs."""
|
| 126 |
-
if dist.is_available() and dist.is_initialized():
|
| 127 |
-
dist.barrier()
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
class DistributedDataParallel(torch.nn.parallel.DistributedDataParallel):
|
| 131 |
-
"""This extends torch.nn.parallel.DistributedDataParallel with .training_step().
|
| 132 |
-
|
| 133 |
-
This borrows the concept of `forward-redirection` from Pytorch lightning. It wraps an coreModel such that
|
| 134 |
-
model.training_step() would be executed when calling self.training_step(), while preserving the behavior of calling
|
| 135 |
-
model() for Pytorch modules. Internally, this is a double rerouting mechanism (training_step -> forward ->
|
| 136 |
-
training_step), allowing us to preserve the function names and signatures.
|
| 137 |
-
"""
|
| 138 |
-
|
| 139 |
-
def __init__(self, model: torch.nn.Module, *args, **kwargs):
|
| 140 |
-
super().__init__(model, *args, **kwargs)
|
| 141 |
-
|
| 142 |
-
def training_step(self, *args, **kwargs) -> Any:
|
| 143 |
-
# Cache the original model.forward() method.
|
| 144 |
-
original_forward = self.module.forward
|
| 145 |
-
|
| 146 |
-
def wrapped_training_step(*_args, **_kwargs): # noqa: ANN202
|
| 147 |
-
# Unpatch immediately before calling training_step() because itself may want to call the real forward.
|
| 148 |
-
self.module.forward = original_forward
|
| 149 |
-
# The actual .training_step().
|
| 150 |
-
return self.module.training_step(*_args, **_kwargs)
|
| 151 |
-
|
| 152 |
-
# Patch the original_module's forward so we can redirect the arguments back to the real method.
|
| 153 |
-
self.module.forward = wrapped_training_step
|
| 154 |
-
# Call self, which implicitly calls self.forward() --> model.forward(), which is now model.training_step().
|
| 155 |
-
# Without calling self.forward() or model.forward() explciitly, implicit hooks are also executed.
|
| 156 |
-
return self(*args, **kwargs)
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
def collate_batches(data_batches: list[dict[str, torch.Tensor]]) -> torch.Tensor | dict[str, torch.Tensor]:
|
| 160 |
-
"""Aggregate the list of data batches from all devices and process the results.
|
| 161 |
-
|
| 162 |
-
This is used for gathering validation data batches with utils.dataloader.DistributedEvalSampler.
|
| 163 |
-
It will return the data/output of the entire validation set in its original index order. The sizes of data_batches
|
| 164 |
-
in different ranks may differ by 1 (if dataset size is not evenly divisible), in which case a dummy sample will be
|
| 165 |
-
created before calling dis.all_gather().
|
| 166 |
-
|
| 167 |
-
Args:
|
| 168 |
-
data_batches (list[dict[str, torch.Tensor]]): List of tensors or (hierarchical) dictionary where
|
| 169 |
-
leaf entries are tensors.
|
| 170 |
-
|
| 171 |
-
Returns:
|
| 172 |
-
data_gather (torch.Tensor | dict[str, torch.Tensor]): tensors or (hierarchical) dictionary where
|
| 173 |
-
leaf entries are concatenated tensors.
|
| 174 |
-
"""
|
| 175 |
-
if isinstance(data_batches[0], torch.Tensor):
|
| 176 |
-
# Concatenate the local data batches.
|
| 177 |
-
data_concat = torch.cat(data_batches, dim=0) # type: ignore
|
| 178 |
-
# Get the largest number of local samples from all ranks to determine whether to dummy-pad on this rank.
|
| 179 |
-
max_num_local_samples = torch.tensor(len(data_concat), device="cuda")
|
| 180 |
-
dist.all_reduce(max_num_local_samples, op=dist.ReduceOp.MAX)
|
| 181 |
-
if len(data_concat) < max_num_local_samples:
|
| 182 |
-
assert len(data_concat) + 1 == max_num_local_samples
|
| 183 |
-
dummy = torch.empty_like(data_concat[:1])
|
| 184 |
-
data_concat = torch.cat([data_concat, dummy], dim=0)
|
| 185 |
-
dummy_count = torch.tensor(1, device="cuda")
|
| 186 |
-
else:
|
| 187 |
-
dummy_count = torch.tensor(0, device="cuda")
|
| 188 |
-
# Get all concatenated batches from all ranks and concatenate again.
|
| 189 |
-
dist.all_reduce(dummy_count, op=dist.ReduceOp.SUM)
|
| 190 |
-
data_concat = all_gather_tensor(data_concat.contiguous())
|
| 191 |
-
data_collate = torch.stack(data_concat, dim=1).flatten(start_dim=0, end_dim=1)
|
| 192 |
-
# Remove the dummy samples.
|
| 193 |
-
if dummy_count > 0:
|
| 194 |
-
data_collate = data_collate[:-dummy_count]
|
| 195 |
-
elif isinstance(data_batches[0], collections.abc.Mapping):
|
| 196 |
-
data_collate = dict()
|
| 197 |
-
for key in data_batches[0].keys():
|
| 198 |
-
data_collate[key] = collate_batches([data[key] for data in data_batches]) # type: ignore
|
| 199 |
-
else:
|
| 200 |
-
raise TypeError
|
| 201 |
-
return data_collate
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
@torch.no_grad()
|
| 205 |
-
def all_gather_tensor(tensor: torch.Tensor) -> list[torch.Tensor]:
|
| 206 |
-
"""Gather the corresponding tensor from all GPU devices to a list.
|
| 207 |
-
|
| 208 |
-
Args:
|
| 209 |
-
tensor (torch.Tensor): Pytorch tensor.
|
| 210 |
-
|
| 211 |
-
Returns:
|
| 212 |
-
tensor_list (list[torch.Tensor]): A list of Pytorch tensors gathered from all GPU devices.
|
| 213 |
-
"""
|
| 214 |
-
tensor_list = [torch.zeros_like(tensor) for _ in range(get_world_size())]
|
| 215 |
-
dist.all_gather(tensor_list, tensor)
|
| 216 |
-
return tensor_list
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
def broadcast(tensor, src, group=None, async_op=False):
|
| 220 |
-
world_size = get_world_size()
|
| 221 |
-
if world_size < 2:
|
| 222 |
-
return tensor
|
| 223 |
-
dist.broadcast(tensor, src=src, group=group, async_op=async_op)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/6bb055d8b2ddd78f626f08bb78f9434de5aef511
DELETED
|
@@ -1,276 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import ast
|
| 17 |
-
import builtins
|
| 18 |
-
import collections.abc as abc
|
| 19 |
-
import importlib
|
| 20 |
-
import inspect
|
| 21 |
-
import os
|
| 22 |
-
import uuid
|
| 23 |
-
from collections import OrderedDict
|
| 24 |
-
from contextlib import contextmanager
|
| 25 |
-
from dataclasses import is_dataclass
|
| 26 |
-
from typing import Any, Dict, List, Tuple, Union
|
| 27 |
-
|
| 28 |
-
import attrs
|
| 29 |
-
import yaml
|
| 30 |
-
from omegaconf import DictConfig, ListConfig, OmegaConf
|
| 31 |
-
|
| 32 |
-
from .lazy_file_io import PathManager
|
| 33 |
-
from .lazy_registry import _convert_target_to_string
|
| 34 |
-
|
| 35 |
-
__all__ = ["LazyCall", "LazyConfig"]
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
def sort_dict(d: Dict[str, Any]) -> OrderedDict[str, Any]:
|
| 39 |
-
return OrderedDict(sorted(d.items(), key=lambda x: x[0]))
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
def dict_representer(dumper: yaml.Dumper, data: OrderedDict[str, Any]) -> yaml.nodes.MappingNode:
|
| 43 |
-
return dumper.represent_mapping("tag:yaml.org,2002:map", data.items())
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
def sort_recursive(obj: Union[Dict[str, Any], List[Any], Any]) -> Union[OrderedDict[str, Any], List[Any], Any]:
|
| 47 |
-
if isinstance(obj, dict):
|
| 48 |
-
return sort_dict({k: sort_recursive(v) for k, v in obj.items()})
|
| 49 |
-
elif isinstance(obj, list):
|
| 50 |
-
return [sort_recursive(item) for item in obj]
|
| 51 |
-
return obj
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
yaml.add_representer(OrderedDict, dict_representer)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
def get_default_params(cls_or_func):
|
| 58 |
-
if callable(cls_or_func):
|
| 59 |
-
# inspect signature for function
|
| 60 |
-
signature = inspect.signature(cls_or_func)
|
| 61 |
-
else:
|
| 62 |
-
# inspect signature for class
|
| 63 |
-
signature = inspect.signature(cls_or_func.__init__)
|
| 64 |
-
params = signature.parameters
|
| 65 |
-
default_params = {
|
| 66 |
-
name: param.default for name, param in params.items() if param.default is not inspect.Parameter.empty
|
| 67 |
-
}
|
| 68 |
-
return default_params
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
class LazyCall:
|
| 72 |
-
"""
|
| 73 |
-
Wrap a callable so that when it's called, the call will not be executed,
|
| 74 |
-
but returns a dict that describes the call.
|
| 75 |
-
|
| 76 |
-
LazyCall object has to be called with only keyword arguments. Positional
|
| 77 |
-
arguments are not yet supported.
|
| 78 |
-
|
| 79 |
-
Examples:
|
| 80 |
-
::
|
| 81 |
-
# from detectron2.config import instantiate, LazyCall
|
| 82 |
-
|
| 83 |
-
layer_cfg = LazyCall(nn.Conv2d)(in_channels=32, out_channels=32)
|
| 84 |
-
layer_cfg.out_channels = 64 # can edit it afterwards
|
| 85 |
-
layer = instantiate(layer_cfg)
|
| 86 |
-
"""
|
| 87 |
-
|
| 88 |
-
def __init__(self, target):
|
| 89 |
-
if not (callable(target) or isinstance(target, (str, abc.Mapping))):
|
| 90 |
-
raise TypeError(f"target of LazyCall must be a callable or defines a callable! Got {target}")
|
| 91 |
-
self._target = target
|
| 92 |
-
|
| 93 |
-
def __call__(self, **kwargs):
|
| 94 |
-
if is_dataclass(self._target) or attrs.has(self._target):
|
| 95 |
-
# omegaconf object cannot hold dataclass type
|
| 96 |
-
# https://github.com/omry/omegaconf/issues/784
|
| 97 |
-
target = _convert_target_to_string(self._target)
|
| 98 |
-
else:
|
| 99 |
-
target = self._target
|
| 100 |
-
kwargs["_target_"] = target
|
| 101 |
-
|
| 102 |
-
_final_params = get_default_params(self._target)
|
| 103 |
-
_final_params.update(kwargs)
|
| 104 |
-
|
| 105 |
-
return DictConfig(content=_final_params, flags={"allow_objects": True})
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
def _visit_dict_config(cfg, func):
|
| 109 |
-
"""
|
| 110 |
-
Apply func recursively to all DictConfig in cfg.
|
| 111 |
-
"""
|
| 112 |
-
if isinstance(cfg, DictConfig):
|
| 113 |
-
func(cfg)
|
| 114 |
-
for v in cfg.values():
|
| 115 |
-
_visit_dict_config(v, func)
|
| 116 |
-
elif isinstance(cfg, ListConfig):
|
| 117 |
-
for v in cfg:
|
| 118 |
-
_visit_dict_config(v, func)
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
def _validate_py_syntax(filename):
|
| 122 |
-
# see also https://github.com/open-mmlab/mmcv/blob/master/mmcv/utils/config.py
|
| 123 |
-
with PathManager.open(filename, "r") as f:
|
| 124 |
-
content = f.read()
|
| 125 |
-
try:
|
| 126 |
-
ast.parse(content)
|
| 127 |
-
except SyntaxError as e:
|
| 128 |
-
raise SyntaxError(f"Config file {filename} has syntax error!") from e
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
def _cast_to_config(obj):
|
| 132 |
-
# if given a dict, return DictConfig instead
|
| 133 |
-
if isinstance(obj, dict):
|
| 134 |
-
return DictConfig(obj, flags={"allow_objects": True})
|
| 135 |
-
return obj
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
_CFG_PACKAGE_NAME = "detectron2._cfg_loader"
|
| 139 |
-
"""
|
| 140 |
-
A namespace to put all imported config into.
|
| 141 |
-
"""
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
def _random_package_name(filename):
|
| 145 |
-
# generate a random package name when loading config files
|
| 146 |
-
return _CFG_PACKAGE_NAME + str(uuid.uuid4())[:4] + "." + os.path.basename(filename)
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
@contextmanager
|
| 150 |
-
def _patch_import():
|
| 151 |
-
"""
|
| 152 |
-
Enhance relative import statements in config files, so that they:
|
| 153 |
-
1. locate files purely based on relative location, regardless of packages.
|
| 154 |
-
e.g. you can import file without having __init__
|
| 155 |
-
2. do not cache modules globally; modifications of module states has no side effect
|
| 156 |
-
3. support other storage system through PathManager, so config files can be in the cloud
|
| 157 |
-
4. imported dict are turned into omegaconf.DictConfig automatically
|
| 158 |
-
"""
|
| 159 |
-
old_import = builtins.__import__
|
| 160 |
-
|
| 161 |
-
def find_relative_file(original_file, relative_import_path, level):
|
| 162 |
-
# NOTE: "from . import x" is not handled. Because then it's unclear
|
| 163 |
-
# if such import should produce `x` as a python module or DictConfig.
|
| 164 |
-
# This can be discussed further if needed.
|
| 165 |
-
relative_import_err = """
|
| 166 |
-
Relative import of directories is not allowed within config files.
|
| 167 |
-
Within a config file, relative import can only import other config files.
|
| 168 |
-
""".replace(
|
| 169 |
-
"\n", " "
|
| 170 |
-
)
|
| 171 |
-
if not len(relative_import_path):
|
| 172 |
-
raise ImportError(relative_import_err)
|
| 173 |
-
|
| 174 |
-
cur_file = os.path.dirname(original_file)
|
| 175 |
-
for _ in range(level - 1):
|
| 176 |
-
cur_file = os.path.dirname(cur_file)
|
| 177 |
-
cur_name = relative_import_path.lstrip(".")
|
| 178 |
-
for part in cur_name.split("."):
|
| 179 |
-
cur_file = os.path.join(cur_file, part)
|
| 180 |
-
if not cur_file.endswith(".py"):
|
| 181 |
-
cur_file += ".py"
|
| 182 |
-
if not PathManager.isfile(cur_file):
|
| 183 |
-
cur_file_no_suffix = cur_file[: -len(".py")]
|
| 184 |
-
if PathManager.isdir(cur_file_no_suffix):
|
| 185 |
-
raise ImportError(f"Cannot import from {cur_file_no_suffix}." + relative_import_err)
|
| 186 |
-
else:
|
| 187 |
-
raise ImportError(
|
| 188 |
-
f"Cannot import name {relative_import_path} from " f"{original_file}: {cur_file} does not exist."
|
| 189 |
-
)
|
| 190 |
-
return cur_file
|
| 191 |
-
|
| 192 |
-
def new_import(name, globals=None, locals=None, fromlist=(), level=0):
|
| 193 |
-
if (
|
| 194 |
-
# Only deal with relative imports inside config files
|
| 195 |
-
level != 0
|
| 196 |
-
and globals is not None
|
| 197 |
-
and (globals.get("__package__", "") or "").startswith(_CFG_PACKAGE_NAME)
|
| 198 |
-
):
|
| 199 |
-
cur_file = find_relative_file(globals["__file__"], name, level)
|
| 200 |
-
_validate_py_syntax(cur_file)
|
| 201 |
-
spec = importlib.machinery.ModuleSpec(_random_package_name(cur_file), None, origin=cur_file)
|
| 202 |
-
module = importlib.util.module_from_spec(spec)
|
| 203 |
-
module.__file__ = cur_file
|
| 204 |
-
with PathManager.open(cur_file) as f:
|
| 205 |
-
content = f.read()
|
| 206 |
-
exec(compile(content, cur_file, "exec"), module.__dict__)
|
| 207 |
-
for name in fromlist: # turn imported dict into DictConfig automatically
|
| 208 |
-
val = _cast_to_config(module.__dict__[name])
|
| 209 |
-
module.__dict__[name] = val
|
| 210 |
-
return module
|
| 211 |
-
return old_import(name, globals, locals, fromlist=fromlist, level=level)
|
| 212 |
-
|
| 213 |
-
builtins.__import__ = new_import
|
| 214 |
-
yield new_import
|
| 215 |
-
builtins.__import__ = old_import
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
class LazyConfig:
|
| 219 |
-
"""
|
| 220 |
-
Provide methods to save, load, and overrides an omegaconf config object
|
| 221 |
-
which may contain definition of lazily-constructed objects.
|
| 222 |
-
"""
|
| 223 |
-
|
| 224 |
-
@staticmethod
|
| 225 |
-
def load(filename: str, keys: Union[None, str, Tuple[str, ...]] = None):
|
| 226 |
-
"""
|
| 227 |
-
Load a config file.
|
| 228 |
-
|
| 229 |
-
Args:
|
| 230 |
-
filename: absolute path or relative path w.r.t. the current working directory
|
| 231 |
-
keys: keys to load and return. If not given, return all keys
|
| 232 |
-
(whose values are config objects) in a dict.
|
| 233 |
-
"""
|
| 234 |
-
has_keys = keys is not None
|
| 235 |
-
filename = filename.replace("/./", "/") # redundant
|
| 236 |
-
if os.path.splitext(filename)[1] not in [".py", ".yaml", ".yml"]:
|
| 237 |
-
raise ValueError(f"Config file {filename} has to be a python or yaml file.")
|
| 238 |
-
if filename.endswith(".py"):
|
| 239 |
-
_validate_py_syntax(filename)
|
| 240 |
-
|
| 241 |
-
with _patch_import():
|
| 242 |
-
# Record the filename
|
| 243 |
-
module_namespace = {
|
| 244 |
-
"__file__": filename,
|
| 245 |
-
"__package__": _random_package_name(filename),
|
| 246 |
-
}
|
| 247 |
-
with PathManager.open(filename) as f:
|
| 248 |
-
content = f.read()
|
| 249 |
-
# Compile first with filename to:
|
| 250 |
-
# 1. make filename appears in stacktrace
|
| 251 |
-
# 2. make load_rel able to find its parent's (possibly remote) location
|
| 252 |
-
exec(compile(content, filename, "exec"), module_namespace)
|
| 253 |
-
|
| 254 |
-
ret = module_namespace
|
| 255 |
-
else:
|
| 256 |
-
with PathManager.open(filename) as f:
|
| 257 |
-
obj = yaml.unsafe_load(f)
|
| 258 |
-
ret = OmegaConf.create(obj, flags={"allow_objects": True})
|
| 259 |
-
|
| 260 |
-
if has_keys:
|
| 261 |
-
if isinstance(keys, str):
|
| 262 |
-
return _cast_to_config(ret[keys])
|
| 263 |
-
else:
|
| 264 |
-
return tuple(_cast_to_config(ret[a]) for a in keys)
|
| 265 |
-
else:
|
| 266 |
-
if filename.endswith(".py"):
|
| 267 |
-
# when not specified, only load those that are config objects
|
| 268 |
-
ret = DictConfig(
|
| 269 |
-
{
|
| 270 |
-
name: _cast_to_config(value)
|
| 271 |
-
for name, value in ret.items()
|
| 272 |
-
if isinstance(value, (DictConfig, ListConfig, dict)) and not name.startswith("_")
|
| 273 |
-
},
|
| 274 |
-
flags={"allow_objects": True},
|
| 275 |
-
)
|
| 276 |
-
return ret
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/73755631ed6b97ebf773b3941fc0f6d1621761f7
DELETED
|
@@ -1,231 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from dataclasses import dataclass
|
| 17 |
-
from typing import Callable, Dict, Optional, Tuple
|
| 18 |
-
|
| 19 |
-
import torch
|
| 20 |
-
from torch import Tensor
|
| 21 |
-
|
| 22 |
-
from .df_conditioner import BaseVideoCondition
|
| 23 |
-
from .df_df_functional_batch_ops import batch_mul
|
| 24 |
-
from .df_df_module_res_sampler import COMMON_SOLVER_OPTIONS
|
| 25 |
-
from .df_model_model_t2w import DiffusionT2WModel as VideoDiffusionModel
|
| 26 |
-
from .lazy_config_init import instantiate as lazy_instantiate
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
@dataclass
|
| 30 |
-
class VideoLatentDiffusionDecoderCondition(BaseVideoCondition):
|
| 31 |
-
# latent_condition will concat to the input of network, along channel dim;
|
| 32 |
-
# cfg will make latent_condition all zero padding.
|
| 33 |
-
latent_condition: Optional[torch.Tensor] = None
|
| 34 |
-
latent_condition_sigma: Optional[torch.Tensor] = None
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
class LatentDiffusionDecoderModel(VideoDiffusionModel):
|
| 38 |
-
def __init__(self, config):
|
| 39 |
-
super().__init__(config)
|
| 40 |
-
"""
|
| 41 |
-
latent_corruptor: the corruption module is used to corrupt the latents. It add gaussian noise to the latents.
|
| 42 |
-
pixel_corruptor: the corruption module is used to corrupt the pixels. It apply gaussian blur kernel to pixels in a temporal consistent way.
|
| 43 |
-
tokenizer_corruptor: the corruption module is used to simulate tokenizer reconstruction errors.
|
| 44 |
-
|
| 45 |
-
diffusion decoder noise augmentation pipeline for continuous token condition model:
|
| 46 |
-
condition: GT_video [T, H, W]
|
| 47 |
-
-> tokenizer_corruptor~(8x8x8) encode -> latent_corruptor -> tokenizer_corruptor~(8x8x8) decode
|
| 48 |
-
-> pixel corruptor
|
| 49 |
-
-> tokenizer~(1x8x8) encode -> condition [T, H/8, W/8]
|
| 50 |
-
GT: GT_video [T, H, W] -> tokenizer~(1x8x8) -> x_t [T, H/8, W/8].
|
| 51 |
-
|
| 52 |
-
diffusion decoder noise augmentation pipeline for discrete token condition model:
|
| 53 |
-
condition: GT_video [T, H, W]
|
| 54 |
-
-> pixel corruptor
|
| 55 |
-
-> discrete tokenizer encode -> condition [T, T/8, H/16, W/16]
|
| 56 |
-
GT: GT_video [T, H, W] -> tokenizer~(8x8x8) -> x_t [T, T/8, H/8, W/8].
|
| 57 |
-
|
| 58 |
-
"""
|
| 59 |
-
self.latent_corruptor = lazy_instantiate(config.latent_corruptor)
|
| 60 |
-
self.pixel_corruptor = lazy_instantiate(config.pixel_corruptor)
|
| 61 |
-
self.tokenizer_corruptor = lazy_instantiate(config.tokenizer_corruptor)
|
| 62 |
-
|
| 63 |
-
if self.latent_corruptor:
|
| 64 |
-
self.latent_corruptor.to(**self.tensor_kwargs)
|
| 65 |
-
if self.pixel_corruptor:
|
| 66 |
-
self.pixel_corruptor.to(**self.tensor_kwargs)
|
| 67 |
-
|
| 68 |
-
if self.tokenizer_corruptor:
|
| 69 |
-
if hasattr(self.tokenizer_corruptor, "reset_dtype"):
|
| 70 |
-
self.tokenizer_corruptor.reset_dtype()
|
| 71 |
-
else:
|
| 72 |
-
assert self.pixel_corruptor is not None
|
| 73 |
-
|
| 74 |
-
self.diffusion_decoder_cond_sigma_low = config.diffusion_decoder_cond_sigma_low
|
| 75 |
-
self.diffusion_decoder_cond_sigma_high = config.diffusion_decoder_cond_sigma_high
|
| 76 |
-
self.diffusion_decoder_corrupt_prob = config.diffusion_decoder_corrupt_prob
|
| 77 |
-
if hasattr(config, "condition_on_tokenizer_corruptor_token"):
|
| 78 |
-
self.condition_on_tokenizer_corruptor_token = config.condition_on_tokenizer_corruptor_token
|
| 79 |
-
else:
|
| 80 |
-
self.condition_on_tokenizer_corruptor_token = False
|
| 81 |
-
|
| 82 |
-
def is_image_batch(self, data_batch: dict[str, Tensor]) -> bool:
|
| 83 |
-
"""We hanlde two types of data_batch. One comes from a joint_dataloader where "dataset_name" can be used to differenciate image_batch and video_batch.
|
| 84 |
-
Another comes from a dataloader which we by default assumes as video_data for video model training.
|
| 85 |
-
"""
|
| 86 |
-
is_image = self.input_image_key in data_batch
|
| 87 |
-
is_video = self.input_data_key in data_batch
|
| 88 |
-
assert (
|
| 89 |
-
is_image != is_video
|
| 90 |
-
), "Only one of the input_image_key or input_data_key should be present in the data_batch."
|
| 91 |
-
return is_image
|
| 92 |
-
|
| 93 |
-
def get_x0_fn_from_batch(
|
| 94 |
-
self,
|
| 95 |
-
data_batch: Dict,
|
| 96 |
-
guidance: float = 1.5,
|
| 97 |
-
is_negative_prompt: bool = False,
|
| 98 |
-
apply_corruptor: bool = True,
|
| 99 |
-
corrupt_sigma: float = 1.5,
|
| 100 |
-
preencode_condition: bool = False,
|
| 101 |
-
) -> Callable:
|
| 102 |
-
"""
|
| 103 |
-
Generates a callable function `x0_fn` based on the provided data batch and guidance factor.
|
| 104 |
-
|
| 105 |
-
This function first processes the input data batch through a conditioning workflow (`conditioner`) to obtain conditioned and unconditioned states. It then defines a nested function `x0_fn` which applies a denoising operation on an input `noise_x` at a given noise level `sigma` using both the conditioned and unconditioned states.
|
| 106 |
-
|
| 107 |
-
Args:
|
| 108 |
-
- data_batch (Dict): A batch of data used for conditioning. The format and content of this dictionary should align with the expectations of the `self.conditioner`
|
| 109 |
-
- guidance (float, optional): A scalar value that modulates the influence of the conditioned state relative to the unconditioned state in the output. Defaults to 1.5.
|
| 110 |
-
- is_negative_prompt (bool): use negative prompt t5 in uncondition if true
|
| 111 |
-
|
| 112 |
-
Returns:
|
| 113 |
-
- Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 predictoin
|
| 114 |
-
|
| 115 |
-
The returned function is suitable for use in scenarios where a denoised state is required based on both conditioned and unconditioned inputs, with an adjustable level of guidance influence.
|
| 116 |
-
"""
|
| 117 |
-
input_key = self.input_data_key # by default it is video key
|
| 118 |
-
# Latent state
|
| 119 |
-
raw_state = data_batch[input_key]
|
| 120 |
-
|
| 121 |
-
if self.condition_on_tokenizer_corruptor_token:
|
| 122 |
-
if preencode_condition:
|
| 123 |
-
latent_condition = raw_state.to(torch.int32).contiguous()
|
| 124 |
-
corrupted_pixel = self.tokenizer_corruptor.decode(latent_condition[:, 0])
|
| 125 |
-
else:
|
| 126 |
-
corrupted_pixel = (
|
| 127 |
-
self.pixel_corruptor(raw_state) if apply_corruptor and self.pixel_corruptor else raw_state
|
| 128 |
-
)
|
| 129 |
-
latent_condition = self.tokenizer_corruptor.encode(corrupted_pixel)
|
| 130 |
-
latent_condition = latent_condition[1] if isinstance(latent_condition, tuple) else latent_condition
|
| 131 |
-
corrupted_pixel = self.tokenizer_corruptor.decode(latent_condition)
|
| 132 |
-
latent_condition = latent_condition.unsqueeze(1)
|
| 133 |
-
else:
|
| 134 |
-
if preencode_condition:
|
| 135 |
-
latent_condition = raw_state
|
| 136 |
-
corrupted_pixel = self.decode(latent_condition)
|
| 137 |
-
else:
|
| 138 |
-
corrupted_pixel = (
|
| 139 |
-
self.pixel_corruptor(raw_state) if apply_corruptor and self.pixel_corruptor else raw_state
|
| 140 |
-
)
|
| 141 |
-
latent_condition = self.encode(corrupted_pixel).contiguous()
|
| 142 |
-
|
| 143 |
-
sigma = (
|
| 144 |
-
torch.rand((latent_condition.shape[0],)).to(**self.tensor_kwargs) * corrupt_sigma
|
| 145 |
-
) # small value to indicate clean video
|
| 146 |
-
_, _, _, c_noise_cond = self.scaling(sigma=sigma)
|
| 147 |
-
if corrupt_sigma != self.diffusion_decoder_cond_sigma_low and self.diffusion_decoder_corrupt_prob > 0:
|
| 148 |
-
noise = batch_mul(sigma, torch.randn_like(latent_condition))
|
| 149 |
-
latent_condition = latent_condition + noise
|
| 150 |
-
data_batch["latent_condition_sigma"] = batch_mul(torch.ones_like(latent_condition[:, 0:1, ::]), c_noise_cond)
|
| 151 |
-
data_batch["latent_condition"] = latent_condition
|
| 152 |
-
if is_negative_prompt:
|
| 153 |
-
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
|
| 154 |
-
else:
|
| 155 |
-
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
|
| 156 |
-
|
| 157 |
-
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
|
| 158 |
-
cond_x0 = self.denoise(noise_x, sigma, condition).x0
|
| 159 |
-
uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0
|
| 160 |
-
return cond_x0 + guidance * (cond_x0 - uncond_x0)
|
| 161 |
-
|
| 162 |
-
return x0_fn, corrupted_pixel
|
| 163 |
-
|
| 164 |
-
def generate_samples_from_batch(
|
| 165 |
-
self,
|
| 166 |
-
data_batch: Dict,
|
| 167 |
-
guidance: float = 1.5,
|
| 168 |
-
seed: int = 1,
|
| 169 |
-
state_shape: Tuple | None = None,
|
| 170 |
-
n_sample: int | None = None,
|
| 171 |
-
is_negative_prompt: bool = False,
|
| 172 |
-
num_steps: int = 35,
|
| 173 |
-
solver_option: COMMON_SOLVER_OPTIONS = "2ab",
|
| 174 |
-
sigma_min: float = 0.02,
|
| 175 |
-
apply_corruptor: bool = False,
|
| 176 |
-
return_recon_x: bool = False,
|
| 177 |
-
corrupt_sigma: float = 0.01,
|
| 178 |
-
preencode_condition: bool = False,
|
| 179 |
-
) -> Tensor:
|
| 180 |
-
"""
|
| 181 |
-
Generate samples from the batch. Based on given batch, it will automatically determine whether to generate image or video samples.
|
| 182 |
-
Args:
|
| 183 |
-
data_batch (dict): raw data batch draw from the training data loader.
|
| 184 |
-
iteration (int): Current iteration number.
|
| 185 |
-
guidance (float): guidance weights
|
| 186 |
-
seed (int): random seed
|
| 187 |
-
state_shape (tuple): shape of the state, default to self.state_shape if not provided
|
| 188 |
-
n_sample (int): number of samples to generate
|
| 189 |
-
is_negative_prompt (bool): use negative prompt t5 in uncondition if true
|
| 190 |
-
num_steps (int): number of steps for the diffusion process
|
| 191 |
-
solver_option (str): differential equation solver option, default to "2ab"~(mulitstep solver)
|
| 192 |
-
preencode_condition (bool): use pre-computed condition if true, save tokenizer's inference time memory/
|
| 193 |
-
"""
|
| 194 |
-
if not preencode_condition:
|
| 195 |
-
self._normalize_video_databatch_inplace(data_batch)
|
| 196 |
-
self._augment_image_dim_inplace(data_batch)
|
| 197 |
-
is_image_batch = False
|
| 198 |
-
if n_sample is None:
|
| 199 |
-
input_key = self.input_image_key if is_image_batch else self.input_data_key
|
| 200 |
-
n_sample = data_batch[input_key].shape[0]
|
| 201 |
-
if state_shape is None:
|
| 202 |
-
if is_image_batch:
|
| 203 |
-
state_shape = (self.state_shape[0], 1, *self.state_shape[2:]) # C,T,H,W
|
| 204 |
-
|
| 205 |
-
x0_fn, recon_x = self.get_x0_fn_from_batch(
|
| 206 |
-
data_batch,
|
| 207 |
-
guidance,
|
| 208 |
-
is_negative_prompt=is_negative_prompt,
|
| 209 |
-
apply_corruptor=apply_corruptor,
|
| 210 |
-
corrupt_sigma=corrupt_sigma,
|
| 211 |
-
preencode_condition=preencode_condition,
|
| 212 |
-
)
|
| 213 |
-
generator = torch.Generator(device=self.tensor_kwargs["device"])
|
| 214 |
-
generator.manual_seed(seed)
|
| 215 |
-
x_sigma_max = (
|
| 216 |
-
torch.randn(n_sample, *state_shape, **self.tensor_kwargs, generator=generator) * self.sde.sigma_max
|
| 217 |
-
)
|
| 218 |
-
|
| 219 |
-
samples = self.sampler(
|
| 220 |
-
x0_fn,
|
| 221 |
-
x_sigma_max,
|
| 222 |
-
num_steps=num_steps,
|
| 223 |
-
sigma_min=sigma_min,
|
| 224 |
-
sigma_max=self.sde.sigma_max,
|
| 225 |
-
solver_option=solver_option,
|
| 226 |
-
)
|
| 227 |
-
|
| 228 |
-
if return_recon_x:
|
| 229 |
-
return samples, recon_x
|
| 230 |
-
else:
|
| 231 |
-
return samples
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/77c3f88ca85134e689203e9ac157673c42edb0b3
DELETED
|
@@ -1,131 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import argparse
|
| 17 |
-
|
| 18 |
-
from .misc import misc
|
| 19 |
-
import torch
|
| 20 |
-
from peft import PeftModel
|
| 21 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 22 |
-
|
| 23 |
-
from .guardrail_aegis_categories import UNSAFE_CATEGORIES
|
| 24 |
-
from .guardrail_common_core import ContentSafetyGuardrail, GuardrailRunner
|
| 25 |
-
from .log import log
|
| 26 |
-
|
| 27 |
-
SAFE = misc.Color.green("SAFE")
|
| 28 |
-
UNSAFE = misc.Color.red("UNSAFE")
|
| 29 |
-
|
| 30 |
-
DEFAULT_CHECKPOINT_DIR = "checkpoints/Cosmos-1.0-Guardrail/aegis"
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
class Aegis(ContentSafetyGuardrail):
|
| 34 |
-
def __init__(
|
| 35 |
-
self,
|
| 36 |
-
checkpoint_dir: str = DEFAULT_CHECKPOINT_DIR,
|
| 37 |
-
device="cuda" if torch.cuda.is_available() else "cpu",
|
| 38 |
-
) -> None:
|
| 39 |
-
self.checkpoint_dir = checkpoint_dir
|
| 40 |
-
self.device = device
|
| 41 |
-
self.dtype = torch.bfloat16
|
| 42 |
-
base_model_id = "meta-llama/LlamaGuard-7b"
|
| 43 |
-
aegis_adapter = "nvidia/Aegis-AI-Content-Safety-LlamaGuard-Defensive-1.0"
|
| 44 |
-
base_model = AutoModelForCausalLM.from_pretrained(base_model_id, cache_dir=self.checkpoint_dir)
|
| 45 |
-
self.tokenizer = AutoTokenizer.from_pretrained(base_model_id, cache_dir=self.checkpoint_dir)
|
| 46 |
-
self.model = PeftModel.from_pretrained(base_model, aegis_adapter, cache_dir=self.checkpoint_dir)
|
| 47 |
-
self.model.to(self.device, dtype=self.dtype).eval()
|
| 48 |
-
|
| 49 |
-
def get_moderation_prompt(self, user_prompt: str) -> str:
|
| 50 |
-
"""Create the moderation prompt for the Aegis model."""
|
| 51 |
-
full_prompt = f"""[INST] Task: Check if there is unsafe content in 'User' messages in conversations according our safety policy with the below categories.
|
| 52 |
-
|
| 53 |
-
<BEGIN UNSAFE CONTENT CATEGORIES>
|
| 54 |
-
{"".join([f"{category['instruction']}" for category in UNSAFE_CATEGORIES])}
|
| 55 |
-
<END UNSAFE CONTENT CATEGORIES>
|
| 56 |
-
|
| 57 |
-
<BEGIN CONVERSATION>
|
| 58 |
-
|
| 59 |
-
"""
|
| 60 |
-
full_prompt += f"User: {user_prompt}\n\n"
|
| 61 |
-
full_prompt += """<END CONVERSATION>
|
| 62 |
-
|
| 63 |
-
Provide your safety assessment for User in the above conversation:
|
| 64 |
-
- First line must read 'safe' or 'unsafe'.
|
| 65 |
-
- If unsafe, a second line must include a comma-separated list of violated categories. [/INST]"""
|
| 66 |
-
|
| 67 |
-
return full_prompt
|
| 68 |
-
|
| 69 |
-
def get_aegis_block_message(self, moderation_output: str) -> str:
|
| 70 |
-
"""Extract the blocked category and reason from the Aegis model output."""
|
| 71 |
-
block_msg = "Prompt blocked by Aegis."
|
| 72 |
-
try:
|
| 73 |
-
# Extract blocked category and reason
|
| 74 |
-
if len(moderation_output.split("\n")) >= 2:
|
| 75 |
-
moderation_output_list = moderation_output.split("\n")
|
| 76 |
-
blocked_category = int(moderation_output_list[1].lstrip("O")) - 1
|
| 77 |
-
if 0 <= blocked_category < len(UNSAFE_CATEGORIES):
|
| 78 |
-
blocked_reason = UNSAFE_CATEGORIES[blocked_category]["blocked_reason"]
|
| 79 |
-
blocked_category_name = UNSAFE_CATEGORIES[blocked_category]["category"]
|
| 80 |
-
block_msg = f"{blocked_category_name}: {blocked_reason}"
|
| 81 |
-
except Exception as e:
|
| 82 |
-
log.warning(f"Unable to extract blocked category and reason from Aegis output: {e}")
|
| 83 |
-
return block_msg
|
| 84 |
-
|
| 85 |
-
def filter_aegis_output(self, prompt: str) -> tuple[bool, str]:
|
| 86 |
-
"""Filter the Aegis model output and return the safety status and message."""
|
| 87 |
-
full_prompt = self.get_moderation_prompt(prompt)
|
| 88 |
-
inputs = self.tokenizer([full_prompt], add_special_tokens=False, return_tensors="pt").to(self.device)
|
| 89 |
-
output = self.model.generate(**inputs, max_new_tokens=100, pad_token_id=self.tokenizer.eos_token_id)
|
| 90 |
-
prompt_len = inputs["input_ids"].shape[-1]
|
| 91 |
-
moderation_output = self.tokenizer.decode(output[0][prompt_len:], skip_special_tokens=True)
|
| 92 |
-
|
| 93 |
-
if "unsafe" in moderation_output.lower():
|
| 94 |
-
block_msg = self.get_aegis_block_message(moderation_output)
|
| 95 |
-
return False, block_msg
|
| 96 |
-
else:
|
| 97 |
-
return True, ""
|
| 98 |
-
|
| 99 |
-
def is_safe(self, prompt: str) -> tuple[bool, str]:
|
| 100 |
-
"""Check if the input prompt is safe according to the Aegis model."""
|
| 101 |
-
try:
|
| 102 |
-
return self.filter_aegis_output(prompt)
|
| 103 |
-
except Exception as e:
|
| 104 |
-
log.error(f"Unexpected error occurred when running Aegis guardrail: {e}")
|
| 105 |
-
return True, "Unexpected error occurred when running Aegis guardrail."
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
def parse_args():
|
| 109 |
-
parser = argparse.ArgumentParser()
|
| 110 |
-
parser.add_argument("--prompt", type=str, required=True, help="Input prompt")
|
| 111 |
-
parser.add_argument(
|
| 112 |
-
"--checkpoint_dir",
|
| 113 |
-
type=str,
|
| 114 |
-
help="Path to the Aegis checkpoint folder",
|
| 115 |
-
default=DEFAULT_CHECKPOINT_DIR,
|
| 116 |
-
)
|
| 117 |
-
return parser.parse_args()
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
def main(args):
|
| 121 |
-
aegis = Aegis(checkpoint_dir=args.checkpoint_dir)
|
| 122 |
-
runner = GuardrailRunner(safety_models=[aegis])
|
| 123 |
-
with misc.timer("aegis safety check"):
|
| 124 |
-
safety, message = runner.run_safety_check(args.prompt)
|
| 125 |
-
log.info(f"Input is: {'SAFE' if safety else 'UNSAFE'}")
|
| 126 |
-
log.info(f"Message: {message}") if not safety else None
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
if __name__ == "__main__":
|
| 130 |
-
args = parse_args()
|
| 131 |
-
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/7b5c6e553583e8047a37aea5e4925df659426ea2
DELETED
|
@@ -1,196 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import importlib
|
| 17 |
-
import os
|
| 18 |
-
import pkgutil
|
| 19 |
-
import sys
|
| 20 |
-
from dataclasses import fields as dataclass_fields
|
| 21 |
-
from dataclasses import is_dataclass
|
| 22 |
-
from typing import Any, Dict, Optional
|
| 23 |
-
|
| 24 |
-
import attr
|
| 25 |
-
import attrs
|
| 26 |
-
from hydra import compose, initialize
|
| 27 |
-
from hydra.core.config_store import ConfigStore
|
| 28 |
-
from omegaconf import DictConfig, OmegaConf
|
| 29 |
-
|
| 30 |
-
from .log import log
|
| 31 |
-
from .config import Config
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def is_attrs_or_dataclass(obj) -> bool:
|
| 35 |
-
"""
|
| 36 |
-
Check if the object is an instance of an attrs class or a dataclass.
|
| 37 |
-
|
| 38 |
-
Args:
|
| 39 |
-
obj: The object to check.
|
| 40 |
-
|
| 41 |
-
Returns:
|
| 42 |
-
bool: True if the object is an instance of an attrs class or a dataclass, False otherwise.
|
| 43 |
-
"""
|
| 44 |
-
return is_dataclass(obj) or attr.has(type(obj))
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
def get_fields(obj):
|
| 48 |
-
"""
|
| 49 |
-
Get the fields of an attrs class or a dataclass.
|
| 50 |
-
|
| 51 |
-
Args:
|
| 52 |
-
obj: The object to get fields from. Must be an instance of an attrs class or a dataclass.
|
| 53 |
-
|
| 54 |
-
Returns:
|
| 55 |
-
list: A list of field names.
|
| 56 |
-
|
| 57 |
-
Raises:
|
| 58 |
-
ValueError: If the object is neither an attrs class nor a dataclass.
|
| 59 |
-
"""
|
| 60 |
-
if is_dataclass(obj):
|
| 61 |
-
return [field.name for field in dataclass_fields(obj)]
|
| 62 |
-
elif attr.has(type(obj)):
|
| 63 |
-
return [field.name for field in attr.fields(type(obj))]
|
| 64 |
-
else:
|
| 65 |
-
raise ValueError("The object is neither an attrs class nor a dataclass.")
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
def override(config: Config, overrides: Optional[list[str]] = None) -> Config:
|
| 69 |
-
"""
|
| 70 |
-
:param config: the instance of class `Config` (usually from `make_config`)
|
| 71 |
-
:param overrides: list of overrides for config
|
| 72 |
-
:return: the composed instance of class `Config`
|
| 73 |
-
"""
|
| 74 |
-
# Store the class of the config for reconstruction after overriding.
|
| 75 |
-
# config_class = type(config)
|
| 76 |
-
|
| 77 |
-
# Convert Config object to a DictConfig object
|
| 78 |
-
config_dict = attrs.asdict(config)
|
| 79 |
-
config_omegaconf = DictConfig(content=config_dict, flags={"allow_objects": True})
|
| 80 |
-
# Enforce "--" separator between the script arguments and overriding configs.
|
| 81 |
-
if overrides:
|
| 82 |
-
if overrides[0] != "--":
|
| 83 |
-
raise ValueError('Hydra config overrides must be separated with a "--" token.')
|
| 84 |
-
overrides = overrides[1:]
|
| 85 |
-
# Use Hydra to handle overrides
|
| 86 |
-
cs = ConfigStore.instance()
|
| 87 |
-
cs.store(name="config", node=config_omegaconf)
|
| 88 |
-
with initialize(version_base=None):
|
| 89 |
-
config_omegaconf = compose(config_name="config", overrides=overrides)
|
| 90 |
-
OmegaConf.resolve(config_omegaconf)
|
| 91 |
-
|
| 92 |
-
def config_from_dict(ref_instance: Any, kwargs: Any) -> Any:
|
| 93 |
-
"""
|
| 94 |
-
Construct an instance of the same type as ref_instance using the provided dictionary or data or unstructured data
|
| 95 |
-
|
| 96 |
-
Args:
|
| 97 |
-
ref_instance: The reference instance to determine the type and fields when needed
|
| 98 |
-
kwargs: A dictionary of keyword arguments to use for constructing the new instance or primitive data or unstructured data
|
| 99 |
-
|
| 100 |
-
Returns:
|
| 101 |
-
Any: A new instance of the same type as ref_instance constructed using the provided kwargs or the primitive data or unstructured data
|
| 102 |
-
|
| 103 |
-
Raises:
|
| 104 |
-
AssertionError: If the fields do not match or if extra keys are found.
|
| 105 |
-
Exception: If there is an error constructing the new instance.
|
| 106 |
-
"""
|
| 107 |
-
is_type = is_attrs_or_dataclass(ref_instance)
|
| 108 |
-
if not is_type:
|
| 109 |
-
return kwargs
|
| 110 |
-
else:
|
| 111 |
-
ref_fields = set(get_fields(ref_instance))
|
| 112 |
-
assert isinstance(kwargs, dict) or isinstance(
|
| 113 |
-
kwargs, DictConfig
|
| 114 |
-
), "kwargs must be a dictionary or a DictConfig"
|
| 115 |
-
keys = set(kwargs.keys())
|
| 116 |
-
|
| 117 |
-
# ref_fields must equal to or include all keys
|
| 118 |
-
extra_keys = keys - ref_fields
|
| 119 |
-
assert ref_fields == keys or keys.issubset(
|
| 120 |
-
ref_fields
|
| 121 |
-
), f"Fields mismatch: {ref_fields} != {keys}. Extra keys found: {extra_keys} \n \t when constructing {type(ref_instance)} with {keys}"
|
| 122 |
-
|
| 123 |
-
resolved_kwargs: Dict[str, Any] = {}
|
| 124 |
-
for f in keys:
|
| 125 |
-
resolved_kwargs[f] = config_from_dict(getattr(ref_instance, f), kwargs[f])
|
| 126 |
-
try:
|
| 127 |
-
new_instance = type(ref_instance)(**resolved_kwargs)
|
| 128 |
-
except Exception as e:
|
| 129 |
-
log.error(f"Error when constructing {type(ref_instance)} with {resolved_kwargs}")
|
| 130 |
-
log.error(e)
|
| 131 |
-
raise e
|
| 132 |
-
return new_instance
|
| 133 |
-
|
| 134 |
-
config = config_from_dict(config, config_omegaconf)
|
| 135 |
-
|
| 136 |
-
return config
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
def get_config_module(config_file: str) -> str:
|
| 140 |
-
if not config_file.endswith(".py"):
|
| 141 |
-
log.error("Config file cannot be specified as module.")
|
| 142 |
-
log.error("Please provide the path to the Python config file (relative to the Cosmos root).")
|
| 143 |
-
assert os.path.isfile(config_file), f"Cosmos config file ({config_file}) not found."
|
| 144 |
-
# Convert to importable module format.
|
| 145 |
-
config_module = config_file.replace("/", ".").replace(".py", "")
|
| 146 |
-
return config_module
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
def import_all_modules_from_package(package_path: str, reload: bool = False, skip_underscore: bool = True) -> None:
|
| 150 |
-
"""
|
| 151 |
-
Import all modules from the specified package path recursively.
|
| 152 |
-
|
| 153 |
-
This function is typically used in conjunction with Hydra to ensure that all modules
|
| 154 |
-
within a specified package are imported, which is necessary for registering configurations.
|
| 155 |
-
|
| 156 |
-
Example usage:
|
| 157 |
-
```python
|
| 158 |
-
import_all_modules_from_package("cosmos1.models.diffusion.config.inference", reload=True, skip_underscore=False)
|
| 159 |
-
```
|
| 160 |
-
|
| 161 |
-
Args:
|
| 162 |
-
package_path (str): The dotted path to the package from which to import all modules.
|
| 163 |
-
reload (bool): Flag to determine whether to reload modules if they're already imported.
|
| 164 |
-
skip_underscore (bool): If True, skips importing modules that start with an underscore.
|
| 165 |
-
"""
|
| 166 |
-
log.debug(f"{'Reloading' if reload else 'Importing'} all modules from package {package_path}")
|
| 167 |
-
package = importlib.import_module(package_path)
|
| 168 |
-
package_directory = package.__path__
|
| 169 |
-
|
| 170 |
-
def import_modules_recursively(directory: str, prefix: str) -> None:
|
| 171 |
-
"""
|
| 172 |
-
Recursively imports or reloads all modules in the given directory.
|
| 173 |
-
|
| 174 |
-
Args:
|
| 175 |
-
directory (str): The file system path to the current package directory.
|
| 176 |
-
prefix (str): The module prefix (e.g., 'cosmos1.models.diffusion.config').
|
| 177 |
-
"""
|
| 178 |
-
for _, module_name, is_pkg in pkgutil.iter_modules([directory]):
|
| 179 |
-
if skip_underscore and module_name.startswith("_"):
|
| 180 |
-
log.debug(f"Skipping module {module_name} as it starts with an underscore")
|
| 181 |
-
continue
|
| 182 |
-
|
| 183 |
-
full_module_name = f"{prefix}.{module_name}"
|
| 184 |
-
log.debug(f"{'Reloading' if reload else 'Importing'} module {full_module_name}")
|
| 185 |
-
|
| 186 |
-
if full_module_name in sys.modules and reload:
|
| 187 |
-
importlib.reload(sys.modules[full_module_name])
|
| 188 |
-
else:
|
| 189 |
-
importlib.import_module(full_module_name)
|
| 190 |
-
|
| 191 |
-
if is_pkg:
|
| 192 |
-
sub_package_directory = os.path.join(directory, module_name)
|
| 193 |
-
import_modules_recursively(sub_package_directory, full_module_name)
|
| 194 |
-
|
| 195 |
-
for directory in package_directory:
|
| 196 |
-
import_modules_recursively(directory, package_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/7bebf08cef2869c85553980bf81851635dd74f7e
DELETED
|
@@ -1,108 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from typing import List, Tuple, Union
|
| 17 |
-
|
| 18 |
-
import torch
|
| 19 |
-
import transformers
|
| 20 |
-
from transformers import T5EncoderModel, T5TokenizerFast
|
| 21 |
-
|
| 22 |
-
from .log import log
|
| 23 |
-
|
| 24 |
-
transformers.logging.set_verbosity_error()
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
class CosmosT5TextEncoder(torch.nn.Module):
|
| 28 |
-
"""Handles T5 text encoding operations."""
|
| 29 |
-
|
| 30 |
-
def __init__(self, model_name: str = "google-t5/t5-11b", device: str = "cuda", cache_dir: str = "~/.cache"):
|
| 31 |
-
"""Initializes the T5 tokenizer and encoder.
|
| 32 |
-
|
| 33 |
-
Args:
|
| 34 |
-
model_name: The name of the T5 model to use.
|
| 35 |
-
device: The device to use for computations.
|
| 36 |
-
"""
|
| 37 |
-
super().__init__()
|
| 38 |
-
try:
|
| 39 |
-
self.tokenizer = T5TokenizerFast.from_pretrained(model_name, cache_dir=cache_dir)
|
| 40 |
-
self.text_encoder = T5EncoderModel.from_pretrained(model_name, cache_dir=cache_dir).to(device)
|
| 41 |
-
except Exception as e:
|
| 42 |
-
log.warning(f"Failed to load T5 model using cache_dir '{cache_dir}', falling back to default location: {e}")
|
| 43 |
-
self.tokenizer = T5TokenizerFast.from_pretrained(model_name)
|
| 44 |
-
self.text_encoder = T5EncoderModel.from_pretrained(model_name).to(device)
|
| 45 |
-
self.text_encoder.eval()
|
| 46 |
-
self.device = device
|
| 47 |
-
|
| 48 |
-
@torch.inference_mode()
|
| 49 |
-
def encode_prompts(
|
| 50 |
-
self, prompts: Union[str, List[str]], max_length: int = 512
|
| 51 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 52 |
-
"""Encodes text prompts into hidden state representations using a T5 encoder.
|
| 53 |
-
|
| 54 |
-
This function tokenizes the input prompts, processes them through a T5 text encoder,
|
| 55 |
-
and returns the last hidden states. The encoded outputs beyond the actual sequence
|
| 56 |
-
length are zero-padded. All prompts in a batch are padded to max_length.
|
| 57 |
-
|
| 58 |
-
Args:
|
| 59 |
-
prompts: Input text to encode. Can be a single string or a list of strings.
|
| 60 |
-
max_length: Maximum sequence length for tokenization and padding. Longer
|
| 61 |
-
sequences will be truncated. Defaults to 512.
|
| 62 |
-
return_mask: If True, returns the attention mask along with encoded text.
|
| 63 |
-
Defaults to False.
|
| 64 |
-
|
| 65 |
-
Returns:
|
| 66 |
-
If return_mask is False:
|
| 67 |
-
torch.Tensor: Encoded text embeddings of shape (batch_size, max_length, hidden_size).
|
| 68 |
-
If return_mask is True:
|
| 69 |
-
tuple[torch.Tensor, torch.Tensor]: A tuple containing:
|
| 70 |
-
- Encoded text embeddings of shape (batch_size, max_length, hidden_size)
|
| 71 |
-
- Attention mask of shape (batch_size, max_length) as boolean tensor
|
| 72 |
-
|
| 73 |
-
Raises:
|
| 74 |
-
ValueError: If the input prompts list is empty.
|
| 75 |
-
|
| 76 |
-
Example:
|
| 77 |
-
>>> encoder = CosmosT5TextEncoder()
|
| 78 |
-
>>> prompts = ["Hello world", "Another example"]
|
| 79 |
-
>>> embeddings = encoder.encode_prompts(prompts, max_length=128)
|
| 80 |
-
"""
|
| 81 |
-
if isinstance(prompts, str):
|
| 82 |
-
prompts = [prompts]
|
| 83 |
-
|
| 84 |
-
if not prompts:
|
| 85 |
-
raise ValueError("The input prompt list is empty.")
|
| 86 |
-
|
| 87 |
-
batch_encoding = self.tokenizer.batch_encode_plus(
|
| 88 |
-
prompts,
|
| 89 |
-
return_tensors="pt",
|
| 90 |
-
truncation=True,
|
| 91 |
-
padding="max_length",
|
| 92 |
-
max_length=max_length,
|
| 93 |
-
return_length=True,
|
| 94 |
-
return_offsets_mapping=False,
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
input_ids = batch_encoding.input_ids.to(self.device)
|
| 98 |
-
attn_mask = batch_encoding.attention_mask.to(self.device)
|
| 99 |
-
|
| 100 |
-
outputs = self.text_encoder(input_ids=input_ids, attention_mask=attn_mask)
|
| 101 |
-
|
| 102 |
-
encoded_text = outputs.last_hidden_state
|
| 103 |
-
lengths = attn_mask.sum(dim=1).cpu()
|
| 104 |
-
|
| 105 |
-
for batch_id in range(encoded_text.shape[0]):
|
| 106 |
-
encoded_text[batch_id][lengths[batch_id] :] = 0
|
| 107 |
-
|
| 108 |
-
return encoded_text, attn_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/7c09eb428a97927d5f0407e2328a3f43afbf38fc
DELETED
|
@@ -1,72 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import pydoc
|
| 17 |
-
from typing import Any
|
| 18 |
-
|
| 19 |
-
"""
|
| 20 |
-
`locate` provide ways to map a string (typically found
|
| 21 |
-
in config files) to callable objects.
|
| 22 |
-
"""
|
| 23 |
-
|
| 24 |
-
__all__ = ["locate"]
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def _convert_target_to_string(t: Any) -> str:
|
| 28 |
-
"""
|
| 29 |
-
Inverse of ``locate()``.
|
| 30 |
-
|
| 31 |
-
Args:
|
| 32 |
-
t: any object with ``__module__`` and ``__qualname__``
|
| 33 |
-
"""
|
| 34 |
-
module, qualname = t.__module__, t.__qualname__
|
| 35 |
-
|
| 36 |
-
# Compress the path to this object, e.g. ``module.submodule._impl.class``
|
| 37 |
-
# may become ``module.submodule.class``, if the later also resolves to the same
|
| 38 |
-
# object. This simplifies the string, and also is less affected by moving the
|
| 39 |
-
# class implementation.
|
| 40 |
-
module_parts = module.split(".")
|
| 41 |
-
for k in range(1, len(module_parts)):
|
| 42 |
-
prefix = ".".join(module_parts[:k])
|
| 43 |
-
candidate = f"{prefix}.{qualname}"
|
| 44 |
-
try:
|
| 45 |
-
if locate(candidate) is t:
|
| 46 |
-
return candidate
|
| 47 |
-
except ImportError:
|
| 48 |
-
pass
|
| 49 |
-
return f"{module}.{qualname}"
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def locate(name: str) -> Any:
|
| 53 |
-
"""
|
| 54 |
-
Locate and return an object ``x`` using an input string ``{x.__module__}.{x.__qualname__}``,
|
| 55 |
-
such as "module.submodule.class_name".
|
| 56 |
-
|
| 57 |
-
Raise Exception if it cannot be found.
|
| 58 |
-
"""
|
| 59 |
-
obj = pydoc.locate(name)
|
| 60 |
-
|
| 61 |
-
# Some cases (e.g. torch.optim.sgd.SGD) not handled correctly
|
| 62 |
-
# by pydoc.locate. Try a private function from hydra.
|
| 63 |
-
if obj is None:
|
| 64 |
-
try:
|
| 65 |
-
# from hydra.utils import get_method - will print many errors
|
| 66 |
-
from hydra.utils import _locate
|
| 67 |
-
except ImportError as e:
|
| 68 |
-
raise ImportError(f"Cannot dynamically locate object {name}!") from e
|
| 69 |
-
else:
|
| 70 |
-
obj = _locate(name) # it raises if fails
|
| 71 |
-
|
| 72 |
-
return obj
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/859eb6498143e5b063dbc888dca7748a07cfda9d
DELETED
|
@@ -1,45 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import os
|
| 17 |
-
import re
|
| 18 |
-
|
| 19 |
-
from .log import log
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def read_keyword_list_from_dir(folder_path: str) -> list[str]:
|
| 23 |
-
"""Read keyword list from all files in a folder."""
|
| 24 |
-
output_list = []
|
| 25 |
-
file_list = []
|
| 26 |
-
# Get list of files in the folder
|
| 27 |
-
for file in os.listdir(folder_path):
|
| 28 |
-
if os.path.isfile(os.path.join(folder_path, file)):
|
| 29 |
-
file_list.append(file)
|
| 30 |
-
|
| 31 |
-
# Process each file
|
| 32 |
-
for file in file_list:
|
| 33 |
-
file_path = os.path.join(folder_path, file)
|
| 34 |
-
try:
|
| 35 |
-
with open(file_path, "r") as f:
|
| 36 |
-
output_list.extend([line.strip() for line in f.readlines()])
|
| 37 |
-
except Exception as e:
|
| 38 |
-
log.error(f"Error reading file {file}: {str(e)}")
|
| 39 |
-
|
| 40 |
-
return output_list
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
def to_ascii(prompt: str) -> str:
|
| 44 |
-
"""Convert prompt to ASCII."""
|
| 45 |
-
return re.sub(r"[^\x00-\x7F]+", " ", prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/8929f3a211707ad09f7c25b6b6e305360a42d6be
DELETED
|
@@ -1,358 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import gc
|
| 17 |
-
import os
|
| 18 |
-
from abc import ABC
|
| 19 |
-
from typing import Any
|
| 20 |
-
|
| 21 |
-
import numpy as np
|
| 22 |
-
import torch
|
| 23 |
-
|
| 24 |
-
from .t5_text_encoder import CosmosT5TextEncoder
|
| 25 |
-
from .guardrail_common_presets import presets as guardrail_presets
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
class BaseWorldGenerationPipeline(ABC):
|
| 29 |
-
def __init__(
|
| 30 |
-
self,
|
| 31 |
-
inference_type: str | None = None,
|
| 32 |
-
checkpoint_dir: str | None = None,
|
| 33 |
-
checkpoint_name: str | None = None,
|
| 34 |
-
has_text_input: bool = False,
|
| 35 |
-
offload_network: bool = False,
|
| 36 |
-
offload_tokenizer: bool = False,
|
| 37 |
-
offload_text_encoder_model: bool = False,
|
| 38 |
-
offload_guardrail_models: bool = False,
|
| 39 |
-
):
|
| 40 |
-
"""Initialize base world generation pipeline.
|
| 41 |
-
|
| 42 |
-
This abstract base class provides core functionality for world generation models including:
|
| 43 |
-
- Model loading and initialization
|
| 44 |
-
- Text encoding and embedding
|
| 45 |
-
- Safety checks and content filtering
|
| 46 |
-
- Memory management through model offloading
|
| 47 |
-
|
| 48 |
-
Args:
|
| 49 |
-
inference_type: The type of inference pipeline ("text2world" or "video2world")
|
| 50 |
-
checkpoint_dir: Root directory containing model checkpoints
|
| 51 |
-
checkpoint_name: Name of the specific checkpoint file to load
|
| 52 |
-
has_text_input: Whether the pipeline takes text input for world generation
|
| 53 |
-
offload_network: If True, moves main model to CPU after inference
|
| 54 |
-
offload_tokenizer: If True, moves tokenizer to CPU after use
|
| 55 |
-
offload_text_encoder_model: If True, moves T5 encoder to CPU after encoding
|
| 56 |
-
offload_guardrail_models: If True, moves safety models to CPU after checks
|
| 57 |
-
"""
|
| 58 |
-
self.inference_type = inference_type
|
| 59 |
-
self.checkpoint_dir = checkpoint_dir
|
| 60 |
-
self.checkpoint_name = checkpoint_name
|
| 61 |
-
self.guardrail_dir = "Cosmos-1.0-Guardrail"
|
| 62 |
-
self.has_text_input = has_text_input
|
| 63 |
-
|
| 64 |
-
# Add offloading flags
|
| 65 |
-
self.offload_network = offload_network
|
| 66 |
-
self.offload_tokenizer = offload_tokenizer
|
| 67 |
-
self.offload_text_encoder_model = offload_text_encoder_model
|
| 68 |
-
self.offload_guardrail_models = offload_guardrail_models
|
| 69 |
-
|
| 70 |
-
# Initialize model instances
|
| 71 |
-
self.text_guardrail = None
|
| 72 |
-
self.video_guardrail = None
|
| 73 |
-
self.text_encoder = None
|
| 74 |
-
self.model = None
|
| 75 |
-
|
| 76 |
-
self._load_model()
|
| 77 |
-
|
| 78 |
-
if not self.offload_text_encoder_model:
|
| 79 |
-
self._load_text_encoder_model()
|
| 80 |
-
if not self.offload_guardrail_models:
|
| 81 |
-
if self.has_text_input:
|
| 82 |
-
self._load_text_guardrail()
|
| 83 |
-
self._load_video_guardrail()
|
| 84 |
-
if not self.offload_network:
|
| 85 |
-
self._load_network()
|
| 86 |
-
if not self.offload_tokenizer:
|
| 87 |
-
self._load_tokenizer()
|
| 88 |
-
|
| 89 |
-
def _load_tokenizer(self):
|
| 90 |
-
pass
|
| 91 |
-
|
| 92 |
-
def _load_network(self):
|
| 93 |
-
pass
|
| 94 |
-
|
| 95 |
-
def _load_model(self, checkpoint_name: str) -> Any:
|
| 96 |
-
"""Load the world generation model from a checkpoint.
|
| 97 |
-
|
| 98 |
-
This abstract method must be implemented by subclasses to load their specific
|
| 99 |
-
model architecture and weights.
|
| 100 |
-
|
| 101 |
-
Args:
|
| 102 |
-
checkpoint_name: Path to the model checkpoint file
|
| 103 |
-
|
| 104 |
-
Returns:
|
| 105 |
-
The loaded model instance
|
| 106 |
-
|
| 107 |
-
Raises:
|
| 108 |
-
NotImplementedError: Must be implemented by subclasses
|
| 109 |
-
"""
|
| 110 |
-
pass
|
| 111 |
-
|
| 112 |
-
def _load_text_encoder_model(self):
|
| 113 |
-
"""Load the T5 text encoder model.
|
| 114 |
-
|
| 115 |
-
Initializes and loads the T5 encoder model used for converting text prompts
|
| 116 |
-
into embeddings that condition the world generation model.
|
| 117 |
-
|
| 118 |
-
Returns:
|
| 119 |
-
Loaded T5 text encoder model instance
|
| 120 |
-
"""
|
| 121 |
-
self.text_encoder = CosmosT5TextEncoder(cache_dir=self.checkpoint_dir)
|
| 122 |
-
|
| 123 |
-
def _load_text_guardrail(self):
|
| 124 |
-
"""Load text safety classifier models.
|
| 125 |
-
|
| 126 |
-
Initializes models used for checking input prompts against safety policies.
|
| 127 |
-
Models are loaded from the specified guardrail directory.
|
| 128 |
-
"""
|
| 129 |
-
self.text_guardrail = guardrail_presets.create_text_guardrail_runner(
|
| 130 |
-
checkpoint_dir=os.path.join(self.checkpoint_dir, self.guardrail_dir)
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
def _load_video_guardrail(self):
|
| 134 |
-
"""Load video safety classifier models.
|
| 135 |
-
|
| 136 |
-
Initializes models used for validating generated video content against
|
| 137 |
-
safety policies. Models are loaded from the specified guardrail directory.
|
| 138 |
-
"""
|
| 139 |
-
self.video_guardrail = guardrail_presets.create_video_guardrail_runner(
|
| 140 |
-
checkpoint_dir=os.path.join(self.checkpoint_dir, self.guardrail_dir)
|
| 141 |
-
)
|
| 142 |
-
|
| 143 |
-
def _offload_network(self):
|
| 144 |
-
if self.model.model:
|
| 145 |
-
del self.model.model
|
| 146 |
-
self.model.model = None
|
| 147 |
-
gc.collect()
|
| 148 |
-
torch.cuda.empty_cache()
|
| 149 |
-
|
| 150 |
-
def _offload_tokenizer(self):
|
| 151 |
-
if self.model.tokenizer:
|
| 152 |
-
del self.model.tokenizer
|
| 153 |
-
self.model.tokenizer = None
|
| 154 |
-
gc.collect()
|
| 155 |
-
torch.cuda.empty_cache()
|
| 156 |
-
|
| 157 |
-
def _offload_guardrail_models(self):
|
| 158 |
-
"""Offload safety classifier models to reduce memory usage.
|
| 159 |
-
|
| 160 |
-
Moves safety models to CPU and clears GPU memory if they are no longer needed.
|
| 161 |
-
This helps manage memory when processing multiple inputs sequentially.
|
| 162 |
-
"""
|
| 163 |
-
if self.text_guardrail:
|
| 164 |
-
del self.text_guardrail
|
| 165 |
-
self.text_guardrail = None
|
| 166 |
-
if self.video_guardrail:
|
| 167 |
-
del self.video_guardrail
|
| 168 |
-
self.video_guardrail = None
|
| 169 |
-
gc.collect()
|
| 170 |
-
torch.cuda.empty_cache()
|
| 171 |
-
|
| 172 |
-
def _offload_text_encoder_model(self):
|
| 173 |
-
"""Offload T5 text encoder to reduce memory usage.
|
| 174 |
-
|
| 175 |
-
Moves the T5 encoder to CPU and clears GPU memory after text encoding is complete.
|
| 176 |
-
This helps manage memory when processing multiple inputs sequentially.
|
| 177 |
-
"""
|
| 178 |
-
if self.text_encoder:
|
| 179 |
-
del self.text_encoder
|
| 180 |
-
self.text_encoder = None
|
| 181 |
-
gc.collect()
|
| 182 |
-
torch.cuda.empty_cache()
|
| 183 |
-
|
| 184 |
-
def _run_model(self, *args: Any, **kwargs: Any) -> torch.Tensor:
|
| 185 |
-
"""Generate world latents using the model.
|
| 186 |
-
|
| 187 |
-
This abstract method must be implemented by subclasses to define their specific
|
| 188 |
-
generation process.
|
| 189 |
-
|
| 190 |
-
Args:
|
| 191 |
-
*args: Variable positional arguments for model inference
|
| 192 |
-
**kwargs: Variable keyword arguments for model inference
|
| 193 |
-
|
| 194 |
-
Returns:
|
| 195 |
-
torch.Tensor: Generated world representation tensor
|
| 196 |
-
"""
|
| 197 |
-
pass
|
| 198 |
-
|
| 199 |
-
def _run_model_with_offload(self, *args: Any, **kwargs: Any) -> torch.Tensor:
|
| 200 |
-
"""Generate world representation with memory management.
|
| 201 |
-
|
| 202 |
-
Handles loading the model before inference and offloading afterward if enabled.
|
| 203 |
-
This helps minimize GPU memory usage during inference.
|
| 204 |
-
|
| 205 |
-
Args:
|
| 206 |
-
*args: Arguments passed to _run_model
|
| 207 |
-
**kwargs: Keyword arguments passed to _run_model
|
| 208 |
-
|
| 209 |
-
Returns:
|
| 210 |
-
np.ndarray: Generated world representation as numpy array
|
| 211 |
-
"""
|
| 212 |
-
pass
|
| 213 |
-
|
| 214 |
-
def _run_guardrail_on_prompt(self, prompt: str) -> bool:
|
| 215 |
-
"""Check if prompt meets safety requirements.
|
| 216 |
-
|
| 217 |
-
Validates the input prompt against safety policies using loaded guardrail models.
|
| 218 |
-
|
| 219 |
-
Args:
|
| 220 |
-
prompt: Raw text prompt to validate
|
| 221 |
-
|
| 222 |
-
Returns:
|
| 223 |
-
bool: True if prompt passes all safety checks, False otherwise
|
| 224 |
-
"""
|
| 225 |
-
return guardrail_presets.run_text_guardrail(prompt, self.text_guardrail)
|
| 226 |
-
|
| 227 |
-
def _run_guardrail_on_prompt_with_offload(self, prompt: str) -> bool:
|
| 228 |
-
"""Check prompt safety with memory management.
|
| 229 |
-
|
| 230 |
-
Validates prompt safety while handling model loading/offloading to manage memory.
|
| 231 |
-
|
| 232 |
-
Args:
|
| 233 |
-
prompt: Raw text prompt to validate
|
| 234 |
-
|
| 235 |
-
Returns:
|
| 236 |
-
bool: True if prompt passes all safety checks, False otherwise
|
| 237 |
-
"""
|
| 238 |
-
if self.offload_guardrail_models:
|
| 239 |
-
self._load_text_guardrail()
|
| 240 |
-
|
| 241 |
-
is_safe = self._run_guardrail_on_prompt(prompt)
|
| 242 |
-
|
| 243 |
-
if self.offload_guardrail_models:
|
| 244 |
-
self._offload_guardrail_models()
|
| 245 |
-
|
| 246 |
-
return is_safe
|
| 247 |
-
|
| 248 |
-
def _run_guardrail_on_video(self, video: np.ndarray) -> np.ndarray | None:
|
| 249 |
-
"""Check if video meets safety requirements.
|
| 250 |
-
|
| 251 |
-
Validates generated video content against safety policies using guardrail models.
|
| 252 |
-
|
| 253 |
-
Args:
|
| 254 |
-
video: Video frames to validate
|
| 255 |
-
|
| 256 |
-
Returns:
|
| 257 |
-
np.ndarray: Processed video if safe, None if unsafe
|
| 258 |
-
"""
|
| 259 |
-
return guardrail_presets.run_video_guardrail(video, self.video_guardrail)
|
| 260 |
-
|
| 261 |
-
def _run_guardrail_on_video_with_offload(self, video: np.ndarray) -> np.ndarray | None:
|
| 262 |
-
"""Check if generated video meets safety requirements.
|
| 263 |
-
|
| 264 |
-
Args:
|
| 265 |
-
video: Video frames to validate
|
| 266 |
-
|
| 267 |
-
Returns:
|
| 268 |
-
np.ndarray: Processed video frames if safe, None otherwise
|
| 269 |
-
|
| 270 |
-
Note:
|
| 271 |
-
Guardrail models are offloaded after checks if enabled.
|
| 272 |
-
"""
|
| 273 |
-
if self.offload_guardrail_models:
|
| 274 |
-
self._load_video_guardrail()
|
| 275 |
-
|
| 276 |
-
video = self._run_guardrail_on_video(video)
|
| 277 |
-
|
| 278 |
-
if self.offload_guardrail_models:
|
| 279 |
-
self._offload_guardrail_models()
|
| 280 |
-
return video
|
| 281 |
-
|
| 282 |
-
def _run_text_embedding_on_prompt(
|
| 283 |
-
self, prompts: list[str], **kwargs: Any
|
| 284 |
-
) -> tuple[list[torch.Tensor], list[torch.Tensor]]:
|
| 285 |
-
"""Convert text prompts to embeddings.
|
| 286 |
-
|
| 287 |
-
Processes text prompts into embedding tensors that condition the generation model.
|
| 288 |
-
|
| 289 |
-
Args:
|
| 290 |
-
prompts: List of text prompts to encode
|
| 291 |
-
**kwargs: Additional arguments for text encoding
|
| 292 |
-
|
| 293 |
-
Returns:
|
| 294 |
-
tuple containing:
|
| 295 |
-
- List of text embedding tensors for each prompt
|
| 296 |
-
- List of attention masks for each embedding
|
| 297 |
-
"""
|
| 298 |
-
|
| 299 |
-
embeddings = []
|
| 300 |
-
masks = []
|
| 301 |
-
for prompt in prompts:
|
| 302 |
-
embedding, mask = self.text_encoder.encode_prompts(
|
| 303 |
-
[prompt],
|
| 304 |
-
**kwargs,
|
| 305 |
-
)
|
| 306 |
-
embeddings.append(embedding)
|
| 307 |
-
masks.append(mask)
|
| 308 |
-
|
| 309 |
-
return embeddings, masks
|
| 310 |
-
|
| 311 |
-
def _run_text_embedding_on_prompt_with_offload(
|
| 312 |
-
self, prompts: list[str], **kwargs: Any
|
| 313 |
-
) -> tuple[list[torch.Tensor], list[torch.Tensor]]:
|
| 314 |
-
"""Convert text prompt into embeddings using T5 encoder.
|
| 315 |
-
|
| 316 |
-
Args:
|
| 317 |
-
prompt: Processed and validated text prompt
|
| 318 |
-
|
| 319 |
-
Returns:
|
| 320 |
-
Text embedding tensor to condition diffusion model
|
| 321 |
-
|
| 322 |
-
Note:
|
| 323 |
-
T5 model is offloaded after encoding if enabled.
|
| 324 |
-
"""
|
| 325 |
-
if self.offload_text_encoder_model:
|
| 326 |
-
self._load_text_encoder_model()
|
| 327 |
-
|
| 328 |
-
embeddings, masks = self._run_text_embedding_on_prompt(prompts, **kwargs)
|
| 329 |
-
|
| 330 |
-
if self.offload_text_encoder_model:
|
| 331 |
-
self._offload_text_encoder_model()
|
| 332 |
-
return embeddings, masks
|
| 333 |
-
|
| 334 |
-
def _run_tokenizer_decoding(self, samples: torch.Tensor) -> np.ndarray:
|
| 335 |
-
"""Decode model outputs into final world representation.
|
| 336 |
-
|
| 337 |
-
This abstract method must be implemented by subclasses to convert raw model
|
| 338 |
-
outputs into their specific world representation format.
|
| 339 |
-
|
| 340 |
-
Args:
|
| 341 |
-
samples: Raw output tensor from the generation model
|
| 342 |
-
|
| 343 |
-
Returns:
|
| 344 |
-
np.ndarray: Decoded world representation
|
| 345 |
-
"""
|
| 346 |
-
pass
|
| 347 |
-
|
| 348 |
-
def generate(self, *args: Any, **kwargs: Any):
|
| 349 |
-
"""Generate world representation.
|
| 350 |
-
|
| 351 |
-
This abstract method must be implemented by subclasses to convert raw model
|
| 352 |
-
outputs into their specific world representation format.
|
| 353 |
-
|
| 354 |
-
Args:
|
| 355 |
-
*args: Variable positional arguments for model inference
|
| 356 |
-
**kwargs: Variable keyword arguments for model inference
|
| 357 |
-
"""
|
| 358 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/9586934f8c1949d734b4ea3080135d2769ec481a
DELETED
|
@@ -1,333 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from typing import Callable, Tuple
|
| 17 |
-
|
| 18 |
-
import torch
|
| 19 |
-
|
| 20 |
-
from .df_df_functional_batch_ops import batch_mul
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
def phi1(t: torch.Tensor) -> torch.Tensor:
|
| 24 |
-
"""
|
| 25 |
-
Compute the first order phi function: (exp(t) - 1) / t.
|
| 26 |
-
|
| 27 |
-
Args:
|
| 28 |
-
t: Input tensor.
|
| 29 |
-
|
| 30 |
-
Returns:
|
| 31 |
-
Tensor: Result of phi1 function.
|
| 32 |
-
"""
|
| 33 |
-
input_dtype = t.dtype
|
| 34 |
-
t = t.to(dtype=torch.float64)
|
| 35 |
-
return (torch.expm1(t) / t).to(dtype=input_dtype)
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
def phi2(t: torch.Tensor) -> torch.Tensor:
|
| 39 |
-
"""
|
| 40 |
-
Compute the second order phi function: (phi1(t) - 1) / t.
|
| 41 |
-
|
| 42 |
-
Args:
|
| 43 |
-
t: Input tensor.
|
| 44 |
-
|
| 45 |
-
Returns:
|
| 46 |
-
Tensor: Result of phi2 function.
|
| 47 |
-
"""
|
| 48 |
-
input_dtype = t.dtype
|
| 49 |
-
t = t.to(dtype=torch.float64)
|
| 50 |
-
return ((phi1(t) - 1.0) / t).to(dtype=input_dtype)
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
def res_x0_rk2_step(
|
| 54 |
-
x_s: torch.Tensor,
|
| 55 |
-
t: torch.Tensor,
|
| 56 |
-
s: torch.Tensor,
|
| 57 |
-
x0_s: torch.Tensor,
|
| 58 |
-
s1: torch.Tensor,
|
| 59 |
-
x0_s1: torch.Tensor,
|
| 60 |
-
) -> torch.Tensor:
|
| 61 |
-
"""
|
| 62 |
-
Perform a residual-based 2nd order Runge-Kutta step.
|
| 63 |
-
|
| 64 |
-
Args:
|
| 65 |
-
x_s: Current state tensor.
|
| 66 |
-
t: Target time tensor.
|
| 67 |
-
s: Current time tensor.
|
| 68 |
-
x0_s: Prediction at current time.
|
| 69 |
-
s1: Intermediate time tensor.
|
| 70 |
-
x0_s1: Prediction at intermediate time.
|
| 71 |
-
|
| 72 |
-
Returns:
|
| 73 |
-
Tensor: Updated state tensor.
|
| 74 |
-
|
| 75 |
-
Raises:
|
| 76 |
-
AssertionError: If step size is too small.
|
| 77 |
-
"""
|
| 78 |
-
s = -torch.log(s)
|
| 79 |
-
t = -torch.log(t)
|
| 80 |
-
m = -torch.log(s1)
|
| 81 |
-
|
| 82 |
-
dt = t - s
|
| 83 |
-
assert not torch.any(torch.isclose(dt, torch.zeros_like(dt), atol=1e-6)), "Step size is too small"
|
| 84 |
-
assert not torch.any(torch.isclose(m - s, torch.zeros_like(dt), atol=1e-6)), "Step size is too small"
|
| 85 |
-
|
| 86 |
-
c2 = (m - s) / dt
|
| 87 |
-
phi1_val, phi2_val = phi1(-dt), phi2(-dt)
|
| 88 |
-
|
| 89 |
-
# Handle edge case where t = s = m
|
| 90 |
-
b1 = torch.nan_to_num(phi1_val - 1.0 / c2 * phi2_val, nan=0.0)
|
| 91 |
-
b2 = torch.nan_to_num(1.0 / c2 * phi2_val, nan=0.0)
|
| 92 |
-
|
| 93 |
-
return batch_mul(torch.exp(-dt), x_s) + batch_mul(dt, batch_mul(b1, x0_s) + batch_mul(b2, x0_s1))
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
def reg_x0_euler_step(
|
| 97 |
-
x_s: torch.Tensor,
|
| 98 |
-
s: torch.Tensor,
|
| 99 |
-
t: torch.Tensor,
|
| 100 |
-
x0_s: torch.Tensor,
|
| 101 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 102 |
-
"""
|
| 103 |
-
Perform a regularized Euler step based on x0 prediction.
|
| 104 |
-
|
| 105 |
-
Args:
|
| 106 |
-
x_s: Current state tensor.
|
| 107 |
-
s: Current time tensor.
|
| 108 |
-
t: Target time tensor.
|
| 109 |
-
x0_s: Prediction at current time.
|
| 110 |
-
|
| 111 |
-
Returns:
|
| 112 |
-
Tuple[Tensor, Tensor]: Updated state tensor and current prediction.
|
| 113 |
-
"""
|
| 114 |
-
coef_x0 = (s - t) / s
|
| 115 |
-
coef_xs = t / s
|
| 116 |
-
return batch_mul(coef_x0, x0_s) + batch_mul(coef_xs, x_s), x0_s
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
def reg_eps_euler_step(
|
| 120 |
-
x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, eps_s: torch.Tensor
|
| 121 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 122 |
-
"""
|
| 123 |
-
Perform a regularized Euler step based on epsilon prediction.
|
| 124 |
-
|
| 125 |
-
Args:
|
| 126 |
-
x_s: Current state tensor.
|
| 127 |
-
s: Current time tensor.
|
| 128 |
-
t: Target time tensor.
|
| 129 |
-
eps_s: Epsilon prediction at current time.
|
| 130 |
-
|
| 131 |
-
Returns:
|
| 132 |
-
Tuple[Tensor, Tensor]: Updated state tensor and current x0 prediction.
|
| 133 |
-
"""
|
| 134 |
-
return x_s + batch_mul(eps_s, t - s), x_s + batch_mul(eps_s, 0 - s)
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
def rk1_euler(
|
| 138 |
-
x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, x0_fn: Callable
|
| 139 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 140 |
-
"""
|
| 141 |
-
Perform a first-order Runge-Kutta (Euler) step.
|
| 142 |
-
|
| 143 |
-
Recommended for diffusion models with guidance or model undertrained
|
| 144 |
-
Usually more stable at the cost of a bit slower convergence.
|
| 145 |
-
|
| 146 |
-
Args:
|
| 147 |
-
x_s: Current state tensor.
|
| 148 |
-
s: Current time tensor.
|
| 149 |
-
t: Target time tensor.
|
| 150 |
-
x0_fn: Function to compute x0 prediction.
|
| 151 |
-
|
| 152 |
-
Returns:
|
| 153 |
-
Tuple[Tensor, Tensor]: Updated state tensor and x0 prediction.
|
| 154 |
-
"""
|
| 155 |
-
x0_s = x0_fn(x_s, s)
|
| 156 |
-
return reg_x0_euler_step(x_s, s, t, x0_s)
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
def rk2_mid_stable(
|
| 160 |
-
x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, x0_fn: Callable
|
| 161 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 162 |
-
"""
|
| 163 |
-
Perform a stable second-order Runge-Kutta (midpoint) step.
|
| 164 |
-
|
| 165 |
-
Args:
|
| 166 |
-
x_s: Current state tensor.
|
| 167 |
-
s: Current time tensor.
|
| 168 |
-
t: Target time tensor.
|
| 169 |
-
x0_fn: Function to compute x0 prediction.
|
| 170 |
-
|
| 171 |
-
Returns:
|
| 172 |
-
Tuple[Tensor, Tensor]: Updated state tensor and x0 prediction.
|
| 173 |
-
"""
|
| 174 |
-
s1 = torch.sqrt(s * t)
|
| 175 |
-
x_s1, _ = rk1_euler(x_s, s, s1, x0_fn)
|
| 176 |
-
|
| 177 |
-
x0_s1 = x0_fn(x_s1, s1)
|
| 178 |
-
return reg_x0_euler_step(x_s, s, t, x0_s1)
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
def rk2_mid(x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, x0_fn: Callable) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 182 |
-
"""
|
| 183 |
-
Perform a second-order Runge-Kutta (midpoint) step.
|
| 184 |
-
|
| 185 |
-
Args:
|
| 186 |
-
x_s: Current state tensor.
|
| 187 |
-
s: Current time tensor.
|
| 188 |
-
t: Target time tensor.
|
| 189 |
-
x0_fn: Function to compute x0 prediction.
|
| 190 |
-
|
| 191 |
-
Returns:
|
| 192 |
-
Tuple[Tensor, Tensor]: Updated state tensor and x0 prediction.
|
| 193 |
-
"""
|
| 194 |
-
s1 = torch.sqrt(s * t)
|
| 195 |
-
x_s1, x0_s = rk1_euler(x_s, s, s1, x0_fn)
|
| 196 |
-
|
| 197 |
-
x0_s1 = x0_fn(x_s1, s1)
|
| 198 |
-
|
| 199 |
-
return res_x0_rk2_step(x_s, t, s, x0_s, s1, x0_s1), x0_s1
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
def rk_2heun_naive(
|
| 203 |
-
x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, x0_fn: Callable
|
| 204 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 205 |
-
"""
|
| 206 |
-
Perform a naive second-order Runge-Kutta (Heun's method) step.
|
| 207 |
-
Impl based on rho-rk-deis solvers, https://github.com/qsh-zh/deis
|
| 208 |
-
Recommended for diffusion models without guidance and relative large NFE
|
| 209 |
-
|
| 210 |
-
Args:
|
| 211 |
-
x_s: Current state tensor.
|
| 212 |
-
s: Current time tensor.
|
| 213 |
-
t: Target time tensor.
|
| 214 |
-
x0_fn: Function to compute x0 prediction.
|
| 215 |
-
|
| 216 |
-
Returns:
|
| 217 |
-
Tuple[Tensor, Tensor]: Updated state tensor and current state.
|
| 218 |
-
"""
|
| 219 |
-
x_t, x0_s = rk1_euler(x_s, s, t, x0_fn)
|
| 220 |
-
eps_s = batch_mul(1.0 / s, x_t - x0_s)
|
| 221 |
-
x0_t = x0_fn(x_t, t)
|
| 222 |
-
eps_t = batch_mul(1.0 / t, x_t - x0_t)
|
| 223 |
-
|
| 224 |
-
avg_eps = (eps_s + eps_t) / 2
|
| 225 |
-
|
| 226 |
-
return reg_eps_euler_step(x_s, s, t, avg_eps)
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
def rk_2heun_edm(
|
| 230 |
-
x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, x0_fn: Callable
|
| 231 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 232 |
-
"""
|
| 233 |
-
Perform a naive second-order Runge-Kutta (Heun's method) step.
|
| 234 |
-
Impl based no EDM second order Heun method
|
| 235 |
-
|
| 236 |
-
Args:
|
| 237 |
-
x_s: Current state tensor.
|
| 238 |
-
s: Current time tensor.
|
| 239 |
-
t: Target time tensor.
|
| 240 |
-
x0_fn: Function to compute x0 prediction.
|
| 241 |
-
|
| 242 |
-
Returns:
|
| 243 |
-
Tuple[Tensor, Tensor]: Updated state tensor and current state.
|
| 244 |
-
"""
|
| 245 |
-
x_t, x0_s = rk1_euler(x_s, s, t, x0_fn)
|
| 246 |
-
x0_t = x0_fn(x_t, t)
|
| 247 |
-
|
| 248 |
-
avg_x0 = (x0_s + x0_t) / 2
|
| 249 |
-
|
| 250 |
-
return reg_x0_euler_step(x_s, s, t, avg_x0)
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
def rk_3kutta_naive(
|
| 254 |
-
x_s: torch.Tensor, s: torch.Tensor, t: torch.Tensor, x0_fn: Callable
|
| 255 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 256 |
-
"""
|
| 257 |
-
Perform a naive third-order Runge-Kutta step.
|
| 258 |
-
Impl based on rho-rk-deis solvers, https://github.com/qsh-zh/deis
|
| 259 |
-
Recommended for diffusion models without guidance and relative large NFE
|
| 260 |
-
|
| 261 |
-
Args:
|
| 262 |
-
x_s: Current state tensor.
|
| 263 |
-
s: Current time tensor.
|
| 264 |
-
t: Target time tensor.
|
| 265 |
-
x0_fn: Function to compute x0 prediction.
|
| 266 |
-
|
| 267 |
-
Returns:
|
| 268 |
-
Tuple[Tensor, Tensor]: Updated state tensor and current state.
|
| 269 |
-
"""
|
| 270 |
-
c2, c3 = 0.5, 1.0
|
| 271 |
-
a31, a32 = -1.0, 2.0
|
| 272 |
-
b1, b2, b3 = 1.0 / 6, 4.0 / 6, 1.0 / 6
|
| 273 |
-
|
| 274 |
-
delta = t - s
|
| 275 |
-
|
| 276 |
-
s1 = c2 * delta + s
|
| 277 |
-
s2 = c3 * delta + s
|
| 278 |
-
x_s1, x0_s = rk1_euler(x_s, s, s1, x0_fn)
|
| 279 |
-
eps_s = batch_mul(1.0 / s, x_s - x0_s)
|
| 280 |
-
x0_s1 = x0_fn(x_s1, s1)
|
| 281 |
-
eps_s1 = batch_mul(1.0 / s1, x_s1 - x0_s1)
|
| 282 |
-
|
| 283 |
-
_eps = a31 * eps_s + a32 * eps_s1
|
| 284 |
-
x_s2, _ = reg_eps_euler_step(x_s, s, s2, _eps)
|
| 285 |
-
|
| 286 |
-
x0_s2 = x0_fn(x_s2, s2)
|
| 287 |
-
eps_s2 = batch_mul(1.0 / s2, x_s2 - x0_s2)
|
| 288 |
-
|
| 289 |
-
avg_eps = b1 * eps_s + b2 * eps_s1 + b3 * eps_s2
|
| 290 |
-
return reg_eps_euler_step(x_s, s, t, avg_eps)
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
# key : order + name
|
| 294 |
-
RK_FNs = {
|
| 295 |
-
"1euler": rk1_euler,
|
| 296 |
-
"2mid": rk2_mid,
|
| 297 |
-
"2mid_stable": rk2_mid_stable,
|
| 298 |
-
"2heun_edm": rk_2heun_edm,
|
| 299 |
-
"2heun_naive": rk_2heun_naive,
|
| 300 |
-
"3kutta_naive": rk_3kutta_naive,
|
| 301 |
-
}
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
def get_runge_kutta_fn(name: str) -> Callable:
|
| 305 |
-
"""
|
| 306 |
-
Get the specified Runge-Kutta function.
|
| 307 |
-
|
| 308 |
-
Args:
|
| 309 |
-
name: Name of the Runge-Kutta method.
|
| 310 |
-
|
| 311 |
-
Returns:
|
| 312 |
-
Callable: The specified Runge-Kutta function.
|
| 313 |
-
|
| 314 |
-
Raises:
|
| 315 |
-
RuntimeError: If the specified method is not supported.
|
| 316 |
-
"""
|
| 317 |
-
if name in RK_FNs:
|
| 318 |
-
return RK_FNs[name]
|
| 319 |
-
methods = "\n\t".join(RK_FNs.keys())
|
| 320 |
-
raise RuntimeError(f"Only support the following Runge-Kutta methods:\n\t{methods}")
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
def is_runge_kutta_fn_supported(name: str) -> bool:
|
| 324 |
-
"""
|
| 325 |
-
Check if the specified Runge-Kutta function is supported.
|
| 326 |
-
|
| 327 |
-
Args:
|
| 328 |
-
name: Name of the Runge-Kutta method.
|
| 329 |
-
|
| 330 |
-
Returns:
|
| 331 |
-
bool: True if the method is supported, False otherwise.
|
| 332 |
-
"""
|
| 333 |
-
return name in RK_FNs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/9861ef45253f4932a362923bdb6f07fd1b39666b
DELETED
|
@@ -1,322 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from collections import defaultdict
|
| 17 |
-
from typing import Optional
|
| 18 |
-
|
| 19 |
-
import torch
|
| 20 |
-
from einops import rearrange
|
| 21 |
-
|
| 22 |
-
from .ar_config_base_tokenizer import TokenizerConfig
|
| 23 |
-
from .lazy_config_init import instantiate as lazy_instantiate
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def update_vocab_size(
|
| 27 |
-
existing_vocab_size,
|
| 28 |
-
to_be_added_vocab_size,
|
| 29 |
-
training_type,
|
| 30 |
-
add_special_tokens,
|
| 31 |
-
video_special_tokens={},
|
| 32 |
-
):
|
| 33 |
-
# New vocab size
|
| 34 |
-
if add_special_tokens:
|
| 35 |
-
existing_vocab_size += to_be_added_vocab_size + len(video_special_tokens)
|
| 36 |
-
# For text_to_video, we add one <bov> special token at the beginning of the video
|
| 37 |
-
elif training_type == "text_to_video":
|
| 38 |
-
existing_vocab_size += to_be_added_vocab_size + 1
|
| 39 |
-
else:
|
| 40 |
-
existing_vocab_size += to_be_added_vocab_size
|
| 41 |
-
return existing_vocab_size
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
class DiscreteMultimodalTokenizer:
|
| 45 |
-
def __init__(self, tokenizer_config: TokenizerConfig):
|
| 46 |
-
self.tokenizer_config = tokenizer_config
|
| 47 |
-
self.vocab_size = 0
|
| 48 |
-
self.total_seq_len = tokenizer_config.seq_len
|
| 49 |
-
self.pad_to_multiple_of = tokenizer_config.pad_to_multiple_of
|
| 50 |
-
self.training_type = tokenizer_config.training_type
|
| 51 |
-
assert self.training_type in [
|
| 52 |
-
"text_only",
|
| 53 |
-
"text_to_video",
|
| 54 |
-
"video_to_video",
|
| 55 |
-
"image_text_interleaved",
|
| 56 |
-
], f"{self.training_type} not supported"
|
| 57 |
-
|
| 58 |
-
self._build_text_tokenizer()
|
| 59 |
-
self._build_video_tokenizer()
|
| 60 |
-
|
| 61 |
-
def _build_text_tokenizer(self):
|
| 62 |
-
r"""Function to initialize the text tokenizer model."""
|
| 63 |
-
if self.tokenizer_config.text_tokenizer is not None:
|
| 64 |
-
self.text_tokenizer = lazy_instantiate(self.tokenizer_config.text_tokenizer.config)
|
| 65 |
-
self.vocab_size += self.tokenizer_config.text_tokenizer.vocab_size
|
| 66 |
-
else:
|
| 67 |
-
self.text_tokenizer = None
|
| 68 |
-
|
| 69 |
-
def _build_video_tokenizer(self):
|
| 70 |
-
r"""Function to initialize the video tokenizer model."""
|
| 71 |
-
if self.tokenizer_config.video_tokenizer is not None:
|
| 72 |
-
self.video_tokenizer = lazy_instantiate(self.tokenizer_config.video_tokenizer.config)
|
| 73 |
-
self.video_tokenizer = self.video_tokenizer.to("cuda")
|
| 74 |
-
self.video_vocab_size = self.tokenizer_config.video_tokenizer.vocab_size
|
| 75 |
-
special_token_offset = (
|
| 76 |
-
self.tokenizer_config.video_tokenizer.tokenizer_offset
|
| 77 |
-
+ self.tokenizer_config.video_tokenizer.vocab_size
|
| 78 |
-
)
|
| 79 |
-
self.video_special_tokens = {
|
| 80 |
-
"<|begin_of_video|>": special_token_offset,
|
| 81 |
-
"<|end_of_video|>": special_token_offset + 1,
|
| 82 |
-
"<|pad_token_video|>": special_token_offset + 2,
|
| 83 |
-
}
|
| 84 |
-
|
| 85 |
-
self.vocab_size = update_vocab_size(
|
| 86 |
-
existing_vocab_size=self.vocab_size,
|
| 87 |
-
to_be_added_vocab_size=self.tokenizer_config.video_tokenizer.vocab_size,
|
| 88 |
-
training_type=self.training_type,
|
| 89 |
-
add_special_tokens=self.tokenizer_config.add_special_tokens,
|
| 90 |
-
video_special_tokens=self.video_special_tokens,
|
| 91 |
-
)
|
| 92 |
-
else:
|
| 93 |
-
self.video_tokenizer = None
|
| 94 |
-
|
| 95 |
-
@property
|
| 96 |
-
def pad_id(self):
|
| 97 |
-
r"""Returns the pad_id."""
|
| 98 |
-
|
| 99 |
-
if self.training_type == "text_only" or self.training_type == "image_text_interleaved":
|
| 100 |
-
pad_id = self.text_tokenizer.pad_id
|
| 101 |
-
elif self.training_type in ["text_to_video", "video_to_video"]:
|
| 102 |
-
pad_id = self.video_special_tokens["<|pad_token_video|>"]
|
| 103 |
-
else:
|
| 104 |
-
raise ValueError(f"training_type {self.training_type} not defined")
|
| 105 |
-
return pad_id
|
| 106 |
-
|
| 107 |
-
@property
|
| 108 |
-
def ignore_index(self):
|
| 109 |
-
r"""Returns which token should be ignored during loss computation."""
|
| 110 |
-
if self.training_type == "text_only" or self.training_type == "image_text_interleaved":
|
| 111 |
-
if self.text_tokenizer.pad_id == self.text_tokenizer.eos_id:
|
| 112 |
-
# If the PAD token is the same as the EOS token, we do not ignore it during loss
|
| 113 |
-
# computation, since we want the model to be able to predict EOS tokens in inference.
|
| 114 |
-
# The PyTorch default ignore_index for the cross-entropy loss is -100.
|
| 115 |
-
ignore_index = -100
|
| 116 |
-
else:
|
| 117 |
-
ignore_index = self.text_tokenizer.pad_id
|
| 118 |
-
elif self.training_type in ["text_to_video", "video_to_video"]:
|
| 119 |
-
ignore_index = self.pad_id
|
| 120 |
-
else:
|
| 121 |
-
raise ValueError(f"training_type {self.training_type} not defined")
|
| 122 |
-
return ignore_index
|
| 123 |
-
|
| 124 |
-
@property
|
| 125 |
-
def stop_tokens(self):
|
| 126 |
-
r"""Returns the stop tokens."""
|
| 127 |
-
if self.training_type == "text_only" or self.training_type == "image_text_interleaved":
|
| 128 |
-
stop_tokens = self.text_tokenizer.stop_tokens
|
| 129 |
-
elif self.training_type in ["text_to_video", "video_to_video"]:
|
| 130 |
-
stop_tokens = set([self.video_special_tokens["<|end_of_video|>"]])
|
| 131 |
-
else:
|
| 132 |
-
raise ValueError(f"training_type {self.training_type} not defined")
|
| 133 |
-
return stop_tokens
|
| 134 |
-
|
| 135 |
-
def _tokenize_text(self, raw_text: list[str], max_text_seq_len: int = -1):
|
| 136 |
-
r"""Function to tokenize text.
|
| 137 |
-
Args:
|
| 138 |
-
raw_text (list[str]): List of input strings
|
| 139 |
-
max_text_seq_len (int): Maximum sequence length returned by text tokenizer
|
| 140 |
-
Returns:
|
| 141 |
-
text_tokens (list[list[int]]): List of text tokens
|
| 142 |
-
"""
|
| 143 |
-
|
| 144 |
-
batch_size = len(raw_text)
|
| 145 |
-
text_tokens = [self.text_tokenizer.encode(raw_text[i], bos=True, eos=True) for i in range(batch_size)]
|
| 146 |
-
|
| 147 |
-
# Clipping the text tokens so that the sequence length does not exceed max_text_seq_len
|
| 148 |
-
if max_text_seq_len > -1:
|
| 149 |
-
for i in range(len(text_tokens)):
|
| 150 |
-
if len(text_tokens[i]) > max_text_seq_len:
|
| 151 |
-
# Simply clip and add end of seq token
|
| 152 |
-
text_tokens[i] = text_tokens[i][0 : max_text_seq_len - 1] + [self.text_tokenizer.eos_id]
|
| 153 |
-
return text_tokens
|
| 154 |
-
|
| 155 |
-
def _tokenize_class(self, cls_labels: list[str]):
|
| 156 |
-
r"""Function to tokenize the class label.
|
| 157 |
-
Args:
|
| 158 |
-
cls_labels (list[str]): List of class indices
|
| 159 |
-
Returns:
|
| 160 |
-
class_tokens (list[list[int]]): List of class tokens
|
| 161 |
-
"""
|
| 162 |
-
|
| 163 |
-
# tokenizer_offset tells what offset should be added to the tokens.
|
| 164 |
-
# This is needed for vocab expansion.
|
| 165 |
-
class_tokens = [[int(x) + self.tokenizer_config.class_tokenizer.tokenizer_offset] for x in cls_labels]
|
| 166 |
-
|
| 167 |
-
return class_tokens
|
| 168 |
-
|
| 169 |
-
def _tokenize_video(self, videos: torch.Tensor, pixel_chunk_duration: Optional[int] = None):
|
| 170 |
-
r"""Function to tokenize video.
|
| 171 |
-
Args:
|
| 172 |
-
videos (torch.Tensor): Input video data tensor
|
| 173 |
-
pixel_chunk_duration (Optional[float]): Pixel chunk duration. If provided, we pass it to the video tokenizer.
|
| 174 |
-
Returns:
|
| 175 |
-
video_tokens (list[list[int]]): List of video tokens
|
| 176 |
-
"""
|
| 177 |
-
|
| 178 |
-
video_tokens = []
|
| 179 |
-
batch_size = videos.shape[0]
|
| 180 |
-
|
| 181 |
-
quantized_out, _ = self.video_tokenizer.encode(videos, pixel_chunk_duration=pixel_chunk_duration)
|
| 182 |
-
indices = self.video_tokenizer.fsq_quantizer.codes_to_indices(quantized_out.permute(0, 2, 3, 4, 1))
|
| 183 |
-
|
| 184 |
-
# Flatten the indices
|
| 185 |
-
indices = rearrange(indices, "B T H W -> B (T H W)")
|
| 186 |
-
|
| 187 |
-
# tokenizer_offset tells what offset should be added to the tokens.
|
| 188 |
-
# This is needed for vocab expansion.
|
| 189 |
-
indices += self.tokenizer_config.video_tokenizer.tokenizer_offset
|
| 190 |
-
|
| 191 |
-
# Add begin and end of video tokens
|
| 192 |
-
bov_token = self.video_special_tokens["<|begin_of_video|>"]
|
| 193 |
-
eov_token = self.video_special_tokens["<|end_of_video|>"]
|
| 194 |
-
|
| 195 |
-
# Append bov and eov tokens
|
| 196 |
-
if self.tokenizer_config.add_special_tokens:
|
| 197 |
-
for i in range(batch_size):
|
| 198 |
-
video_tokens.append([bov_token] + indices[i].tolist() + [eov_token])
|
| 199 |
-
else:
|
| 200 |
-
if self.training_type == "text_to_video":
|
| 201 |
-
for i in range(batch_size):
|
| 202 |
-
video_tokens.append([bov_token] + indices[i].tolist())
|
| 203 |
-
else:
|
| 204 |
-
for i in range(batch_size):
|
| 205 |
-
video_tokens.append(indices[i].tolist())
|
| 206 |
-
assert (
|
| 207 |
-
len(video_tokens[-1]) == self.tokenizer_config.video_tokenizer.max_seq_len
|
| 208 |
-
), f"Expected {self.tokenizer_config.video_tokenizer.max_seq_len} tokens, got {len(video_tokens[-1])}; video shape: {videos.shape}"
|
| 209 |
-
|
| 210 |
-
return video_tokens
|
| 211 |
-
|
| 212 |
-
def tokenize(self, data_batch: dict):
|
| 213 |
-
r"""Function to tokenize data_dict.
|
| 214 |
-
Args:
|
| 215 |
-
data_batch (dict): Input data dict
|
| 216 |
-
Returns:
|
| 217 |
-
tokens (torch.LongTensor): Token tensor dict
|
| 218 |
-
"""
|
| 219 |
-
|
| 220 |
-
if (
|
| 221 |
-
self.training_type in ["text_only", "image_text_interleaved"]
|
| 222 |
-
and not self.tokenizer_config.text_tokenizer.tokenize_here
|
| 223 |
-
):
|
| 224 |
-
# In case of pre-computed tokens, just return the data_batch
|
| 225 |
-
return data_batch["tokens"], None
|
| 226 |
-
|
| 227 |
-
# Online tokenization
|
| 228 |
-
tokens = []
|
| 229 |
-
token_boundaries = defaultdict(list)
|
| 230 |
-
|
| 231 |
-
# Obtain maximum sequence length
|
| 232 |
-
max_text_seq_len = -1
|
| 233 |
-
max_visual_seq_len = -1
|
| 234 |
-
|
| 235 |
-
if self.training_type in ["text_to_video", "video_to_video"]:
|
| 236 |
-
max_visual_seq_len = self.tokenizer_config.video_tokenizer.max_seq_len
|
| 237 |
-
|
| 238 |
-
# If max visual sequence length is specified, make sure that text is clipped so that
|
| 239 |
-
# the full video/image is always seen.
|
| 240 |
-
if max_visual_seq_len > -1:
|
| 241 |
-
if self.tokenizer_config.add_special_tokens:
|
| 242 |
-
max_visual_seq_len = max_visual_seq_len + 2 # Two special tokens is for [bov, eov] or [boi, eoi] token
|
| 243 |
-
elif self.training_type == "text_to_video":
|
| 244 |
-
max_visual_seq_len = max_visual_seq_len + 1
|
| 245 |
-
else:
|
| 246 |
-
max_visual_seq_len = max_visual_seq_len
|
| 247 |
-
assert (
|
| 248 |
-
max_visual_seq_len <= self.total_seq_len
|
| 249 |
-
), f"max_visual_seq_len ({max_visual_seq_len}) is greater that total sequence length ({self.total_seq_len})"
|
| 250 |
-
max_text_seq_len = self.total_seq_len - max_visual_seq_len
|
| 251 |
-
|
| 252 |
-
# Tokenize the text
|
| 253 |
-
if (
|
| 254 |
-
"text" in self.training_type
|
| 255 |
-
and self.text_tokenizer is not None
|
| 256 |
-
and self.tokenizer_config.text_tokenizer.tokenize_here
|
| 257 |
-
):
|
| 258 |
-
key = self.tokenizer_config.text_tokenizer.data_key
|
| 259 |
-
batch_size = len(data_batch[key])
|
| 260 |
-
assert key in data_batch, f"Key {key} should be present in data for text tokenizer"
|
| 261 |
-
tokens = self._tokenize_text(data_batch["caption"], max_text_seq_len)
|
| 262 |
-
|
| 263 |
-
for i in range(batch_size):
|
| 264 |
-
token_boundaries["text"].append((0, len(tokens[i])))
|
| 265 |
-
else:
|
| 266 |
-
tokens = []
|
| 267 |
-
batch_size = None
|
| 268 |
-
|
| 269 |
-
# Tokenize the class label
|
| 270 |
-
if "class" in self.training_type and self.tokenizer_config.class_tokenizer is not None:
|
| 271 |
-
key = self.tokenizer_config.class_tokenizer.data_key
|
| 272 |
-
assert key in data_batch, f"Key {key} should be present in data for class tokenizer"
|
| 273 |
-
batch_size = len(data_batch[key]) if batch_size is None else batch_size
|
| 274 |
-
tokens_class = self._tokenize_class(data_batch[key])
|
| 275 |
-
if len(tokens) == 0:
|
| 276 |
-
tokens = tokens_class
|
| 277 |
-
for i in range(batch_size):
|
| 278 |
-
token_boundaries["class"].append((0, len(tokens[i])))
|
| 279 |
-
else:
|
| 280 |
-
for i in range(batch_size):
|
| 281 |
-
token_boundaries["class"].append((len(tokens[i]), len(tokens[i]) + len(tokens_class[i])))
|
| 282 |
-
tokens[i] = tokens[i] + tokens_class[i]
|
| 283 |
-
|
| 284 |
-
# Tokenize the video
|
| 285 |
-
if self.video_tokenizer is not None and self.tokenizer_config.video_tokenizer.tokenize_here:
|
| 286 |
-
key = self.tokenizer_config.video_tokenizer.data_key
|
| 287 |
-
assert key in data_batch, f"Key {key} should be present in data for video tokenizer"
|
| 288 |
-
batch_size = len(data_batch[key]) if batch_size is None else batch_size
|
| 289 |
-
|
| 290 |
-
pixel_chunk_duration = (
|
| 291 |
-
None # If not specified, we assume it's a video dataset and use the default chunk duration
|
| 292 |
-
)
|
| 293 |
-
dataset_name = data_batch.get("dataset_name", None)
|
| 294 |
-
if dataset_name is not None and dataset_name.startswith("image"):
|
| 295 |
-
# If it's an image dataset, we use a pixel chunk duration of 1
|
| 296 |
-
pixel_chunk_duration = 1
|
| 297 |
-
tokens_video = self._tokenize_video(data_batch[key], pixel_chunk_duration=pixel_chunk_duration)
|
| 298 |
-
if len(tokens) == 0:
|
| 299 |
-
tokens = tokens_video
|
| 300 |
-
for i in range(batch_size):
|
| 301 |
-
token_boundaries["video"].append((0, len(tokens[i])))
|
| 302 |
-
# [B,] each entry is ((0, len(tokens[i])))
|
| 303 |
-
else:
|
| 304 |
-
for i in range(batch_size):
|
| 305 |
-
token_boundaries["video"].append((len(tokens[i]), len(tokens[i]) + len(tokens_video[i])))
|
| 306 |
-
tokens[i] = tokens[i] + tokens_video[i]
|
| 307 |
-
|
| 308 |
-
# Combine the tokens and do padding
|
| 309 |
-
max_seq_len_in_batch = max([len(token) for token in tokens])
|
| 310 |
-
if self.pad_to_multiple_of is not None:
|
| 311 |
-
# Pad the sequence length to the nearest multiple of pad_to_multiple_of
|
| 312 |
-
max_seq_len_in_batch = ((max_seq_len_in_batch - 1) // self.pad_to_multiple_of + 1) * self.pad_to_multiple_of
|
| 313 |
-
pad_to_len = min(max_seq_len_in_batch, self.total_seq_len)
|
| 314 |
-
for i in range(len(tokens)):
|
| 315 |
-
if len(tokens[i]) < pad_to_len:
|
| 316 |
-
tokens[i] = tokens[i] + [self.pad_id] * (pad_to_len - len(tokens[i]))
|
| 317 |
-
else:
|
| 318 |
-
tokens[i] = tokens[i][0:pad_to_len]
|
| 319 |
-
|
| 320 |
-
# Convert it to long tensor
|
| 321 |
-
tokens = torch.LongTensor(tokens)
|
| 322 |
-
return tokens, token_boundaries
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/9918ab7cc8f55dc0c159b58c158d3556b6819acd
DELETED
|
@@ -1,317 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from typing import Any, Dict, List, Optional, Union
|
| 17 |
-
|
| 18 |
-
import numpy as np
|
| 19 |
-
import torch
|
| 20 |
-
from transformers import AutoTokenizer
|
| 21 |
-
|
| 22 |
-
from .log import log
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
def get_tokenizer_path(model_family: str, is_instruct_model: bool = False):
|
| 26 |
-
"""
|
| 27 |
-
Get the tokenizer path from the model family and instruct model flag.
|
| 28 |
-
Args:
|
| 29 |
-
model_family (str): The model family.
|
| 30 |
-
is_instruct_model (bool): Whether the model is an instruct model.
|
| 31 |
-
Returns:
|
| 32 |
-
str: The tokenizer path in s3.
|
| 33 |
-
"""
|
| 34 |
-
model_family = model_family.lower()
|
| 35 |
-
if model_family == "mistral":
|
| 36 |
-
return "mistralai/Mistral-Nemo-Instruct-2407"
|
| 37 |
-
else:
|
| 38 |
-
assert model_family in ["llama3", "llama3.1"]
|
| 39 |
-
if model_family == "llama3":
|
| 40 |
-
model_path = "meta-llama/Meta-Llama-3-8B"
|
| 41 |
-
elif model_family == "llama3.1":
|
| 42 |
-
model_path = "meta-llama/Llama-3.1-8B"
|
| 43 |
-
else:
|
| 44 |
-
raise ValueError(f"Unsupported model family: {model_family}")
|
| 45 |
-
suffix = "-Instruct" if is_instruct_model else ""
|
| 46 |
-
model_path = f"{model_path}{suffix}"
|
| 47 |
-
return model_path
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
class TextTokenizer:
|
| 51 |
-
"""
|
| 52 |
-
Text tokenizer class built on HuggingFace's Fast Tokenizer (Rust based).
|
| 53 |
-
"""
|
| 54 |
-
|
| 55 |
-
def __init__(
|
| 56 |
-
self,
|
| 57 |
-
model_family: str,
|
| 58 |
-
is_instruct_model: bool,
|
| 59 |
-
local_path: Optional[str] = None,
|
| 60 |
-
):
|
| 61 |
-
"""
|
| 62 |
-
Initialize the TextTokenizer.
|
| 63 |
-
Args:
|
| 64 |
-
model_family (str): The model family.
|
| 65 |
-
is_instruct_model (bool): Whether the model is an instruct model.
|
| 66 |
-
local_path (Optional[str]): The local path to the tokenizer. If not provided, the tokenizer will be downloaded from the remote path.
|
| 67 |
-
"""
|
| 68 |
-
if local_path is None:
|
| 69 |
-
tokenizer_path = get_tokenizer_path(model_family, is_instruct_model)
|
| 70 |
-
else:
|
| 71 |
-
tokenizer_path = local_path
|
| 72 |
-
|
| 73 |
-
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, use_fast=True)
|
| 74 |
-
self.stop_tokens = {
|
| 75 |
-
self.tokenizer.eos_token_id,
|
| 76 |
-
}
|
| 77 |
-
self.model_family = model_family
|
| 78 |
-
self.is_instruct_model = is_instruct_model
|
| 79 |
-
self.eos_id = self.tokenizer.eos_token_id
|
| 80 |
-
if self.tokenizer.pad_token is None:
|
| 81 |
-
if model_family.startswith("llama"):
|
| 82 |
-
self.pad_id = 128004 # "<|finetune_right_pad_id|>"
|
| 83 |
-
elif model_family == "mistral":
|
| 84 |
-
self.pad_id = 10 # "<pad>"
|
| 85 |
-
elif model_family == "pixtral":
|
| 86 |
-
self.pad_id = 11 # "<pad>"
|
| 87 |
-
else:
|
| 88 |
-
raise ValueError(f"pad_id not defined for model_family {model_family}")
|
| 89 |
-
else:
|
| 90 |
-
self.pad_id = self.tokenizer.pad_token_id
|
| 91 |
-
|
| 92 |
-
def tokenize(self, text: str, *, add_special_tokens: bool = False, **kwargs) -> List[str]:
|
| 93 |
-
"""
|
| 94 |
-
Converts a string into a sequence of tokens, replacing unknown tokens with the `unk_token`.
|
| 95 |
-
|
| 96 |
-
Args:
|
| 97 |
-
text (`str`):
|
| 98 |
-
The sequence to be encoded.
|
| 99 |
-
add_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 100 |
-
Whether or not to add the special tokens associated with the corresponding model.
|
| 101 |
-
Returns:
|
| 102 |
-
`List[str]`: The list of tokens.
|
| 103 |
-
"""
|
| 104 |
-
return self.tokenizer.tokenize(text, add_special_tokens=add_special_tokens, **kwargs)
|
| 105 |
-
|
| 106 |
-
def encode(
|
| 107 |
-
self,
|
| 108 |
-
text: Union[str, List[str], List[int]],
|
| 109 |
-
*, # Enforce keyword-only arguments
|
| 110 |
-
add_special_tokens: bool = True,
|
| 111 |
-
padding: Union[bool, str] = False,
|
| 112 |
-
truncation: Union[bool, str] = None,
|
| 113 |
-
max_length: Optional[int] = None,
|
| 114 |
-
stride: int = 0,
|
| 115 |
-
return_tensors: Optional[str] = None,
|
| 116 |
-
**kwargs,
|
| 117 |
-
) -> List[int]:
|
| 118 |
-
"""
|
| 119 |
-
Converts a string to a sequence of ids (integer), using the tokenizer and vocabulary.
|
| 120 |
-
|
| 121 |
-
Args:
|
| 122 |
-
text (`str`, `List[str]` or `List[int]`):
|
| 123 |
-
The first sequence to be encoded. This can be a string, a list of strings (tokenized string using the
|
| 124 |
-
`tokenize` method) or a list of integers (tokenized string ids using the `convert_tokens_to_ids`
|
| 125 |
-
method).
|
| 126 |
-
add_special_tokens (`bool`, *optional*, defaults to `True`):
|
| 127 |
-
Whether or not to add special tokens when encoding the sequences. This will use the underlying
|
| 128 |
-
`PretrainedTokenizerBase.build_inputs_with_special_tokens` function, which defines which tokens are
|
| 129 |
-
automatically added to the input ids. This is usefull if you want to add `bos` or `eos` tokens
|
| 130 |
-
automatically.
|
| 131 |
-
padding (`bool`, `str`, *optional*, defaults to `False`):
|
| 132 |
-
Activates and controls padding. Accepts the following values:
|
| 133 |
-
|
| 134 |
-
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
| 135 |
-
sequence if provided).
|
| 136 |
-
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
| 137 |
-
acceptable input length for the model if that argument is not provided.
|
| 138 |
-
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
| 139 |
-
lengths).
|
| 140 |
-
truncation (`bool`, `str`, *optional*, defaults to `False`):
|
| 141 |
-
Activates and controls truncation. Accepts the following values:
|
| 142 |
-
|
| 143 |
-
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or
|
| 144 |
-
to the maximum acceptable input length for the model if that argument is not provided. This will
|
| 145 |
-
truncate token by token, removing a token from the longest sequence in the pair if a pair of
|
| 146 |
-
sequences (or a batch of pairs) is provided.
|
| 147 |
-
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
| 148 |
-
maximum acceptable input length for the model if that argument is not provided. This will only
|
| 149 |
-
truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
| 150 |
-
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the
|
| 151 |
-
maximum acceptable input length for the model if that argument is not provided. This will only
|
| 152 |
-
truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
| 153 |
-
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
|
| 154 |
-
greater than the model maximum admissible input size).
|
| 155 |
-
max_length (`int`, *optional*):
|
| 156 |
-
Controls the maximum length to use by one of the truncation/padding parameters.
|
| 157 |
-
|
| 158 |
-
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
|
| 159 |
-
is required by one of the truncation/padding parameters. If the model has no specific maximum input
|
| 160 |
-
length (like XLNet) truncation/padding to a maximum length will be deactivated.
|
| 161 |
-
stride (`int`, *optional*, defaults to 0):
|
| 162 |
-
If set to a number along with `max_length`, the overflowing tokens returned when
|
| 163 |
-
`return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence
|
| 164 |
-
returned to provide some overlap between truncated and overflowing sequences. The value of this
|
| 165 |
-
argument defines the number of overlapping tokens.
|
| 166 |
-
is_split_into_words (`bool`, *optional*, defaults to `False`):
|
| 167 |
-
Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the
|
| 168 |
-
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
|
| 169 |
-
which it will tokenize. This is useful for NER or token classification.
|
| 170 |
-
pad_to_multiple_of (`int`, *optional*):
|
| 171 |
-
If set will pad the sequence to a multiple of the provided value. Requires `padding` to be activated.
|
| 172 |
-
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
| 173 |
-
`>= 7.5` (Volta).
|
| 174 |
-
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 175 |
-
If set, will return tensors instead of list of python integers. Acceptable values are:
|
| 176 |
-
|
| 177 |
-
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
| 178 |
-
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 179 |
-
- `'np'`: Return Numpy `np.ndarray` objects.
|
| 180 |
-
"""
|
| 181 |
-
return self.tokenizer.encode(
|
| 182 |
-
text,
|
| 183 |
-
add_special_tokens=add_special_tokens,
|
| 184 |
-
padding=padding,
|
| 185 |
-
truncation=truncation,
|
| 186 |
-
max_length=max_length,
|
| 187 |
-
stride=stride,
|
| 188 |
-
return_tensors=return_tensors,
|
| 189 |
-
)
|
| 190 |
-
|
| 191 |
-
def decode(
|
| 192 |
-
self,
|
| 193 |
-
token_ids: Union[int, List[int], "np.ndarray", "torch.Tensor"],
|
| 194 |
-
*, # Enforce keyword-only arguments
|
| 195 |
-
skip_special_tokens: bool = False,
|
| 196 |
-
clean_up_tokenization_spaces: bool = None,
|
| 197 |
-
**kwargs,
|
| 198 |
-
) -> str:
|
| 199 |
-
"""
|
| 200 |
-
Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special
|
| 201 |
-
tokens and clean up tokenization spaces.
|
| 202 |
-
|
| 203 |
-
Args:
|
| 204 |
-
token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`):
|
| 205 |
-
List of tokenized input ids. Can be obtained using the `__call__` method.
|
| 206 |
-
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
| 207 |
-
Whether or not to remove special tokens in the decoding.
|
| 208 |
-
clean_up_tokenization_spaces (`bool`, *optional*):
|
| 209 |
-
Whether or not to clean up the tokenization spaces. If `None`, will default to
|
| 210 |
-
`self.clean_up_tokenization_spaces`.
|
| 211 |
-
kwargs (additional keyword arguments, *optional*):
|
| 212 |
-
Will be passed to the underlying model specific decode method.
|
| 213 |
-
|
| 214 |
-
Returns:
|
| 215 |
-
`str`: The decoded sentence.
|
| 216 |
-
"""
|
| 217 |
-
return self.tokenizer.decode(
|
| 218 |
-
token_ids,
|
| 219 |
-
skip_special_tokens=skip_special_tokens,
|
| 220 |
-
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 221 |
-
**kwargs,
|
| 222 |
-
)
|
| 223 |
-
|
| 224 |
-
def apply_chat_template(
|
| 225 |
-
self,
|
| 226 |
-
conversation: Union[List[Dict[str, str]], List[List[Dict[str, str]]]],
|
| 227 |
-
*,
|
| 228 |
-
add_generation_prompt: bool = False,
|
| 229 |
-
tokenize: bool = True,
|
| 230 |
-
padding: bool = False,
|
| 231 |
-
truncation: bool = False,
|
| 232 |
-
max_length: Optional[int] = None,
|
| 233 |
-
return_tensors: Optional[str] = None,
|
| 234 |
-
return_dict: bool = False,
|
| 235 |
-
return_assistant_tokens_mask: bool = False,
|
| 236 |
-
generation_prefix: str = "",
|
| 237 |
-
tokenizer_kwargs: Optional[Dict[str, Any]] = None,
|
| 238 |
-
**kwargs,
|
| 239 |
-
):
|
| 240 |
-
"""
|
| 241 |
-
Converts a list of dictionaries with `"role"` and `"content"` keys to a list of token
|
| 242 |
-
ids. This method is intended for use with chat models, and will read the tokenizer's chat_template attribute to determine the format and control tokens to use when converting.
|
| 243 |
-
|
| 244 |
-
More details can be found at https://huggingface.co/docs/transformers/main/en/internal/tokenization_utils#transformers.PreTrainedTokenizerBase.apply_chat_template
|
| 245 |
-
|
| 246 |
-
Args:
|
| 247 |
-
conversation (Union[List[Dict[str, str]], List[List[Dict[str, str]]]]): A list of dicts
|
| 248 |
-
with "role" and "content" keys, representing the chat history so far.
|
| 249 |
-
add_generation_prompt (bool, *optional*):
|
| 250 |
-
If this is set, a prompt with the token(s) that indicate
|
| 251 |
-
the start of an assistant message will be appended to the formatted output. This is useful when you want to generate a response from the model.
|
| 252 |
-
Note that this argument will be passed to the chat template, and so it must be supported in the
|
| 253 |
-
template for this argument to have any effect.
|
| 254 |
-
continue_final_message (bool, *optional*):
|
| 255 |
-
If this is set, the chat will be formatted so that the final
|
| 256 |
-
message in the chat is open-ended, without any EOS tokens. The model will continue this message
|
| 257 |
-
rather than starting a new one. This allows you to "prefill" part of
|
| 258 |
-
the model's response for it. Cannot be used at the same time as `add_generation_prompt`.
|
| 259 |
-
tokenize (`bool`, defaults to `True`):
|
| 260 |
-
Whether to tokenize the output. If `False`, the output will be a string.
|
| 261 |
-
padding (`bool`, defaults to `False`):
|
| 262 |
-
Whether to pad sequences to the maximum length. Has no effect if tokenize is `False`.
|
| 263 |
-
truncation (`bool`, defaults to `False`):
|
| 264 |
-
Whether to truncate sequences at the maximum length. Has no effect if tokenize is `False`.
|
| 265 |
-
max_length (`int`, *optional*):
|
| 266 |
-
Maximum length (in tokens) to use for padding or truncation. Has no effect if tokenize is `False`. If
|
| 267 |
-
not specified, the tokenizer's `max_length` attribute will be used as a default.
|
| 268 |
-
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
| 269 |
-
If set, will return tensors of a particular framework. Has no effect if tokenize is `False`. Acceptable
|
| 270 |
-
values are:
|
| 271 |
-
- `'tf'`: Return TensorFlow `tf.Tensor` objects.
|
| 272 |
-
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
| 273 |
-
- `'np'`: Return NumPy `np.ndarray` objects.
|
| 274 |
-
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
| 275 |
-
return_dict (`bool`, defaults to `False`):
|
| 276 |
-
Whether to return a dictionary with named outputs. Has no effect if tokenize is `False`.
|
| 277 |
-
generation_prefix (str): Prefix to add before asking model to generate. Helpful to guide the generation. Defaults to "".
|
| 278 |
-
tokenizer_kwargs (`Dict[str: Any]`, *optional*): Additional kwargs to pass to the tokenizer.
|
| 279 |
-
return_assistant_tokens_mask (`bool`, defaults to `False`):
|
| 280 |
-
Whether to return a mask of the assistant generated tokens. For tokens generated by the assistant,
|
| 281 |
-
the mask will contain 1. For user and system tokens, the mask will contain 0.
|
| 282 |
-
This functionality is only available for chat templates that support it via the `{% generation %}` keyword.
|
| 283 |
-
**kwargs: Additional kwargs to pass to the template renderer. Will be accessible by the chat template.
|
| 284 |
-
|
| 285 |
-
Returns:
|
| 286 |
-
`Union[List[int], Dict]`: A list of token ids representing the tokenized chat so far, including control tokens. This
|
| 287 |
-
output is ready to pass to the model, either directly or via methods like `generate()`. If `return_dict` is
|
| 288 |
-
set, will return a dict of tokenizer outputs instead.
|
| 289 |
-
"""
|
| 290 |
-
if not self.is_instruct_model:
|
| 291 |
-
raise ValueError(
|
| 292 |
-
"apply_chat_template is only supported for instruct models. You should pass argument is_instruct_model=True to the TextTokenizer constructor."
|
| 293 |
-
)
|
| 294 |
-
# Since generation_prefix is added to the text in the end, ensure that the setting is correct
|
| 295 |
-
if generation_prefix:
|
| 296 |
-
assert not tokenize, "tokenize must be False when generation_prefix is provided."
|
| 297 |
-
assert add_generation_prompt, "add_generation_prompt must be set when generation_prefix is provided."
|
| 298 |
-
formatted_text: Union[str, List[int]] = self.tokenizer.apply_chat_template(
|
| 299 |
-
conversation,
|
| 300 |
-
add_generation_prompt=add_generation_prompt,
|
| 301 |
-
tokenize=tokenize,
|
| 302 |
-
padding=padding,
|
| 303 |
-
truncation=truncation,
|
| 304 |
-
max_length=max_length,
|
| 305 |
-
return_tensors=return_tensors,
|
| 306 |
-
return_dict=return_dict,
|
| 307 |
-
return_assistant_tokens_mask=return_assistant_tokens_mask,
|
| 308 |
-
tokenizer_kwargs=tokenizer_kwargs,
|
| 309 |
-
**kwargs,
|
| 310 |
-
)
|
| 311 |
-
if generation_prefix:
|
| 312 |
-
formatted_text: str = formatted_text + generation_prefix
|
| 313 |
-
log.debug(
|
| 314 |
-
f"Adding generation prefix: {generation_prefix} to the formatted text\n"
|
| 315 |
-
f"Formatted text: {formatted_text}"
|
| 316 |
-
)
|
| 317 |
-
return formatted_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/9bd252316a4bd6fb3a8f8a1c29a8e9ac44ac76fe
DELETED
|
@@ -1,60 +0,0 @@
|
|
| 1 |
-
# Copyright (c) Facebook, Inc. and its affiliates.
|
| 2 |
-
import os
|
| 3 |
-
|
| 4 |
-
from omegaconf import DictConfig, OmegaConf
|
| 5 |
-
|
| 6 |
-
from .lazy_instantiate import instantiate
|
| 7 |
-
from .lazy import LazyCall, LazyConfig
|
| 8 |
-
from .lazy_omegaconf_patch import to_object
|
| 9 |
-
|
| 10 |
-
OmegaConf.to_object = to_object
|
| 11 |
-
|
| 12 |
-
PLACEHOLDER = None
|
| 13 |
-
LazyDict = DictConfig
|
| 14 |
-
|
| 15 |
-
__all__ = ["instantiate", "LazyCall", "LazyConfig", "PLACEHOLDER", "LazyDict"]
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
DOC_BUILDING = os.getenv("_DOC_BUILDING", False) # set in docs/conf.py
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
def fixup_module_metadata(module_name, namespace, keys=None):
|
| 22 |
-
"""
|
| 23 |
-
Fix the __qualname__ of module members to be their exported api name, so
|
| 24 |
-
when they are referenced in docs, sphinx can find them. Reference:
|
| 25 |
-
https://github.com/python-trio/trio/blob/6754c74eacfad9cc5c92d5c24727a2f3b620624e/trio/_util.py#L216-L241
|
| 26 |
-
"""
|
| 27 |
-
if not DOC_BUILDING:
|
| 28 |
-
return
|
| 29 |
-
seen_ids = set()
|
| 30 |
-
|
| 31 |
-
def fix_one(qualname, name, obj):
|
| 32 |
-
# avoid infinite recursion (relevant when using
|
| 33 |
-
# typing.Generic, for example)
|
| 34 |
-
if id(obj) in seen_ids:
|
| 35 |
-
return
|
| 36 |
-
seen_ids.add(id(obj))
|
| 37 |
-
|
| 38 |
-
mod = getattr(obj, "__module__", None)
|
| 39 |
-
if mod is not None and (mod.startswith(module_name) or mod.startswith("fvcore.")):
|
| 40 |
-
obj.__module__ = module_name
|
| 41 |
-
# Modules, unlike everything else in Python, put fully-qualitied
|
| 42 |
-
# names into their __name__ attribute. We check for "." to avoid
|
| 43 |
-
# rewriting these.
|
| 44 |
-
if hasattr(obj, "__name__") and "." not in obj.__name__:
|
| 45 |
-
obj.__name__ = name
|
| 46 |
-
obj.__qualname__ = qualname
|
| 47 |
-
if isinstance(obj, type):
|
| 48 |
-
for attr_name, attr_value in obj.__dict__.items():
|
| 49 |
-
fix_one(objname + "." + attr_name, attr_name, attr_value)
|
| 50 |
-
|
| 51 |
-
if keys is None:
|
| 52 |
-
keys = namespace.keys()
|
| 53 |
-
for objname in keys:
|
| 54 |
-
if not objname.startswith("_"):
|
| 55 |
-
obj = namespace[objname]
|
| 56 |
-
fix_one(objname, objname, obj)
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
fixup_module_metadata(__name__, globals(), __all__)
|
| 60 |
-
del fixup_module_metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/9d565d078fbe37e1d31cf8a445a460e2bae291f1
DELETED
|
@@ -1,224 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
import argparse
|
| 17 |
-
import os
|
| 18 |
-
|
| 19 |
-
from .misc import misc
|
| 20 |
-
import numpy as np
|
| 21 |
-
import torch
|
| 22 |
-
from pytorch_retinaface.data import cfg_re50
|
| 23 |
-
from pytorch_retinaface.layers.functions.prior_box import PriorBox
|
| 24 |
-
from pytorch_retinaface.models.retinaface import RetinaFace
|
| 25 |
-
from torch.utils.data import DataLoader, TensorDataset
|
| 26 |
-
from tqdm import tqdm
|
| 27 |
-
|
| 28 |
-
from .guardrail_common_core import GuardrailRunner, PostprocessingGuardrail
|
| 29 |
-
from .guardrail_common_io_utils import get_video_filepaths, read_video, save_video
|
| 30 |
-
from .guardrail_face_blur_filter_blur_utils import pixelate_face
|
| 31 |
-
from .guardrail_face_blur_filter_retinaface_utils import decode_batch, filter_detected_boxes, load_model
|
| 32 |
-
from .log import log
|
| 33 |
-
|
| 34 |
-
DEFAULT_RETINAFACE_CHECKPOINT = "checkpoints/Cosmos-1.0-Guardrail/face_blur_filter/Resnet50_Final.pth"
|
| 35 |
-
|
| 36 |
-
# RetinaFace model constants from https://github.com/biubug6/Pytorch_Retinaface/blob/master/detect.py
|
| 37 |
-
TOP_K = 5_000
|
| 38 |
-
KEEP_TOP_K = 750
|
| 39 |
-
NMS_THRESHOLD = 0.4
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
class RetinaFaceFilter(PostprocessingGuardrail):
|
| 43 |
-
def __init__(
|
| 44 |
-
self,
|
| 45 |
-
checkpoint: str = DEFAULT_RETINAFACE_CHECKPOINT,
|
| 46 |
-
batch_size: int = 1,
|
| 47 |
-
confidence_threshold: float = 0.7,
|
| 48 |
-
device="cuda" if torch.cuda.is_available() else "cpu",
|
| 49 |
-
) -> None:
|
| 50 |
-
"""
|
| 51 |
-
Initialize the RetinaFace model for face detection and blurring.
|
| 52 |
-
|
| 53 |
-
Args:
|
| 54 |
-
checkpoint: Path to the RetinaFace checkpoint file
|
| 55 |
-
batch_size: Batch size for RetinaFace inference and processing
|
| 56 |
-
confidence_threshold: Minimum confidence score to consider a face detection
|
| 57 |
-
"""
|
| 58 |
-
self.cfg = cfg_re50
|
| 59 |
-
self.batch_size = batch_size
|
| 60 |
-
self.confidence_threshold = confidence_threshold
|
| 61 |
-
self.device = device
|
| 62 |
-
self.dtype = torch.float32
|
| 63 |
-
|
| 64 |
-
# Disable loading ResNet pretrained weights
|
| 65 |
-
self.cfg["pretrain"] = False
|
| 66 |
-
self.net = RetinaFace(cfg=self.cfg, phase="test")
|
| 67 |
-
cpu = self.device == "cpu"
|
| 68 |
-
|
| 69 |
-
# Load from RetinaFace pretrained checkpoint
|
| 70 |
-
self.net = load_model(self.net, checkpoint, cpu)
|
| 71 |
-
self.net.to(self.device, dtype=self.dtype).eval()
|
| 72 |
-
|
| 73 |
-
def preprocess_frames(self, frames: np.ndarray) -> torch.Tensor:
|
| 74 |
-
"""Preprocess a sequence of frames for face detection.
|
| 75 |
-
|
| 76 |
-
Args:
|
| 77 |
-
frames: Input frames
|
| 78 |
-
|
| 79 |
-
Returns:
|
| 80 |
-
Preprocessed frames tensor
|
| 81 |
-
"""
|
| 82 |
-
with torch.no_grad():
|
| 83 |
-
frames_tensor = torch.from_numpy(frames).to(self.device, dtype=self.dtype) # Shape: [T, H, W, C]
|
| 84 |
-
frames_tensor = frames_tensor.permute(0, 3, 1, 2) # Shape: [T, C, H, W]
|
| 85 |
-
frames_tensor = frames_tensor[:, [2, 1, 0], :, :] # RGB to BGR to match RetinaFace model input
|
| 86 |
-
means = torch.tensor([104.0, 117.0, 123.0], device=self.device, dtype=self.dtype).view(1, 3, 1, 1)
|
| 87 |
-
frames_tensor = frames_tensor - means # Subtract mean BGR values for each channel
|
| 88 |
-
return frames_tensor
|
| 89 |
-
|
| 90 |
-
def blur_detected_faces(
|
| 91 |
-
self,
|
| 92 |
-
frames: np.ndarray,
|
| 93 |
-
batch_loc: torch.Tensor,
|
| 94 |
-
batch_conf: torch.Tensor,
|
| 95 |
-
prior_data: torch.Tensor,
|
| 96 |
-
scale: torch.Tensor,
|
| 97 |
-
min_size: tuple[int] = (20, 20),
|
| 98 |
-
) -> list[np.ndarray]:
|
| 99 |
-
"""Blur detected faces in a batch of frames using RetinaFace predictions.
|
| 100 |
-
|
| 101 |
-
Args:
|
| 102 |
-
frames: Input frames
|
| 103 |
-
batch_loc: Batched location predictions
|
| 104 |
-
batch_conf: Batched confidence scores
|
| 105 |
-
prior_data: Prior boxes for the video
|
| 106 |
-
scale: Scale factor for resizing detections
|
| 107 |
-
min_size: Minimum size of a detected face region in pixels
|
| 108 |
-
|
| 109 |
-
Returns:
|
| 110 |
-
Processed frames with pixelated faces
|
| 111 |
-
"""
|
| 112 |
-
with torch.no_grad():
|
| 113 |
-
batch_boxes = decode_batch(batch_loc, prior_data, self.cfg["variance"])
|
| 114 |
-
batch_boxes = batch_boxes * scale
|
| 115 |
-
|
| 116 |
-
blurred_frames = []
|
| 117 |
-
for i, boxes in enumerate(batch_boxes):
|
| 118 |
-
boxes = boxes.detach().cpu().numpy()
|
| 119 |
-
scores = batch_conf[i, :, 1].detach().cpu().numpy()
|
| 120 |
-
|
| 121 |
-
filtered_boxes = filter_detected_boxes(
|
| 122 |
-
boxes,
|
| 123 |
-
scores,
|
| 124 |
-
confidence_threshold=self.confidence_threshold,
|
| 125 |
-
nms_threshold=NMS_THRESHOLD,
|
| 126 |
-
top_k=TOP_K,
|
| 127 |
-
keep_top_k=KEEP_TOP_K,
|
| 128 |
-
)
|
| 129 |
-
|
| 130 |
-
frame = frames[i]
|
| 131 |
-
for box in filtered_boxes:
|
| 132 |
-
x1, y1, x2, y2 = map(int, box)
|
| 133 |
-
# Ignore bounding boxes smaller than the minimum size
|
| 134 |
-
if x2 - x1 < min_size[0] or y2 - y1 < min_size[1]:
|
| 135 |
-
continue
|
| 136 |
-
max_h, max_w = frame.shape[:2]
|
| 137 |
-
face_roi = frame[max(y1, 0) : min(y2, max_h), max(x1, 0) : min(x2, max_w)]
|
| 138 |
-
blurred_face = pixelate_face(face_roi)
|
| 139 |
-
frame[max(y1, 0) : min(y2, max_h), max(x1, 0) : min(x2, max_w)] = blurred_face
|
| 140 |
-
blurred_frames.append(frame)
|
| 141 |
-
|
| 142 |
-
return blurred_frames
|
| 143 |
-
|
| 144 |
-
def postprocess(self, frames: np.ndarray) -> np.ndarray:
|
| 145 |
-
"""Blur faces in a sequence of frames.
|
| 146 |
-
|
| 147 |
-
Args:
|
| 148 |
-
frames: Input frames
|
| 149 |
-
|
| 150 |
-
Returns:
|
| 151 |
-
Processed frames with pixelated faces
|
| 152 |
-
"""
|
| 153 |
-
# Create dataset and dataloader
|
| 154 |
-
frames_tensor = self.preprocess_frames(frames)
|
| 155 |
-
dataset = TensorDataset(frames_tensor)
|
| 156 |
-
dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=False)
|
| 157 |
-
processed_frames, processed_batches = [], []
|
| 158 |
-
|
| 159 |
-
prior_data, scale = None, None
|
| 160 |
-
for i, batch in enumerate(dataloader):
|
| 161 |
-
batch = batch[0]
|
| 162 |
-
h, w = batch.shape[-2:] # Batch shape: [C, H, W]
|
| 163 |
-
|
| 164 |
-
with torch.no_grad():
|
| 165 |
-
# Generate priors for the video
|
| 166 |
-
if prior_data is None:
|
| 167 |
-
priorbox = PriorBox(self.cfg, image_size=(h, w))
|
| 168 |
-
priors = priorbox.forward()
|
| 169 |
-
priors = priors.to(self.device, dtype=self.dtype)
|
| 170 |
-
prior_data = priors.data
|
| 171 |
-
|
| 172 |
-
# Get scale for resizing detections
|
| 173 |
-
if scale is None:
|
| 174 |
-
scale = torch.Tensor([w, h, w, h])
|
| 175 |
-
scale = scale.to(self.device, dtype=self.dtype)
|
| 176 |
-
|
| 177 |
-
batch_loc, batch_conf, _ = self.net(batch)
|
| 178 |
-
|
| 179 |
-
# Blur detected faces in each batch of frames
|
| 180 |
-
start_idx = i * self.batch_size
|
| 181 |
-
end_idx = min(start_idx + self.batch_size, len(frames))
|
| 182 |
-
processed_batches.append(
|
| 183 |
-
self.blur_detected_faces(frames[start_idx:end_idx], batch_loc, batch_conf, prior_data, scale)
|
| 184 |
-
)
|
| 185 |
-
|
| 186 |
-
processed_frames = [frame for batch in processed_batches for frame in batch]
|
| 187 |
-
return np.array(processed_frames)
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
def parse_args():
|
| 191 |
-
parser = argparse.ArgumentParser()
|
| 192 |
-
parser.add_argument("--input_dir", type=str, required=True, help="Path containing input videos")
|
| 193 |
-
parser.add_argument("--output_dir", type=str, required=True, help="Path for saving processed videos")
|
| 194 |
-
parser.add_argument(
|
| 195 |
-
"--checkpoint",
|
| 196 |
-
type=str,
|
| 197 |
-
help="Path to the RetinaFace checkpoint file",
|
| 198 |
-
default=DEFAULT_RETINAFACE_CHECKPOINT,
|
| 199 |
-
)
|
| 200 |
-
return parser.parse_args()
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
def main(args):
|
| 204 |
-
filepaths = get_video_filepaths(args.input_dir)
|
| 205 |
-
if not filepaths:
|
| 206 |
-
log.error(f"No video files found in directory: {args.input_dir}")
|
| 207 |
-
return
|
| 208 |
-
|
| 209 |
-
face_blur = RetinaFaceFilter(checkpoint=args.checkpoint)
|
| 210 |
-
postprocessing_runner = GuardrailRunner(postprocessors=[face_blur])
|
| 211 |
-
os.makedirs(args.output_dir, exist_ok=True)
|
| 212 |
-
|
| 213 |
-
for filepath in tqdm(filepaths):
|
| 214 |
-
video_data = read_video(filepath)
|
| 215 |
-
with misc.timer("face blur filter"):
|
| 216 |
-
frames = postprocessing_runner.postprocess(video_data.frames)
|
| 217 |
-
|
| 218 |
-
output_path = os.path.join(args.output_dir, os.path.basename(filepath))
|
| 219 |
-
save_video(output_path, frames, video_data.fps)
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
if __name__ == "__main__":
|
| 223 |
-
args = parse_args()
|
| 224 |
-
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/a209db0eba28a8d8bcb527bfbaca6f5e361ace14
DELETED
|
@@ -1,28 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from __future__ import annotations
|
| 17 |
-
|
| 18 |
-
from dataclasses import dataclass
|
| 19 |
-
from typing import Optional
|
| 20 |
-
|
| 21 |
-
import torch
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
@dataclass
|
| 25 |
-
class DenoisePrediction:
|
| 26 |
-
x0: torch.Tensor # clean data prediction
|
| 27 |
-
eps: Optional[torch.Tensor] = None # noise prediction
|
| 28 |
-
logvar: Optional[torch.Tensor] = None # log variance of noise prediction, can be used a confidence / uncertainty
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/a2496a4fa280586b62c846c54cfbbc9f8adc0331
DELETED
|
@@ -1,211 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from __future__ import annotations
|
| 17 |
-
|
| 18 |
-
import collections
|
| 19 |
-
import collections.abc
|
| 20 |
-
import functools
|
| 21 |
-
import json
|
| 22 |
-
import random
|
| 23 |
-
import time
|
| 24 |
-
from contextlib import ContextDecorator
|
| 25 |
-
from typing import Any, Callable, TypeVar
|
| 26 |
-
|
| 27 |
-
from .log import log
|
| 28 |
-
import numpy as np
|
| 29 |
-
import termcolor
|
| 30 |
-
import torch
|
| 31 |
-
|
| 32 |
-
from .distributed import distributed
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
class misc():
|
| 36 |
-
|
| 37 |
-
@staticmethod
|
| 38 |
-
def to(
|
| 39 |
-
data: Any,
|
| 40 |
-
device: str | torch.device | None = None,
|
| 41 |
-
dtype: torch.dtype | None = None,
|
| 42 |
-
memory_format: torch.memory_format = torch.preserve_format,
|
| 43 |
-
) -> Any:
|
| 44 |
-
"""Recursively cast data into the specified device, dtype, and/or memory_format.
|
| 45 |
-
|
| 46 |
-
The input data can be a tensor, a list of tensors, a dict of tensors.
|
| 47 |
-
See the documentation for torch.Tensor.to() for details.
|
| 48 |
-
|
| 49 |
-
Args:
|
| 50 |
-
data (Any): Input data.
|
| 51 |
-
device (str | torch.device): GPU device (default: None).
|
| 52 |
-
dtype (torch.dtype): data type (default: None).
|
| 53 |
-
memory_format (torch.memory_format): memory organization format (default: torch.preserve_format).
|
| 54 |
-
|
| 55 |
-
Returns:
|
| 56 |
-
data (Any): Data cast to the specified device, dtype, and/or memory_format.
|
| 57 |
-
"""
|
| 58 |
-
assert (
|
| 59 |
-
device is not None or dtype is not None or memory_format is not None
|
| 60 |
-
), "at least one of device, dtype, memory_format should be specified"
|
| 61 |
-
if isinstance(data, torch.Tensor):
|
| 62 |
-
is_cpu = (isinstance(device, str) and device == "cpu") or (
|
| 63 |
-
isinstance(device, torch.device) and device.type == "cpu"
|
| 64 |
-
)
|
| 65 |
-
data = data.to(
|
| 66 |
-
device=device,
|
| 67 |
-
dtype=dtype,
|
| 68 |
-
memory_format=memory_format,
|
| 69 |
-
non_blocking=(not is_cpu),
|
| 70 |
-
)
|
| 71 |
-
return data
|
| 72 |
-
elif isinstance(data, collections.abc.Mapping):
|
| 73 |
-
return type(data)({key: to(data[key], device=device, dtype=dtype, memory_format=memory_format) for key in data})
|
| 74 |
-
elif isinstance(data, collections.abc.Sequence) and not isinstance(data, (str, bytes)):
|
| 75 |
-
return type(data)([to(elem, device=device, dtype=dtype, memory_format=memory_format) for elem in data])
|
| 76 |
-
else:
|
| 77 |
-
return data
|
| 78 |
-
|
| 79 |
-
@staticmethod
|
| 80 |
-
def serialize(data: Any) -> Any:
|
| 81 |
-
"""Serialize data by hierarchically traversing through iterables.
|
| 82 |
-
|
| 83 |
-
Args:
|
| 84 |
-
data (Any): Input data.
|
| 85 |
-
|
| 86 |
-
Returns:
|
| 87 |
-
data (Any): Serialized data.
|
| 88 |
-
"""
|
| 89 |
-
if isinstance(data, collections.abc.Mapping):
|
| 90 |
-
return type(data)({key: serialize(data[key]) for key in data})
|
| 91 |
-
elif isinstance(data, collections.abc.Sequence) and not isinstance(data, (str, bytes)):
|
| 92 |
-
return type(data)([serialize(elem) for elem in data])
|
| 93 |
-
else:
|
| 94 |
-
try:
|
| 95 |
-
json.dumps(data)
|
| 96 |
-
except TypeError:
|
| 97 |
-
data = str(data)
|
| 98 |
-
return data
|
| 99 |
-
|
| 100 |
-
@staticmethod
|
| 101 |
-
def set_random_seed(seed: int, by_rank: bool = False) -> None:
|
| 102 |
-
"""Set random seed. This includes random, numpy, Pytorch.
|
| 103 |
-
|
| 104 |
-
Args:
|
| 105 |
-
seed (int): Random seed.
|
| 106 |
-
by_rank (bool): if true, each GPU will use a different random seed.
|
| 107 |
-
"""
|
| 108 |
-
if by_rank:
|
| 109 |
-
seed += distributed.get_rank()
|
| 110 |
-
log.info(f"Using random seed {seed}.")
|
| 111 |
-
random.seed(seed)
|
| 112 |
-
np.random.seed(seed)
|
| 113 |
-
torch.manual_seed(seed) # sets seed on the current CPU & all GPUs
|
| 114 |
-
|
| 115 |
-
@staticmethod
|
| 116 |
-
def arch_invariant_rand(
|
| 117 |
-
shape: List[int] | Tuple[int], dtype: torch.dtype, device: str | torch.device, seed: int | None = None
|
| 118 |
-
):
|
| 119 |
-
"""Produce a GPU-architecture-invariant randomized Torch tensor.
|
| 120 |
-
|
| 121 |
-
Args:
|
| 122 |
-
shape (list or tuple of ints): Output tensor shape.
|
| 123 |
-
dtype (torch.dtype): Output tensor type.
|
| 124 |
-
device (torch.device): Device holding the output.
|
| 125 |
-
seed (int): Optional randomization seed.
|
| 126 |
-
|
| 127 |
-
Returns:
|
| 128 |
-
tensor (torch.tensor): Randomly-generated tensor.
|
| 129 |
-
"""
|
| 130 |
-
# Create a random number generator, optionally seeded
|
| 131 |
-
rng = np.random.RandomState(seed)
|
| 132 |
-
|
| 133 |
-
# # Generate random numbers using the generator
|
| 134 |
-
random_array = rng.standard_normal(shape).astype(np.float32) # Use standard_normal for normal distribution
|
| 135 |
-
|
| 136 |
-
# Convert to torch tensor and return
|
| 137 |
-
return torch.from_numpy(random_array).to(dtype=dtype, device=device)
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
T = TypeVar("T", bound=Callable[..., Any])
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
class timer(ContextDecorator): # noqa: N801
|
| 144 |
-
"""Simple timer for timing the execution of code.
|
| 145 |
-
|
| 146 |
-
It can be used as either a context manager or a function decorator. The timing result will be logged upon exit.
|
| 147 |
-
|
| 148 |
-
Example:
|
| 149 |
-
def func_a():
|
| 150 |
-
time.sleep(1)
|
| 151 |
-
with timer("func_a"):
|
| 152 |
-
func_a()
|
| 153 |
-
|
| 154 |
-
@timer("func_b)
|
| 155 |
-
def func_b():
|
| 156 |
-
time.sleep(1)
|
| 157 |
-
func_b()
|
| 158 |
-
"""
|
| 159 |
-
|
| 160 |
-
def __init__(self, context: str, debug: bool = False):
|
| 161 |
-
self.context = context
|
| 162 |
-
self.debug = debug
|
| 163 |
-
|
| 164 |
-
def __enter__(self) -> None:
|
| 165 |
-
self.tic = time.time()
|
| 166 |
-
|
| 167 |
-
def __exit__(self, exc_type, exc_value, traceback) -> None: # noqa: ANN001
|
| 168 |
-
time_spent = time.time() - self.tic
|
| 169 |
-
if self.debug:
|
| 170 |
-
log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds")
|
| 171 |
-
else:
|
| 172 |
-
log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds")
|
| 173 |
-
|
| 174 |
-
def __call__(self, func: T) -> T:
|
| 175 |
-
@functools.wraps(func)
|
| 176 |
-
def wrapper(*args, **kwargs): # noqa: ANN202
|
| 177 |
-
tic = time.time()
|
| 178 |
-
result = func(*args, **kwargs)
|
| 179 |
-
time_spent = time.time() - tic
|
| 180 |
-
if self.debug:
|
| 181 |
-
log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds")
|
| 182 |
-
else:
|
| 183 |
-
log.debug(f"Time spent on {self.context}: {time_spent:.4f} seconds")
|
| 184 |
-
return result
|
| 185 |
-
|
| 186 |
-
return wrapper # type: ignore
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
class Color:
|
| 190 |
-
"""A convenience class to colorize strings in the console.
|
| 191 |
-
|
| 192 |
-
Example:
|
| 193 |
-
import
|
| 194 |
-
print("This is {Color.red('important')}.")
|
| 195 |
-
"""
|
| 196 |
-
|
| 197 |
-
@staticmethod
|
| 198 |
-
def red(x: str) -> str:
|
| 199 |
-
return termcolor.colored(str(x), color="red")
|
| 200 |
-
|
| 201 |
-
@staticmethod
|
| 202 |
-
def green(x: str) -> str:
|
| 203 |
-
return termcolor.colored(str(x), color="green")
|
| 204 |
-
|
| 205 |
-
@staticmethod
|
| 206 |
-
def cyan(x: str) -> str:
|
| 207 |
-
return termcolor.colored(str(x), color="cyan")
|
| 208 |
-
|
| 209 |
-
@staticmethod
|
| 210 |
-
def yellow(x: str) -> str:
|
| 211 |
-
return termcolor.colored(str(x), color="yellow")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache/models--NeverMore0123--AutoregressiveVideo2WorldGeneration/blobs/a24d1a0cbbe184ab0a2bfb5cbee13bfd327810ae
DELETED
|
@@ -1,165 +0,0 @@
|
|
| 1 |
-
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 2 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
from __future__ import annotations
|
| 17 |
-
|
| 18 |
-
from typing import Any, TypeVar
|
| 19 |
-
|
| 20 |
-
import attrs
|
| 21 |
-
|
| 22 |
-
from .lazy_config_init import LazyDict
|
| 23 |
-
from .misc import Color
|
| 24 |
-
|
| 25 |
-
T = TypeVar("T")
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
def _is_attrs_instance(obj: object) -> bool:
|
| 29 |
-
"""
|
| 30 |
-
Helper function to check if an object is an instance of an attrs-defined class.
|
| 31 |
-
|
| 32 |
-
Args:
|
| 33 |
-
obj: The object to check.
|
| 34 |
-
|
| 35 |
-
Returns:
|
| 36 |
-
bool: True if the object is an instance of an attrs-defined class, False otherwise.
|
| 37 |
-
"""
|
| 38 |
-
return hasattr(obj, "__attrs_attrs__")
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
def make_freezable(cls: T) -> T:
|
| 42 |
-
"""
|
| 43 |
-
A decorator that adds the capability to freeze instances of an attrs-defined class.
|
| 44 |
-
|
| 45 |
-
NOTE: This requires the wrapped attrs to be defined with attrs.define(slots=False) because we need
|
| 46 |
-
to hack on a "_is_frozen" attribute.
|
| 47 |
-
|
| 48 |
-
This decorator enhances an attrs-defined class with the ability to be "frozen" at runtime.
|
| 49 |
-
Once an instance is frozen, its attributes cannot be changed. It also recursively freezes
|
| 50 |
-
any attrs-defined objects that are attributes of the class.
|
| 51 |
-
|
| 52 |
-
Usage:
|
| 53 |
-
@make_freezable
|
| 54 |
-
@attrs.define(slots=False)
|
| 55 |
-
class MyClass:
|
| 56 |
-
attribute1: int
|
| 57 |
-
attribute2: str
|
| 58 |
-
|
| 59 |
-
obj = MyClass(1, 'a')
|
| 60 |
-
obj.freeze() # Freeze the instance
|
| 61 |
-
obj.attribute1 = 2 # Raises AttributeError
|
| 62 |
-
|
| 63 |
-
Args:
|
| 64 |
-
cls: The class to be decorated.
|
| 65 |
-
|
| 66 |
-
Returns:
|
| 67 |
-
The decorated class with added freezing capability.
|
| 68 |
-
"""
|
| 69 |
-
|
| 70 |
-
if not hasattr(cls, "__dict__"):
|
| 71 |
-
raise TypeError(
|
| 72 |
-
"make_freezable cannot be used with classes that do not define __dict__. Make sure that the wrapped "
|
| 73 |
-
"class was defined with `@attrs.define(slots=False)`"
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
original_setattr = cls.__setattr__
|
| 77 |
-
|
| 78 |
-
def setattr_override(self, key, value) -> None: # noqa: ANN001
|
| 79 |
-
"""
|
| 80 |
-
Override __setattr__ to allow modifications during initialization
|
| 81 |
-
and prevent modifications once the instance is frozen.
|
| 82 |
-
"""
|
| 83 |
-
if hasattr(self, "_is_frozen") and self._is_frozen and key != "_is_frozen":
|
| 84 |
-
raise AttributeError("Cannot modify frozen instance")
|
| 85 |
-
original_setattr(self, key, value) # type: ignore
|
| 86 |
-
|
| 87 |
-
cls.__setattr__ = setattr_override # type: ignore
|
| 88 |
-
|
| 89 |
-
def freeze(self: object) -> None:
|
| 90 |
-
"""
|
| 91 |
-
Freeze the instance and all its attrs-defined attributes.
|
| 92 |
-
"""
|
| 93 |
-
for _, value in attrs.asdict(self, recurse=False).items():
|
| 94 |
-
if _is_attrs_instance(value) and hasattr(value, "freeze"):
|
| 95 |
-
value.freeze()
|
| 96 |
-
self._is_frozen = True # type: ignore
|
| 97 |
-
|
| 98 |
-
cls.freeze = freeze # type: ignore
|
| 99 |
-
|
| 100 |
-
return cls
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def _pretty_print_attrs_instance(obj: object, indent: int = 0, use_color: bool = False) -> str:
|
| 104 |
-
"""
|
| 105 |
-
Recursively pretty prints attrs objects with color.
|
| 106 |
-
"""
|
| 107 |
-
|
| 108 |
-
assert attrs.has(obj.__class__)
|
| 109 |
-
|
| 110 |
-
lines: list[str] = []
|
| 111 |
-
for attribute in attrs.fields(obj.__class__):
|
| 112 |
-
value = getattr(obj, attribute.name)
|
| 113 |
-
if attrs.has(value.__class__):
|
| 114 |
-
if use_color:
|
| 115 |
-
lines.append(" " * indent + Color.cyan("* ") + Color.green(attribute.name) + ":")
|
| 116 |
-
else:
|
| 117 |
-
lines.append(" " * indent + "* " + attribute.name + ":")
|
| 118 |
-
lines.append(_pretty_print_attrs_instance(value, indent + 1, use_color))
|
| 119 |
-
else:
|
| 120 |
-
if use_color:
|
| 121 |
-
lines.append(
|
| 122 |
-
" " * indent + Color.cyan("* ") + Color.green(attribute.name) + ": " + Color.yellow(value)
|
| 123 |
-
)
|
| 124 |
-
else:
|
| 125 |
-
lines.append(" " * indent + "* " + attribute.name + ": " + str(value))
|
| 126 |
-
return "\n".join(lines)
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
@make_freezable
|
| 130 |
-
@attrs.define(slots=False)
|
| 131 |
-
class JobConfig:
|
| 132 |
-
# Project name.
|
| 133 |
-
project: str = ""
|
| 134 |
-
# Experiment name.
|
| 135 |
-
group: str = ""
|
| 136 |
-
# Run/job name.
|
| 137 |
-
name: str = ""
|
| 138 |
-
|
| 139 |
-
@property
|
| 140 |
-
def path(self) -> str:
|
| 141 |
-
return f"{self.project}/{self.group}/{self.name}"
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
@make_freezable
|
| 145 |
-
@attrs.define(slots=False)
|
| 146 |
-
class Config:
|
| 147 |
-
"""Config for a job.
|
| 148 |
-
|
| 149 |
-
See /README.md/Configuration System for more info.
|
| 150 |
-
"""
|
| 151 |
-
|
| 152 |
-
# Model configs.
|
| 153 |
-
model: LazyDict
|
| 154 |
-
|
| 155 |
-
# Training job configs.
|
| 156 |
-
job: JobConfig = attrs.field(factory=JobConfig)
|
| 157 |
-
|
| 158 |
-
def to_dict(self) -> dict[str, Any]:
|
| 159 |
-
return attrs.asdict(self)
|
| 160 |
-
|
| 161 |
-
def validate(self) -> None:
|
| 162 |
-
"""Validate that the config has all required fields."""
|
| 163 |
-
assert self.job.project != "", "Project name is required."
|
| 164 |
-
assert self.job.group != "", "Group name is required."
|
| 165 |
-
assert self.job.name != "", "Job name is required."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|