Delta-Vector commited on
Commit
b7bb549
·
verified ·
1 Parent(s): 6c7a626

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MistralForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "head_dim": 128,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 32768,
13
+ "max_position_embeddings": 131072,
14
+ "model_type": "mistral",
15
+ "num_attention_heads": 32,
16
+ "num_hidden_layers": 40,
17
+ "num_key_value_heads": 8,
18
+ "rms_norm_eps": 1e-05,
19
+ "rope_theta": 1000000000.0,
20
+ "sliding_window": null,
21
+ "tie_word_embeddings": false,
22
+ "torch_dtype": "bfloat16",
23
+ "transformers_version": "4.51.3",
24
+ "use_cache": false,
25
+ "vocab_size": 131072
26
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "do_sample": true,
5
+ "eos_token_id": 2,
6
+ "transformers_version": "4.51.3"
7
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step229
model-00001-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2932c6ca76193bb2cb1ba5909551091e22e4e20c2fa2c36cca3cd77c054a8263
3
+ size 4781571736
model-00002-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b9415df40b10227fea2e12091ed9f38120b074d349c1f6bfd4d6b9adb6e3fb5
3
+ size 4781592784
model-00003-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af053515fb7a368798be753a823b71a731ccefa442cfbe8de37d2d17d0ffc505
3
+ size 4781592800
model-00004-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8fb54f34865ce4d04275096a9896b0d0726d6e0e96e7a42d1c2ea127a81cc69
3
+ size 4886471600
model-00005-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95cc51fba7765b840a057355427d4079b6b1735f2b81212a3ac138c3dcc03a93
3
+ size 4781592824
model-00006-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8068b6f2e09e4efedcd8475fad5b919b73c3ea2b82b72b9f36afd263b942ff97
3
+ size 4781592816
model-00007-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d462646ab870d0d28c78e0a06034b8a5b84c6fe59a4899a20604f8639d16deed
3
+ size 4886471600
model-00008-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03b3104bbe969a741bc5872de72a09f1aa0c12cd1ae12336110234541cfd62ee
3
+ size 4781592824
model-00009-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3885a22e297056b12307f3dfe905b2cc73433faecc7134b828279bfe5cdd227
3
+ size 4781592816
model-00010-of-00010.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd1abc985dff36d45cf513a47fd3a165a9487f5ecc5e81aa47536a6a94a86584
3
+ size 3900777072
model.safetensors.index.json ADDED
@@ -0,0 +1,370 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 47144806400
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00010-of-00010.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00010.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00010.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00010.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00003-of-00010.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00004-of-00010.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00004-of-00010.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00004-of-00010.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00004-of-00010.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00004-of-00010.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00005-of-00010.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00005-of-00010.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00005-of-00010.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00005-of-00010.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00010.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00006-of-00010.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00006-of-00010.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00006-of-00010.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00006-of-00010.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00007-of-00010.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00007-of-00010.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00007-of-00010.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00007-of-00010.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00007-of-00010.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00008-of-00010.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00002-of-00010.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00008-of-00010.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00008-of-00010.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00008-of-00010.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00009-of-00010.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00009-of-00010.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00009-of-00010.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00009-of-00010.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00010-of-00010.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00010-of-00010.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00010-of-00010.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00010-of-00010.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00010-of-00010.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00010-of-00010.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00010-of-00010.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00010-of-00010.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00010-of-00010.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00010-of-00010.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00010-of-00010.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00010-of-00010.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00010-of-00010.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00002-of-00010.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
323
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00010.safetensors",
324
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
325
+ "model.layers.5.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
326
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
327
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
328
+ "model.layers.5.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
329
+ "model.layers.5.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
330
+ "model.layers.5.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
331
+ "model.layers.5.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
332
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00010.safetensors",
333
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
334
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
335
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
336
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
337
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
338
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
339
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
340
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
341
+ "model.layers.7.input_layernorm.weight": "model-00003-of-00010.safetensors",
342
+ "model.layers.7.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
343
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
344
+ "model.layers.7.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
345
+ "model.layers.7.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
346
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
347
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
348
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
349
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
350
+ "model.layers.8.input_layernorm.weight": "model-00003-of-00010.safetensors",
351
+ "model.layers.8.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
352
+ "model.layers.8.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
353
+ "model.layers.8.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
354
+ "model.layers.8.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
355
+ "model.layers.8.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
356
+ "model.layers.8.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
357
+ "model.layers.8.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
358
+ "model.layers.8.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
359
+ "model.layers.9.input_layernorm.weight": "model-00003-of-00010.safetensors",
360
+ "model.layers.9.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
361
+ "model.layers.9.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
362
+ "model.layers.9.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
363
+ "model.layers.9.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
364
+ "model.layers.9.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
365
+ "model.layers.9.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
366
+ "model.layers.9.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
367
+ "model.layers.9.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
368
+ "model.norm.weight": "model-00010-of-00010.safetensors"
369
+ }
370
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f469fb6a869fe76761e1194ed0a7948ca397689bbc8ac0a9ea85a077fd50929
3
+ size 16389
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77e31efd49e7c2510fff79f966c879db58740a4187714c13003ffa53d0d441c5
3
+ size 16389
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:755aba68d004de8b7239e4451f96d8aaad4274ed7f03ec57d204f73d7b768a54
3
+ size 16389
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1e57948798e97ec4bd65e4f2bab0090fd58ab95e9d421be20702021446d2636
3
+ size 16389
rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7930f1c6dd64fe161f166b710675bea007029bf2a54e835287c8517c8d61b7e
3
+ size 16389
rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c098b3d19df4c6a4261105183eb9357e2715d784d681c1426e4bb88c847c317
3
+ size 16389
rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c914eacfcdfa6cf1a18175490235b8bf14f4521cc8ebda28a827fb8611e2958d
3
+ size 16389
rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad02907448ab52a0de6407d8cc85b4523850947654c14a8ca1a3772f6c8c9cf8
3
+ size 16389
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:295bdcf639363dd785518768a76e7a8e159d706da63702bed87e48e057b7a525
3
+ size 1465
special_tokens_map.json ADDED
@@ -0,0 +1,1032 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<unk>",
4
+ "<s>",
5
+ "</s>",
6
+ "[INST]",
7
+ "[/INST]",
8
+ "[AVAILABLE_TOOLS]",
9
+ "[/AVAILABLE_TOOLS]",
10
+ "[TOOL_RESULTS]",
11
+ "[/TOOL_RESULTS]",
12
+ "[TOOL_CALLS]",
13
+ "[IMG]",
14
+ "<pad>",
15
+ "[IMG_BREAK]",
16
+ "[IMG_END]",
17
+ "[PREFIX]",
18
+ "[MIDDLE]",
19
+ "[SUFFIX]",
20
+ "[SYSTEM_PROMPT]",
21
+ "[/SYSTEM_PROMPT]",
22
+ "[TOOL_CONTENT]",
23
+ "<SPECIAL_20>",
24
+ "<SPECIAL_21>",
25
+ "<SPECIAL_22>",
26
+ "<SPECIAL_23>",
27
+ "<SPECIAL_24>",
28
+ "<SPECIAL_25>",
29
+ "<SPECIAL_26>",
30
+ "<SPECIAL_27>",
31
+ "<SPECIAL_28>",
32
+ "<SPECIAL_29>",
33
+ "<SPECIAL_30>",
34
+ "<SPECIAL_31>",
35
+ "<SPECIAL_32>",
36
+ "<SPECIAL_33>",
37
+ "<SPECIAL_34>",
38
+ "<SPECIAL_35>",
39
+ "<SPECIAL_36>",
40
+ "<SPECIAL_37>",
41
+ "<SPECIAL_38>",
42
+ "<SPECIAL_39>",
43
+ "<SPECIAL_40>",
44
+ "<SPECIAL_41>",
45
+ "<SPECIAL_42>",
46
+ "<SPECIAL_43>",
47
+ "<SPECIAL_44>",
48
+ "<SPECIAL_45>",
49
+ "<SPECIAL_46>",
50
+ "<SPECIAL_47>",
51
+ "<SPECIAL_48>",
52
+ "<SPECIAL_49>",
53
+ "<SPECIAL_50>",
54
+ "<SPECIAL_51>",
55
+ "<SPECIAL_52>",
56
+ "<SPECIAL_53>",
57
+ "<SPECIAL_54>",
58
+ "<SPECIAL_55>",
59
+ "<SPECIAL_56>",
60
+ "<SPECIAL_57>",
61
+ "<SPECIAL_58>",
62
+ "<SPECIAL_59>",
63
+ "<SPECIAL_60>",
64
+ "<SPECIAL_61>",
65
+ "<SPECIAL_62>",
66
+ "<SPECIAL_63>",
67
+ "<SPECIAL_64>",
68
+ "<SPECIAL_65>",
69
+ "<SPECIAL_66>",
70
+ "<SPECIAL_67>",
71
+ "<SPECIAL_68>",
72
+ "<SPECIAL_69>",
73
+ "<SPECIAL_70>",
74
+ "<SPECIAL_71>",
75
+ "<SPECIAL_72>",
76
+ "<SPECIAL_73>",
77
+ "<SPECIAL_74>",
78
+ "<SPECIAL_75>",
79
+ "<SPECIAL_76>",
80
+ "<SPECIAL_77>",
81
+ "<SPECIAL_78>",
82
+ "<SPECIAL_79>",
83
+ "<SPECIAL_80>",
84
+ "<SPECIAL_81>",
85
+ "<SPECIAL_82>",
86
+ "<SPECIAL_83>",
87
+ "<SPECIAL_84>",
88
+ "<SPECIAL_85>",
89
+ "<SPECIAL_86>",
90
+ "<SPECIAL_87>",
91
+ "<SPECIAL_88>",
92
+ "<SPECIAL_89>",
93
+ "<SPECIAL_90>",
94
+ "<SPECIAL_91>",
95
+ "<SPECIAL_92>",
96
+ "<SPECIAL_93>",
97
+ "<SPECIAL_94>",
98
+ "<SPECIAL_95>",
99
+ "<SPECIAL_96>",
100
+ "<SPECIAL_97>",
101
+ "<SPECIAL_98>",
102
+ "<SPECIAL_99>",
103
+ "<SPECIAL_100>",
104
+ "<SPECIAL_101>",
105
+ "<SPECIAL_102>",
106
+ "<SPECIAL_103>",
107
+ "<SPECIAL_104>",
108
+ "<SPECIAL_105>",
109
+ "<SPECIAL_106>",
110
+ "<SPECIAL_107>",
111
+ "<SPECIAL_108>",
112
+ "<SPECIAL_109>",
113
+ "<SPECIAL_110>",
114
+ "<SPECIAL_111>",
115
+ "<SPECIAL_112>",
116
+ "<SPECIAL_113>",
117
+ "<SPECIAL_114>",
118
+ "<SPECIAL_115>",
119
+ "<SPECIAL_116>",
120
+ "<SPECIAL_117>",
121
+ "<SPECIAL_118>",
122
+ "<SPECIAL_119>",
123
+ "<SPECIAL_120>",
124
+ "<SPECIAL_121>",
125
+ "<SPECIAL_122>",
126
+ "<SPECIAL_123>",
127
+ "<SPECIAL_124>",
128
+ "<SPECIAL_125>",
129
+ "<SPECIAL_126>",
130
+ "<SPECIAL_127>",
131
+ "<SPECIAL_128>",
132
+ "<SPECIAL_129>",
133
+ "<SPECIAL_130>",
134
+ "<SPECIAL_131>",
135
+ "<SPECIAL_132>",
136
+ "<SPECIAL_133>",
137
+ "<SPECIAL_134>",
138
+ "<SPECIAL_135>",
139
+ "<SPECIAL_136>",
140
+ "<SPECIAL_137>",
141
+ "<SPECIAL_138>",
142
+ "<SPECIAL_139>",
143
+ "<SPECIAL_140>",
144
+ "<SPECIAL_141>",
145
+ "<SPECIAL_142>",
146
+ "<SPECIAL_143>",
147
+ "<SPECIAL_144>",
148
+ "<SPECIAL_145>",
149
+ "<SPECIAL_146>",
150
+ "<SPECIAL_147>",
151
+ "<SPECIAL_148>",
152
+ "<SPECIAL_149>",
153
+ "<SPECIAL_150>",
154
+ "<SPECIAL_151>",
155
+ "<SPECIAL_152>",
156
+ "<SPECIAL_153>",
157
+ "<SPECIAL_154>",
158
+ "<SPECIAL_155>",
159
+ "<SPECIAL_156>",
160
+ "<SPECIAL_157>",
161
+ "<SPECIAL_158>",
162
+ "<SPECIAL_159>",
163
+ "<SPECIAL_160>",
164
+ "<SPECIAL_161>",
165
+ "<SPECIAL_162>",
166
+ "<SPECIAL_163>",
167
+ "<SPECIAL_164>",
168
+ "<SPECIAL_165>",
169
+ "<SPECIAL_166>",
170
+ "<SPECIAL_167>",
171
+ "<SPECIAL_168>",
172
+ "<SPECIAL_169>",
173
+ "<SPECIAL_170>",
174
+ "<SPECIAL_171>",
175
+ "<SPECIAL_172>",
176
+ "<SPECIAL_173>",
177
+ "<SPECIAL_174>",
178
+ "<SPECIAL_175>",
179
+ "<SPECIAL_176>",
180
+ "<SPECIAL_177>",
181
+ "<SPECIAL_178>",
182
+ "<SPECIAL_179>",
183
+ "<SPECIAL_180>",
184
+ "<SPECIAL_181>",
185
+ "<SPECIAL_182>",
186
+ "<SPECIAL_183>",
187
+ "<SPECIAL_184>",
188
+ "<SPECIAL_185>",
189
+ "<SPECIAL_186>",
190
+ "<SPECIAL_187>",
191
+ "<SPECIAL_188>",
192
+ "<SPECIAL_189>",
193
+ "<SPECIAL_190>",
194
+ "<SPECIAL_191>",
195
+ "<SPECIAL_192>",
196
+ "<SPECIAL_193>",
197
+ "<SPECIAL_194>",
198
+ "<SPECIAL_195>",
199
+ "<SPECIAL_196>",
200
+ "<SPECIAL_197>",
201
+ "<SPECIAL_198>",
202
+ "<SPECIAL_199>",
203
+ "<SPECIAL_200>",
204
+ "<SPECIAL_201>",
205
+ "<SPECIAL_202>",
206
+ "<SPECIAL_203>",
207
+ "<SPECIAL_204>",
208
+ "<SPECIAL_205>",
209
+ "<SPECIAL_206>",
210
+ "<SPECIAL_207>",
211
+ "<SPECIAL_208>",
212
+ "<SPECIAL_209>",
213
+ "<SPECIAL_210>",
214
+ "<SPECIAL_211>",
215
+ "<SPECIAL_212>",
216
+ "<SPECIAL_213>",
217
+ "<SPECIAL_214>",
218
+ "<SPECIAL_215>",
219
+ "<SPECIAL_216>",
220
+ "<SPECIAL_217>",
221
+ "<SPECIAL_218>",
222
+ "<SPECIAL_219>",
223
+ "<SPECIAL_220>",
224
+ "<SPECIAL_221>",
225
+ "<SPECIAL_222>",
226
+ "<SPECIAL_223>",
227
+ "<SPECIAL_224>",
228
+ "<SPECIAL_225>",
229
+ "<SPECIAL_226>",
230
+ "<SPECIAL_227>",
231
+ "<SPECIAL_228>",
232
+ "<SPECIAL_229>",
233
+ "<SPECIAL_230>",
234
+ "<SPECIAL_231>",
235
+ "<SPECIAL_232>",
236
+ "<SPECIAL_233>",
237
+ "<SPECIAL_234>",
238
+ "<SPECIAL_235>",
239
+ "<SPECIAL_236>",
240
+ "<SPECIAL_237>",
241
+ "<SPECIAL_238>",
242
+ "<SPECIAL_239>",
243
+ "<SPECIAL_240>",
244
+ "<SPECIAL_241>",
245
+ "<SPECIAL_242>",
246
+ "<SPECIAL_243>",
247
+ "<SPECIAL_244>",
248
+ "<SPECIAL_245>",
249
+ "<SPECIAL_246>",
250
+ "<SPECIAL_247>",
251
+ "<SPECIAL_248>",
252
+ "<SPECIAL_249>",
253
+ "<SPECIAL_250>",
254
+ "<SPECIAL_251>",
255
+ "<SPECIAL_252>",
256
+ "<SPECIAL_253>",
257
+ "<SPECIAL_254>",
258
+ "<SPECIAL_255>",
259
+ "<SPECIAL_256>",
260
+ "<SPECIAL_257>",
261
+ "<SPECIAL_258>",
262
+ "<SPECIAL_259>",
263
+ "<SPECIAL_260>",
264
+ "<SPECIAL_261>",
265
+ "<SPECIAL_262>",
266
+ "<SPECIAL_263>",
267
+ "<SPECIAL_264>",
268
+ "<SPECIAL_265>",
269
+ "<SPECIAL_266>",
270
+ "<SPECIAL_267>",
271
+ "<SPECIAL_268>",
272
+ "<SPECIAL_269>",
273
+ "<SPECIAL_270>",
274
+ "<SPECIAL_271>",
275
+ "<SPECIAL_272>",
276
+ "<SPECIAL_273>",
277
+ "<SPECIAL_274>",
278
+ "<SPECIAL_275>",
279
+ "<SPECIAL_276>",
280
+ "<SPECIAL_277>",
281
+ "<SPECIAL_278>",
282
+ "<SPECIAL_279>",
283
+ "<SPECIAL_280>",
284
+ "<SPECIAL_281>",
285
+ "<SPECIAL_282>",
286
+ "<SPECIAL_283>",
287
+ "<SPECIAL_284>",
288
+ "<SPECIAL_285>",
289
+ "<SPECIAL_286>",
290
+ "<SPECIAL_287>",
291
+ "<SPECIAL_288>",
292
+ "<SPECIAL_289>",
293
+ "<SPECIAL_290>",
294
+ "<SPECIAL_291>",
295
+ "<SPECIAL_292>",
296
+ "<SPECIAL_293>",
297
+ "<SPECIAL_294>",
298
+ "<SPECIAL_295>",
299
+ "<SPECIAL_296>",
300
+ "<SPECIAL_297>",
301
+ "<SPECIAL_298>",
302
+ "<SPECIAL_299>",
303
+ "<SPECIAL_300>",
304
+ "<SPECIAL_301>",
305
+ "<SPECIAL_302>",
306
+ "<SPECIAL_303>",
307
+ "<SPECIAL_304>",
308
+ "<SPECIAL_305>",
309
+ "<SPECIAL_306>",
310
+ "<SPECIAL_307>",
311
+ "<SPECIAL_308>",
312
+ "<SPECIAL_309>",
313
+ "<SPECIAL_310>",
314
+ "<SPECIAL_311>",
315
+ "<SPECIAL_312>",
316
+ "<SPECIAL_313>",
317
+ "<SPECIAL_314>",
318
+ "<SPECIAL_315>",
319
+ "<SPECIAL_316>",
320
+ "<SPECIAL_317>",
321
+ "<SPECIAL_318>",
322
+ "<SPECIAL_319>",
323
+ "<SPECIAL_320>",
324
+ "<SPECIAL_321>",
325
+ "<SPECIAL_322>",
326
+ "<SPECIAL_323>",
327
+ "<SPECIAL_324>",
328
+ "<SPECIAL_325>",
329
+ "<SPECIAL_326>",
330
+ "<SPECIAL_327>",
331
+ "<SPECIAL_328>",
332
+ "<SPECIAL_329>",
333
+ "<SPECIAL_330>",
334
+ "<SPECIAL_331>",
335
+ "<SPECIAL_332>",
336
+ "<SPECIAL_333>",
337
+ "<SPECIAL_334>",
338
+ "<SPECIAL_335>",
339
+ "<SPECIAL_336>",
340
+ "<SPECIAL_337>",
341
+ "<SPECIAL_338>",
342
+ "<SPECIAL_339>",
343
+ "<SPECIAL_340>",
344
+ "<SPECIAL_341>",
345
+ "<SPECIAL_342>",
346
+ "<SPECIAL_343>",
347
+ "<SPECIAL_344>",
348
+ "<SPECIAL_345>",
349
+ "<SPECIAL_346>",
350
+ "<SPECIAL_347>",
351
+ "<SPECIAL_348>",
352
+ "<SPECIAL_349>",
353
+ "<SPECIAL_350>",
354
+ "<SPECIAL_351>",
355
+ "<SPECIAL_352>",
356
+ "<SPECIAL_353>",
357
+ "<SPECIAL_354>",
358
+ "<SPECIAL_355>",
359
+ "<SPECIAL_356>",
360
+ "<SPECIAL_357>",
361
+ "<SPECIAL_358>",
362
+ "<SPECIAL_359>",
363
+ "<SPECIAL_360>",
364
+ "<SPECIAL_361>",
365
+ "<SPECIAL_362>",
366
+ "<SPECIAL_363>",
367
+ "<SPECIAL_364>",
368
+ "<SPECIAL_365>",
369
+ "<SPECIAL_366>",
370
+ "<SPECIAL_367>",
371
+ "<SPECIAL_368>",
372
+ "<SPECIAL_369>",
373
+ "<SPECIAL_370>",
374
+ "<SPECIAL_371>",
375
+ "<SPECIAL_372>",
376
+ "<SPECIAL_373>",
377
+ "<SPECIAL_374>",
378
+ "<SPECIAL_375>",
379
+ "<SPECIAL_376>",
380
+ "<SPECIAL_377>",
381
+ "<SPECIAL_378>",
382
+ "<SPECIAL_379>",
383
+ "<SPECIAL_380>",
384
+ "<SPECIAL_381>",
385
+ "<SPECIAL_382>",
386
+ "<SPECIAL_383>",
387
+ "<SPECIAL_384>",
388
+ "<SPECIAL_385>",
389
+ "<SPECIAL_386>",
390
+ "<SPECIAL_387>",
391
+ "<SPECIAL_388>",
392
+ "<SPECIAL_389>",
393
+ "<SPECIAL_390>",
394
+ "<SPECIAL_391>",
395
+ "<SPECIAL_392>",
396
+ "<SPECIAL_393>",
397
+ "<SPECIAL_394>",
398
+ "<SPECIAL_395>",
399
+ "<SPECIAL_396>",
400
+ "<SPECIAL_397>",
401
+ "<SPECIAL_398>",
402
+ "<SPECIAL_399>",
403
+ "<SPECIAL_400>",
404
+ "<SPECIAL_401>",
405
+ "<SPECIAL_402>",
406
+ "<SPECIAL_403>",
407
+ "<SPECIAL_404>",
408
+ "<SPECIAL_405>",
409
+ "<SPECIAL_406>",
410
+ "<SPECIAL_407>",
411
+ "<SPECIAL_408>",
412
+ "<SPECIAL_409>",
413
+ "<SPECIAL_410>",
414
+ "<SPECIAL_411>",
415
+ "<SPECIAL_412>",
416
+ "<SPECIAL_413>",
417
+ "<SPECIAL_414>",
418
+ "<SPECIAL_415>",
419
+ "<SPECIAL_416>",
420
+ "<SPECIAL_417>",
421
+ "<SPECIAL_418>",
422
+ "<SPECIAL_419>",
423
+ "<SPECIAL_420>",
424
+ "<SPECIAL_421>",
425
+ "<SPECIAL_422>",
426
+ "<SPECIAL_423>",
427
+ "<SPECIAL_424>",
428
+ "<SPECIAL_425>",
429
+ "<SPECIAL_426>",
430
+ "<SPECIAL_427>",
431
+ "<SPECIAL_428>",
432
+ "<SPECIAL_429>",
433
+ "<SPECIAL_430>",
434
+ "<SPECIAL_431>",
435
+ "<SPECIAL_432>",
436
+ "<SPECIAL_433>",
437
+ "<SPECIAL_434>",
438
+ "<SPECIAL_435>",
439
+ "<SPECIAL_436>",
440
+ "<SPECIAL_437>",
441
+ "<SPECIAL_438>",
442
+ "<SPECIAL_439>",
443
+ "<SPECIAL_440>",
444
+ "<SPECIAL_441>",
445
+ "<SPECIAL_442>",
446
+ "<SPECIAL_443>",
447
+ "<SPECIAL_444>",
448
+ "<SPECIAL_445>",
449
+ "<SPECIAL_446>",
450
+ "<SPECIAL_447>",
451
+ "<SPECIAL_448>",
452
+ "<SPECIAL_449>",
453
+ "<SPECIAL_450>",
454
+ "<SPECIAL_451>",
455
+ "<SPECIAL_452>",
456
+ "<SPECIAL_453>",
457
+ "<SPECIAL_454>",
458
+ "<SPECIAL_455>",
459
+ "<SPECIAL_456>",
460
+ "<SPECIAL_457>",
461
+ "<SPECIAL_458>",
462
+ "<SPECIAL_459>",
463
+ "<SPECIAL_460>",
464
+ "<SPECIAL_461>",
465
+ "<SPECIAL_462>",
466
+ "<SPECIAL_463>",
467
+ "<SPECIAL_464>",
468
+ "<SPECIAL_465>",
469
+ "<SPECIAL_466>",
470
+ "<SPECIAL_467>",
471
+ "<SPECIAL_468>",
472
+ "<SPECIAL_469>",
473
+ "<SPECIAL_470>",
474
+ "<SPECIAL_471>",
475
+ "<SPECIAL_472>",
476
+ "<SPECIAL_473>",
477
+ "<SPECIAL_474>",
478
+ "<SPECIAL_475>",
479
+ "<SPECIAL_476>",
480
+ "<SPECIAL_477>",
481
+ "<SPECIAL_478>",
482
+ "<SPECIAL_479>",
483
+ "<SPECIAL_480>",
484
+ "<SPECIAL_481>",
485
+ "<SPECIAL_482>",
486
+ "<SPECIAL_483>",
487
+ "<SPECIAL_484>",
488
+ "<SPECIAL_485>",
489
+ "<SPECIAL_486>",
490
+ "<SPECIAL_487>",
491
+ "<SPECIAL_488>",
492
+ "<SPECIAL_489>",
493
+ "<SPECIAL_490>",
494
+ "<SPECIAL_491>",
495
+ "<SPECIAL_492>",
496
+ "<SPECIAL_493>",
497
+ "<SPECIAL_494>",
498
+ "<SPECIAL_495>",
499
+ "<SPECIAL_496>",
500
+ "<SPECIAL_497>",
501
+ "<SPECIAL_498>",
502
+ "<SPECIAL_499>",
503
+ "<SPECIAL_500>",
504
+ "<SPECIAL_501>",
505
+ "<SPECIAL_502>",
506
+ "<SPECIAL_503>",
507
+ "<SPECIAL_504>",
508
+ "<SPECIAL_505>",
509
+ "<SPECIAL_506>",
510
+ "<SPECIAL_507>",
511
+ "<SPECIAL_508>",
512
+ "<SPECIAL_509>",
513
+ "<SPECIAL_510>",
514
+ "<SPECIAL_511>",
515
+ "<SPECIAL_512>",
516
+ "<SPECIAL_513>",
517
+ "<SPECIAL_514>",
518
+ "<SPECIAL_515>",
519
+ "<SPECIAL_516>",
520
+ "<SPECIAL_517>",
521
+ "<SPECIAL_518>",
522
+ "<SPECIAL_519>",
523
+ "<SPECIAL_520>",
524
+ "<SPECIAL_521>",
525
+ "<SPECIAL_522>",
526
+ "<SPECIAL_523>",
527
+ "<SPECIAL_524>",
528
+ "<SPECIAL_525>",
529
+ "<SPECIAL_526>",
530
+ "<SPECIAL_527>",
531
+ "<SPECIAL_528>",
532
+ "<SPECIAL_529>",
533
+ "<SPECIAL_530>",
534
+ "<SPECIAL_531>",
535
+ "<SPECIAL_532>",
536
+ "<SPECIAL_533>",
537
+ "<SPECIAL_534>",
538
+ "<SPECIAL_535>",
539
+ "<SPECIAL_536>",
540
+ "<SPECIAL_537>",
541
+ "<SPECIAL_538>",
542
+ "<SPECIAL_539>",
543
+ "<SPECIAL_540>",
544
+ "<SPECIAL_541>",
545
+ "<SPECIAL_542>",
546
+ "<SPECIAL_543>",
547
+ "<SPECIAL_544>",
548
+ "<SPECIAL_545>",
549
+ "<SPECIAL_546>",
550
+ "<SPECIAL_547>",
551
+ "<SPECIAL_548>",
552
+ "<SPECIAL_549>",
553
+ "<SPECIAL_550>",
554
+ "<SPECIAL_551>",
555
+ "<SPECIAL_552>",
556
+ "<SPECIAL_553>",
557
+ "<SPECIAL_554>",
558
+ "<SPECIAL_555>",
559
+ "<SPECIAL_556>",
560
+ "<SPECIAL_557>",
561
+ "<SPECIAL_558>",
562
+ "<SPECIAL_559>",
563
+ "<SPECIAL_560>",
564
+ "<SPECIAL_561>",
565
+ "<SPECIAL_562>",
566
+ "<SPECIAL_563>",
567
+ "<SPECIAL_564>",
568
+ "<SPECIAL_565>",
569
+ "<SPECIAL_566>",
570
+ "<SPECIAL_567>",
571
+ "<SPECIAL_568>",
572
+ "<SPECIAL_569>",
573
+ "<SPECIAL_570>",
574
+ "<SPECIAL_571>",
575
+ "<SPECIAL_572>",
576
+ "<SPECIAL_573>",
577
+ "<SPECIAL_574>",
578
+ "<SPECIAL_575>",
579
+ "<SPECIAL_576>",
580
+ "<SPECIAL_577>",
581
+ "<SPECIAL_578>",
582
+ "<SPECIAL_579>",
583
+ "<SPECIAL_580>",
584
+ "<SPECIAL_581>",
585
+ "<SPECIAL_582>",
586
+ "<SPECIAL_583>",
587
+ "<SPECIAL_584>",
588
+ "<SPECIAL_585>",
589
+ "<SPECIAL_586>",
590
+ "<SPECIAL_587>",
591
+ "<SPECIAL_588>",
592
+ "<SPECIAL_589>",
593
+ "<SPECIAL_590>",
594
+ "<SPECIAL_591>",
595
+ "<SPECIAL_592>",
596
+ "<SPECIAL_593>",
597
+ "<SPECIAL_594>",
598
+ "<SPECIAL_595>",
599
+ "<SPECIAL_596>",
600
+ "<SPECIAL_597>",
601
+ "<SPECIAL_598>",
602
+ "<SPECIAL_599>",
603
+ "<SPECIAL_600>",
604
+ "<SPECIAL_601>",
605
+ "<SPECIAL_602>",
606
+ "<SPECIAL_603>",
607
+ "<SPECIAL_604>",
608
+ "<SPECIAL_605>",
609
+ "<SPECIAL_606>",
610
+ "<SPECIAL_607>",
611
+ "<SPECIAL_608>",
612
+ "<SPECIAL_609>",
613
+ "<SPECIAL_610>",
614
+ "<SPECIAL_611>",
615
+ "<SPECIAL_612>",
616
+ "<SPECIAL_613>",
617
+ "<SPECIAL_614>",
618
+ "<SPECIAL_615>",
619
+ "<SPECIAL_616>",
620
+ "<SPECIAL_617>",
621
+ "<SPECIAL_618>",
622
+ "<SPECIAL_619>",
623
+ "<SPECIAL_620>",
624
+ "<SPECIAL_621>",
625
+ "<SPECIAL_622>",
626
+ "<SPECIAL_623>",
627
+ "<SPECIAL_624>",
628
+ "<SPECIAL_625>",
629
+ "<SPECIAL_626>",
630
+ "<SPECIAL_627>",
631
+ "<SPECIAL_628>",
632
+ "<SPECIAL_629>",
633
+ "<SPECIAL_630>",
634
+ "<SPECIAL_631>",
635
+ "<SPECIAL_632>",
636
+ "<SPECIAL_633>",
637
+ "<SPECIAL_634>",
638
+ "<SPECIAL_635>",
639
+ "<SPECIAL_636>",
640
+ "<SPECIAL_637>",
641
+ "<SPECIAL_638>",
642
+ "<SPECIAL_639>",
643
+ "<SPECIAL_640>",
644
+ "<SPECIAL_641>",
645
+ "<SPECIAL_642>",
646
+ "<SPECIAL_643>",
647
+ "<SPECIAL_644>",
648
+ "<SPECIAL_645>",
649
+ "<SPECIAL_646>",
650
+ "<SPECIAL_647>",
651
+ "<SPECIAL_648>",
652
+ "<SPECIAL_649>",
653
+ "<SPECIAL_650>",
654
+ "<SPECIAL_651>",
655
+ "<SPECIAL_652>",
656
+ "<SPECIAL_653>",
657
+ "<SPECIAL_654>",
658
+ "<SPECIAL_655>",
659
+ "<SPECIAL_656>",
660
+ "<SPECIAL_657>",
661
+ "<SPECIAL_658>",
662
+ "<SPECIAL_659>",
663
+ "<SPECIAL_660>",
664
+ "<SPECIAL_661>",
665
+ "<SPECIAL_662>",
666
+ "<SPECIAL_663>",
667
+ "<SPECIAL_664>",
668
+ "<SPECIAL_665>",
669
+ "<SPECIAL_666>",
670
+ "<SPECIAL_667>",
671
+ "<SPECIAL_668>",
672
+ "<SPECIAL_669>",
673
+ "<SPECIAL_670>",
674
+ "<SPECIAL_671>",
675
+ "<SPECIAL_672>",
676
+ "<SPECIAL_673>",
677
+ "<SPECIAL_674>",
678
+ "<SPECIAL_675>",
679
+ "<SPECIAL_676>",
680
+ "<SPECIAL_677>",
681
+ "<SPECIAL_678>",
682
+ "<SPECIAL_679>",
683
+ "<SPECIAL_680>",
684
+ "<SPECIAL_681>",
685
+ "<SPECIAL_682>",
686
+ "<SPECIAL_683>",
687
+ "<SPECIAL_684>",
688
+ "<SPECIAL_685>",
689
+ "<SPECIAL_686>",
690
+ "<SPECIAL_687>",
691
+ "<SPECIAL_688>",
692
+ "<SPECIAL_689>",
693
+ "<SPECIAL_690>",
694
+ "<SPECIAL_691>",
695
+ "<SPECIAL_692>",
696
+ "<SPECIAL_693>",
697
+ "<SPECIAL_694>",
698
+ "<SPECIAL_695>",
699
+ "<SPECIAL_696>",
700
+ "<SPECIAL_697>",
701
+ "<SPECIAL_698>",
702
+ "<SPECIAL_699>",
703
+ "<SPECIAL_700>",
704
+ "<SPECIAL_701>",
705
+ "<SPECIAL_702>",
706
+ "<SPECIAL_703>",
707
+ "<SPECIAL_704>",
708
+ "<SPECIAL_705>",
709
+ "<SPECIAL_706>",
710
+ "<SPECIAL_707>",
711
+ "<SPECIAL_708>",
712
+ "<SPECIAL_709>",
713
+ "<SPECIAL_710>",
714
+ "<SPECIAL_711>",
715
+ "<SPECIAL_712>",
716
+ "<SPECIAL_713>",
717
+ "<SPECIAL_714>",
718
+ "<SPECIAL_715>",
719
+ "<SPECIAL_716>",
720
+ "<SPECIAL_717>",
721
+ "<SPECIAL_718>",
722
+ "<SPECIAL_719>",
723
+ "<SPECIAL_720>",
724
+ "<SPECIAL_721>",
725
+ "<SPECIAL_722>",
726
+ "<SPECIAL_723>",
727
+ "<SPECIAL_724>",
728
+ "<SPECIAL_725>",
729
+ "<SPECIAL_726>",
730
+ "<SPECIAL_727>",
731
+ "<SPECIAL_728>",
732
+ "<SPECIAL_729>",
733
+ "<SPECIAL_730>",
734
+ "<SPECIAL_731>",
735
+ "<SPECIAL_732>",
736
+ "<SPECIAL_733>",
737
+ "<SPECIAL_734>",
738
+ "<SPECIAL_735>",
739
+ "<SPECIAL_736>",
740
+ "<SPECIAL_737>",
741
+ "<SPECIAL_738>",
742
+ "<SPECIAL_739>",
743
+ "<SPECIAL_740>",
744
+ "<SPECIAL_741>",
745
+ "<SPECIAL_742>",
746
+ "<SPECIAL_743>",
747
+ "<SPECIAL_744>",
748
+ "<SPECIAL_745>",
749
+ "<SPECIAL_746>",
750
+ "<SPECIAL_747>",
751
+ "<SPECIAL_748>",
752
+ "<SPECIAL_749>",
753
+ "<SPECIAL_750>",
754
+ "<SPECIAL_751>",
755
+ "<SPECIAL_752>",
756
+ "<SPECIAL_753>",
757
+ "<SPECIAL_754>",
758
+ "<SPECIAL_755>",
759
+ "<SPECIAL_756>",
760
+ "<SPECIAL_757>",
761
+ "<SPECIAL_758>",
762
+ "<SPECIAL_759>",
763
+ "<SPECIAL_760>",
764
+ "<SPECIAL_761>",
765
+ "<SPECIAL_762>",
766
+ "<SPECIAL_763>",
767
+ "<SPECIAL_764>",
768
+ "<SPECIAL_765>",
769
+ "<SPECIAL_766>",
770
+ "<SPECIAL_767>",
771
+ "<SPECIAL_768>",
772
+ "<SPECIAL_769>",
773
+ "<SPECIAL_770>",
774
+ "<SPECIAL_771>",
775
+ "<SPECIAL_772>",
776
+ "<SPECIAL_773>",
777
+ "<SPECIAL_774>",
778
+ "<SPECIAL_775>",
779
+ "<SPECIAL_776>",
780
+ "<SPECIAL_777>",
781
+ "<SPECIAL_778>",
782
+ "<SPECIAL_779>",
783
+ "<SPECIAL_780>",
784
+ "<SPECIAL_781>",
785
+ "<SPECIAL_782>",
786
+ "<SPECIAL_783>",
787
+ "<SPECIAL_784>",
788
+ "<SPECIAL_785>",
789
+ "<SPECIAL_786>",
790
+ "<SPECIAL_787>",
791
+ "<SPECIAL_788>",
792
+ "<SPECIAL_789>",
793
+ "<SPECIAL_790>",
794
+ "<SPECIAL_791>",
795
+ "<SPECIAL_792>",
796
+ "<SPECIAL_793>",
797
+ "<SPECIAL_794>",
798
+ "<SPECIAL_795>",
799
+ "<SPECIAL_796>",
800
+ "<SPECIAL_797>",
801
+ "<SPECIAL_798>",
802
+ "<SPECIAL_799>",
803
+ "<SPECIAL_800>",
804
+ "<SPECIAL_801>",
805
+ "<SPECIAL_802>",
806
+ "<SPECIAL_803>",
807
+ "<SPECIAL_804>",
808
+ "<SPECIAL_805>",
809
+ "<SPECIAL_806>",
810
+ "<SPECIAL_807>",
811
+ "<SPECIAL_808>",
812
+ "<SPECIAL_809>",
813
+ "<SPECIAL_810>",
814
+ "<SPECIAL_811>",
815
+ "<SPECIAL_812>",
816
+ "<SPECIAL_813>",
817
+ "<SPECIAL_814>",
818
+ "<SPECIAL_815>",
819
+ "<SPECIAL_816>",
820
+ "<SPECIAL_817>",
821
+ "<SPECIAL_818>",
822
+ "<SPECIAL_819>",
823
+ "<SPECIAL_820>",
824
+ "<SPECIAL_821>",
825
+ "<SPECIAL_822>",
826
+ "<SPECIAL_823>",
827
+ "<SPECIAL_824>",
828
+ "<SPECIAL_825>",
829
+ "<SPECIAL_826>",
830
+ "<SPECIAL_827>",
831
+ "<SPECIAL_828>",
832
+ "<SPECIAL_829>",
833
+ "<SPECIAL_830>",
834
+ "<SPECIAL_831>",
835
+ "<SPECIAL_832>",
836
+ "<SPECIAL_833>",
837
+ "<SPECIAL_834>",
838
+ "<SPECIAL_835>",
839
+ "<SPECIAL_836>",
840
+ "<SPECIAL_837>",
841
+ "<SPECIAL_838>",
842
+ "<SPECIAL_839>",
843
+ "<SPECIAL_840>",
844
+ "<SPECIAL_841>",
845
+ "<SPECIAL_842>",
846
+ "<SPECIAL_843>",
847
+ "<SPECIAL_844>",
848
+ "<SPECIAL_845>",
849
+ "<SPECIAL_846>",
850
+ "<SPECIAL_847>",
851
+ "<SPECIAL_848>",
852
+ "<SPECIAL_849>",
853
+ "<SPECIAL_850>",
854
+ "<SPECIAL_851>",
855
+ "<SPECIAL_852>",
856
+ "<SPECIAL_853>",
857
+ "<SPECIAL_854>",
858
+ "<SPECIAL_855>",
859
+ "<SPECIAL_856>",
860
+ "<SPECIAL_857>",
861
+ "<SPECIAL_858>",
862
+ "<SPECIAL_859>",
863
+ "<SPECIAL_860>",
864
+ "<SPECIAL_861>",
865
+ "<SPECIAL_862>",
866
+ "<SPECIAL_863>",
867
+ "<SPECIAL_864>",
868
+ "<SPECIAL_865>",
869
+ "<SPECIAL_866>",
870
+ "<SPECIAL_867>",
871
+ "<SPECIAL_868>",
872
+ "<SPECIAL_869>",
873
+ "<SPECIAL_870>",
874
+ "<SPECIAL_871>",
875
+ "<SPECIAL_872>",
876
+ "<SPECIAL_873>",
877
+ "<SPECIAL_874>",
878
+ "<SPECIAL_875>",
879
+ "<SPECIAL_876>",
880
+ "<SPECIAL_877>",
881
+ "<SPECIAL_878>",
882
+ "<SPECIAL_879>",
883
+ "<SPECIAL_880>",
884
+ "<SPECIAL_881>",
885
+ "<SPECIAL_882>",
886
+ "<SPECIAL_883>",
887
+ "<SPECIAL_884>",
888
+ "<SPECIAL_885>",
889
+ "<SPECIAL_886>",
890
+ "<SPECIAL_887>",
891
+ "<SPECIAL_888>",
892
+ "<SPECIAL_889>",
893
+ "<SPECIAL_890>",
894
+ "<SPECIAL_891>",
895
+ "<SPECIAL_892>",
896
+ "<SPECIAL_893>",
897
+ "<SPECIAL_894>",
898
+ "<SPECIAL_895>",
899
+ "<SPECIAL_896>",
900
+ "<SPECIAL_897>",
901
+ "<SPECIAL_898>",
902
+ "<SPECIAL_899>",
903
+ "<SPECIAL_900>",
904
+ "<SPECIAL_901>",
905
+ "<SPECIAL_902>",
906
+ "<SPECIAL_903>",
907
+ "<SPECIAL_904>",
908
+ "<SPECIAL_905>",
909
+ "<SPECIAL_906>",
910
+ "<SPECIAL_907>",
911
+ "<SPECIAL_908>",
912
+ "<SPECIAL_909>",
913
+ "<SPECIAL_910>",
914
+ "<SPECIAL_911>",
915
+ "<SPECIAL_912>",
916
+ "<SPECIAL_913>",
917
+ "<SPECIAL_914>",
918
+ "<SPECIAL_915>",
919
+ "<SPECIAL_916>",
920
+ "<SPECIAL_917>",
921
+ "<SPECIAL_918>",
922
+ "<SPECIAL_919>",
923
+ "<SPECIAL_920>",
924
+ "<SPECIAL_921>",
925
+ "<SPECIAL_922>",
926
+ "<SPECIAL_923>",
927
+ "<SPECIAL_924>",
928
+ "<SPECIAL_925>",
929
+ "<SPECIAL_926>",
930
+ "<SPECIAL_927>",
931
+ "<SPECIAL_928>",
932
+ "<SPECIAL_929>",
933
+ "<SPECIAL_930>",
934
+ "<SPECIAL_931>",
935
+ "<SPECIAL_932>",
936
+ "<SPECIAL_933>",
937
+ "<SPECIAL_934>",
938
+ "<SPECIAL_935>",
939
+ "<SPECIAL_936>",
940
+ "<SPECIAL_937>",
941
+ "<SPECIAL_938>",
942
+ "<SPECIAL_939>",
943
+ "<SPECIAL_940>",
944
+ "<SPECIAL_941>",
945
+ "<SPECIAL_942>",
946
+ "<SPECIAL_943>",
947
+ "<SPECIAL_944>",
948
+ "<SPECIAL_945>",
949
+ "<SPECIAL_946>",
950
+ "<SPECIAL_947>",
951
+ "<SPECIAL_948>",
952
+ "<SPECIAL_949>",
953
+ "<SPECIAL_950>",
954
+ "<SPECIAL_951>",
955
+ "<SPECIAL_952>",
956
+ "<SPECIAL_953>",
957
+ "<SPECIAL_954>",
958
+ "<SPECIAL_955>",
959
+ "<SPECIAL_956>",
960
+ "<SPECIAL_957>",
961
+ "<SPECIAL_958>",
962
+ "<SPECIAL_959>",
963
+ "<SPECIAL_960>",
964
+ "<SPECIAL_961>",
965
+ "<SPECIAL_962>",
966
+ "<SPECIAL_963>",
967
+ "<SPECIAL_964>",
968
+ "<SPECIAL_965>",
969
+ "<SPECIAL_966>",
970
+ "<SPECIAL_967>",
971
+ "<SPECIAL_968>",
972
+ "<SPECIAL_969>",
973
+ "<SPECIAL_970>",
974
+ "<SPECIAL_971>",
975
+ "<SPECIAL_972>",
976
+ "<SPECIAL_973>",
977
+ "<SPECIAL_974>",
978
+ "<SPECIAL_975>",
979
+ "<SPECIAL_976>",
980
+ "<SPECIAL_977>",
981
+ "<SPECIAL_978>",
982
+ "<SPECIAL_979>",
983
+ "<SPECIAL_980>",
984
+ "<SPECIAL_981>",
985
+ "<SPECIAL_982>",
986
+ "<SPECIAL_983>",
987
+ "<SPECIAL_984>",
988
+ "<SPECIAL_985>",
989
+ "<SPECIAL_986>",
990
+ "<SPECIAL_987>",
991
+ "<SPECIAL_988>",
992
+ "<SPECIAL_989>",
993
+ "<SPECIAL_990>",
994
+ "<SPECIAL_991>",
995
+ "<SPECIAL_992>",
996
+ "<SPECIAL_993>",
997
+ "<SPECIAL_994>",
998
+ "<SPECIAL_995>",
999
+ "<SPECIAL_996>",
1000
+ "<SPECIAL_997>",
1001
+ "<SPECIAL_998>",
1002
+ "<SPECIAL_999>"
1003
+ ],
1004
+ "bos_token": {
1005
+ "content": "<s>",
1006
+ "lstrip": false,
1007
+ "normalized": false,
1008
+ "rstrip": false,
1009
+ "single_word": false
1010
+ },
1011
+ "eos_token": {
1012
+ "content": "</s>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false
1017
+ },
1018
+ "pad_token": {
1019
+ "content": "<pad>",
1020
+ "lstrip": false,
1021
+ "normalized": false,
1022
+ "rstrip": false,
1023
+ "single_word": false
1024
+ },
1025
+ "unk_token": {
1026
+ "content": "<unk>",
1027
+ "lstrip": false,
1028
+ "normalized": false,
1029
+ "rstrip": false,
1030
+ "single_word": false
1031
+ }
1032
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b76085f9923309d873994d444989f7eb6ec074b06f25b58f1e8d7b7741070949
3
+ size 17078037
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
trainer_state.json ADDED
@@ -0,0 +1,1682 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.944206008583691,
6
+ "eval_steps": 500,
7
+ "global_step": 232,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.017167381974248927,
14
+ "grad_norm": 24.894664359139377,
15
+ "learning_rate": 0.0,
16
+ "loss": 2.0734,
17
+ "step": 1
18
+ },
19
+ {
20
+ "epoch": 0.034334763948497854,
21
+ "grad_norm": 24.00031672844471,
22
+ "learning_rate": 2.0000000000000002e-07,
23
+ "loss": 2.0836,
24
+ "step": 2
25
+ },
26
+ {
27
+ "epoch": 0.05150214592274678,
28
+ "grad_norm": 29.716249933336616,
29
+ "learning_rate": 4.0000000000000003e-07,
30
+ "loss": 2.1693,
31
+ "step": 3
32
+ },
33
+ {
34
+ "epoch": 0.06866952789699571,
35
+ "grad_norm": 24.37331054435917,
36
+ "learning_rate": 6.000000000000001e-07,
37
+ "loss": 2.0201,
38
+ "step": 4
39
+ },
40
+ {
41
+ "epoch": 0.08583690987124463,
42
+ "grad_norm": 19.789582138660975,
43
+ "learning_rate": 8.000000000000001e-07,
44
+ "loss": 1.9014,
45
+ "step": 5
46
+ },
47
+ {
48
+ "epoch": 0.10300429184549356,
49
+ "grad_norm": 18.92438805672366,
50
+ "learning_rate": 1.0000000000000002e-06,
51
+ "loss": 2.0578,
52
+ "step": 6
53
+ },
54
+ {
55
+ "epoch": 0.12017167381974249,
56
+ "grad_norm": 13.872256454769323,
57
+ "learning_rate": 1.2000000000000002e-06,
58
+ "loss": 1.9303,
59
+ "step": 7
60
+ },
61
+ {
62
+ "epoch": 0.13733905579399142,
63
+ "grad_norm": 17.41216169856372,
64
+ "learning_rate": 1.4000000000000001e-06,
65
+ "loss": 1.9427,
66
+ "step": 8
67
+ },
68
+ {
69
+ "epoch": 0.15450643776824036,
70
+ "grad_norm": 13.884818846193818,
71
+ "learning_rate": 1.6000000000000001e-06,
72
+ "loss": 1.7924,
73
+ "step": 9
74
+ },
75
+ {
76
+ "epoch": 0.17167381974248927,
77
+ "grad_norm": 10.563149359389286,
78
+ "learning_rate": 1.8000000000000001e-06,
79
+ "loss": 1.8341,
80
+ "step": 10
81
+ },
82
+ {
83
+ "epoch": 0.1888412017167382,
84
+ "grad_norm": 17.065510513137394,
85
+ "learning_rate": 2.0000000000000003e-06,
86
+ "loss": 1.8003,
87
+ "step": 11
88
+ },
89
+ {
90
+ "epoch": 0.20600858369098712,
91
+ "grad_norm": 13.365031970331449,
92
+ "learning_rate": 2.2e-06,
93
+ "loss": 1.7405,
94
+ "step": 12
95
+ },
96
+ {
97
+ "epoch": 0.22317596566523606,
98
+ "grad_norm": 10.184190757772281,
99
+ "learning_rate": 2.4000000000000003e-06,
100
+ "loss": 1.7369,
101
+ "step": 13
102
+ },
103
+ {
104
+ "epoch": 0.24034334763948498,
105
+ "grad_norm": 8.522394959606002,
106
+ "learning_rate": 2.6e-06,
107
+ "loss": 1.7161,
108
+ "step": 14
109
+ },
110
+ {
111
+ "epoch": 0.2575107296137339,
112
+ "grad_norm": 7.4639532795389885,
113
+ "learning_rate": 2.8000000000000003e-06,
114
+ "loss": 1.7516,
115
+ "step": 15
116
+ },
117
+ {
118
+ "epoch": 0.27467811158798283,
119
+ "grad_norm": 6.885531173304724,
120
+ "learning_rate": 3e-06,
121
+ "loss": 1.7291,
122
+ "step": 16
123
+ },
124
+ {
125
+ "epoch": 0.2918454935622318,
126
+ "grad_norm": 8.124663030531377,
127
+ "learning_rate": 3.2000000000000003e-06,
128
+ "loss": 1.8113,
129
+ "step": 17
130
+ },
131
+ {
132
+ "epoch": 0.3090128755364807,
133
+ "grad_norm": 7.505534742466626,
134
+ "learning_rate": 3.4000000000000005e-06,
135
+ "loss": 1.7011,
136
+ "step": 18
137
+ },
138
+ {
139
+ "epoch": 0.3261802575107296,
140
+ "grad_norm": 6.546353703058948,
141
+ "learning_rate": 3.6000000000000003e-06,
142
+ "loss": 1.679,
143
+ "step": 19
144
+ },
145
+ {
146
+ "epoch": 0.34334763948497854,
147
+ "grad_norm": 8.084166970057376,
148
+ "learning_rate": 3.8000000000000005e-06,
149
+ "loss": 1.7672,
150
+ "step": 20
151
+ },
152
+ {
153
+ "epoch": 0.3605150214592275,
154
+ "grad_norm": 7.39493724533185,
155
+ "learning_rate": 4.000000000000001e-06,
156
+ "loss": 1.7273,
157
+ "step": 21
158
+ },
159
+ {
160
+ "epoch": 0.3776824034334764,
161
+ "grad_norm": 7.897097334092764,
162
+ "learning_rate": 4.2000000000000004e-06,
163
+ "loss": 1.723,
164
+ "step": 22
165
+ },
166
+ {
167
+ "epoch": 0.3948497854077253,
168
+ "grad_norm": 6.969310652434427,
169
+ "learning_rate": 4.4e-06,
170
+ "loss": 1.6652,
171
+ "step": 23
172
+ },
173
+ {
174
+ "epoch": 0.41201716738197425,
175
+ "grad_norm": 6.593881510049774,
176
+ "learning_rate": 4.600000000000001e-06,
177
+ "loss": 1.6471,
178
+ "step": 24
179
+ },
180
+ {
181
+ "epoch": 0.4291845493562232,
182
+ "grad_norm": 7.447075197928159,
183
+ "learning_rate": 4.800000000000001e-06,
184
+ "loss": 1.7447,
185
+ "step": 25
186
+ },
187
+ {
188
+ "epoch": 0.44635193133047213,
189
+ "grad_norm": 7.593703083280446,
190
+ "learning_rate": 5e-06,
191
+ "loss": 1.7199,
192
+ "step": 26
193
+ },
194
+ {
195
+ "epoch": 0.463519313304721,
196
+ "grad_norm": 7.670358465509374,
197
+ "learning_rate": 5.2e-06,
198
+ "loss": 1.7528,
199
+ "step": 27
200
+ },
201
+ {
202
+ "epoch": 0.48068669527896996,
203
+ "grad_norm": 6.816789703879088,
204
+ "learning_rate": 5.400000000000001e-06,
205
+ "loss": 1.69,
206
+ "step": 28
207
+ },
208
+ {
209
+ "epoch": 0.4978540772532189,
210
+ "grad_norm": 6.703285346233008,
211
+ "learning_rate": 5.600000000000001e-06,
212
+ "loss": 1.6589,
213
+ "step": 29
214
+ },
215
+ {
216
+ "epoch": 0.5150214592274678,
217
+ "grad_norm": 6.319351833531301,
218
+ "learning_rate": 5.8e-06,
219
+ "loss": 1.6783,
220
+ "step": 30
221
+ },
222
+ {
223
+ "epoch": 0.5321888412017167,
224
+ "grad_norm": 7.668634230120905,
225
+ "learning_rate": 6e-06,
226
+ "loss": 1.7307,
227
+ "step": 31
228
+ },
229
+ {
230
+ "epoch": 0.5493562231759657,
231
+ "grad_norm": 7.216605386564187,
232
+ "learning_rate": 6.200000000000001e-06,
233
+ "loss": 1.6241,
234
+ "step": 32
235
+ },
236
+ {
237
+ "epoch": 0.5665236051502146,
238
+ "grad_norm": 7.95986167238638,
239
+ "learning_rate": 6.4000000000000006e-06,
240
+ "loss": 1.7027,
241
+ "step": 33
242
+ },
243
+ {
244
+ "epoch": 0.5836909871244635,
245
+ "grad_norm": 7.567869929265614,
246
+ "learning_rate": 6.600000000000001e-06,
247
+ "loss": 1.6541,
248
+ "step": 34
249
+ },
250
+ {
251
+ "epoch": 0.6008583690987125,
252
+ "grad_norm": 7.583204324051831,
253
+ "learning_rate": 6.800000000000001e-06,
254
+ "loss": 1.6605,
255
+ "step": 35
256
+ },
257
+ {
258
+ "epoch": 0.6180257510729614,
259
+ "grad_norm": 7.927092569421214,
260
+ "learning_rate": 7e-06,
261
+ "loss": 1.6376,
262
+ "step": 36
263
+ },
264
+ {
265
+ "epoch": 0.6351931330472103,
266
+ "grad_norm": 6.777169937117983,
267
+ "learning_rate": 7.2000000000000005e-06,
268
+ "loss": 1.6076,
269
+ "step": 37
270
+ },
271
+ {
272
+ "epoch": 0.6523605150214592,
273
+ "grad_norm": 7.376746584211704,
274
+ "learning_rate": 7.4e-06,
275
+ "loss": 1.6631,
276
+ "step": 38
277
+ },
278
+ {
279
+ "epoch": 0.6695278969957081,
280
+ "grad_norm": 5.931441717917702,
281
+ "learning_rate": 7.600000000000001e-06,
282
+ "loss": 1.6105,
283
+ "step": 39
284
+ },
285
+ {
286
+ "epoch": 0.6866952789699571,
287
+ "grad_norm": 7.788470294493901,
288
+ "learning_rate": 7.800000000000002e-06,
289
+ "loss": 1.6777,
290
+ "step": 40
291
+ },
292
+ {
293
+ "epoch": 0.703862660944206,
294
+ "grad_norm": 7.201871110419962,
295
+ "learning_rate": 8.000000000000001e-06,
296
+ "loss": 1.6622,
297
+ "step": 41
298
+ },
299
+ {
300
+ "epoch": 0.721030042918455,
301
+ "grad_norm": 7.351004222204919,
302
+ "learning_rate": 8.2e-06,
303
+ "loss": 1.6343,
304
+ "step": 42
305
+ },
306
+ {
307
+ "epoch": 0.7381974248927039,
308
+ "grad_norm": 7.116370756646885,
309
+ "learning_rate": 8.400000000000001e-06,
310
+ "loss": 1.6713,
311
+ "step": 43
312
+ },
313
+ {
314
+ "epoch": 0.7553648068669528,
315
+ "grad_norm": 6.804638326754223,
316
+ "learning_rate": 8.6e-06,
317
+ "loss": 1.5942,
318
+ "step": 44
319
+ },
320
+ {
321
+ "epoch": 0.7725321888412017,
322
+ "grad_norm": 7.1784709545283025,
323
+ "learning_rate": 8.8e-06,
324
+ "loss": 1.6453,
325
+ "step": 45
326
+ },
327
+ {
328
+ "epoch": 0.7896995708154506,
329
+ "grad_norm": 6.578248052500373,
330
+ "learning_rate": 9e-06,
331
+ "loss": 1.6493,
332
+ "step": 46
333
+ },
334
+ {
335
+ "epoch": 0.8068669527896996,
336
+ "grad_norm": 5.835458640344457,
337
+ "learning_rate": 9.200000000000002e-06,
338
+ "loss": 1.5686,
339
+ "step": 47
340
+ },
341
+ {
342
+ "epoch": 0.8240343347639485,
343
+ "grad_norm": 6.024182879280123,
344
+ "learning_rate": 9.4e-06,
345
+ "loss": 1.5686,
346
+ "step": 48
347
+ },
348
+ {
349
+ "epoch": 0.8412017167381974,
350
+ "grad_norm": 5.931203630890797,
351
+ "learning_rate": 9.600000000000001e-06,
352
+ "loss": 1.5948,
353
+ "step": 49
354
+ },
355
+ {
356
+ "epoch": 0.8583690987124464,
357
+ "grad_norm": 5.741506735885901,
358
+ "learning_rate": 9.800000000000001e-06,
359
+ "loss": 1.6167,
360
+ "step": 50
361
+ },
362
+ {
363
+ "epoch": 0.8755364806866953,
364
+ "grad_norm": 6.248428015586314,
365
+ "learning_rate": 1e-05,
366
+ "loss": 1.6021,
367
+ "step": 51
368
+ },
369
+ {
370
+ "epoch": 0.8927038626609443,
371
+ "grad_norm": 5.523348714272916,
372
+ "learning_rate": 9.999255120204248e-06,
373
+ "loss": 1.6021,
374
+ "step": 52
375
+ },
376
+ {
377
+ "epoch": 0.9098712446351931,
378
+ "grad_norm": 5.486958421466518,
379
+ "learning_rate": 9.997020702755353e-06,
380
+ "loss": 1.5414,
381
+ "step": 53
382
+ },
383
+ {
384
+ "epoch": 0.927038626609442,
385
+ "grad_norm": 4.906442579745384,
386
+ "learning_rate": 9.993297413402282e-06,
387
+ "loss": 1.6355,
388
+ "step": 54
389
+ },
390
+ {
391
+ "epoch": 0.944206008583691,
392
+ "grad_norm": 3.4477648478182217,
393
+ "learning_rate": 9.98808636150624e-06,
394
+ "loss": 1.5204,
395
+ "step": 55
396
+ },
397
+ {
398
+ "epoch": 0.9613733905579399,
399
+ "grad_norm": 5.283485667760506,
400
+ "learning_rate": 9.981389099710132e-06,
401
+ "loss": 1.557,
402
+ "step": 56
403
+ },
404
+ {
405
+ "epoch": 0.9785407725321889,
406
+ "grad_norm": 4.864774414469769,
407
+ "learning_rate": 9.973207623475964e-06,
408
+ "loss": 1.5847,
409
+ "step": 57
410
+ },
411
+ {
412
+ "epoch": 0.9957081545064378,
413
+ "grad_norm": 4.99512035052619,
414
+ "learning_rate": 9.96354437049027e-06,
415
+ "loss": 1.4972,
416
+ "step": 58
417
+ },
418
+ {
419
+ "epoch": 1.0,
420
+ "grad_norm": 4.99512035052619,
421
+ "learning_rate": 9.952402219937817e-06,
422
+ "loss": 1.6505,
423
+ "step": 59
424
+ },
425
+ {
426
+ "epoch": 1.0,
427
+ "eval_loss": 1.425569772720337,
428
+ "eval_runtime": 55.3506,
429
+ "eval_samples_per_second": 6.504,
430
+ "eval_steps_per_second": 0.217,
431
+ "step": 59
432
+ },
433
+ {
434
+ "epoch": 1.0171673819742488,
435
+ "grad_norm": 3.9912629226494145,
436
+ "learning_rate": 9.939784491643734e-06,
437
+ "loss": 1.5689,
438
+ "step": 60
439
+ },
440
+ {
441
+ "epoch": 1.0343347639484979,
442
+ "grad_norm": 3.5037206814091273,
443
+ "learning_rate": 9.925694945084369e-06,
444
+ "loss": 1.5846,
445
+ "step": 61
446
+ },
447
+ {
448
+ "epoch": 1.0515021459227467,
449
+ "grad_norm": 3.096134013860231,
450
+ "learning_rate": 9.910137778267153e-06,
451
+ "loss": 1.561,
452
+ "step": 62
453
+ },
454
+ {
455
+ "epoch": 1.0686695278969958,
456
+ "grad_norm": 6.745525969869406,
457
+ "learning_rate": 9.893117626479778e-06,
458
+ "loss": 1.5086,
459
+ "step": 63
460
+ },
461
+ {
462
+ "epoch": 1.0858369098712446,
463
+ "grad_norm": 3.771654699845576,
464
+ "learning_rate": 9.874639560909118e-06,
465
+ "loss": 1.4463,
466
+ "step": 64
467
+ },
468
+ {
469
+ "epoch": 1.1030042918454936,
470
+ "grad_norm": 7.348146928107017,
471
+ "learning_rate": 9.854709087130261e-06,
472
+ "loss": 1.5732,
473
+ "step": 65
474
+ },
475
+ {
476
+ "epoch": 1.1201716738197425,
477
+ "grad_norm": 4.285886261726828,
478
+ "learning_rate": 9.833332143466099e-06,
479
+ "loss": 1.5634,
480
+ "step": 66
481
+ },
482
+ {
483
+ "epoch": 1.1373390557939915,
484
+ "grad_norm": 9.50651645737036,
485
+ "learning_rate": 9.810515099218004e-06,
486
+ "loss": 1.5832,
487
+ "step": 67
488
+ },
489
+ {
490
+ "epoch": 1.1545064377682404,
491
+ "grad_norm": 9.85903247254424,
492
+ "learning_rate": 9.78626475276808e-06,
493
+ "loss": 1.5158,
494
+ "step": 68
495
+ },
496
+ {
497
+ "epoch": 1.1716738197424892,
498
+ "grad_norm": 4.500325598034437,
499
+ "learning_rate": 9.76058832955357e-06,
500
+ "loss": 1.5577,
501
+ "step": 69
502
+ },
503
+ {
504
+ "epoch": 1.1888412017167382,
505
+ "grad_norm": 6.726627673373393,
506
+ "learning_rate": 9.733493479914031e-06,
507
+ "loss": 1.5402,
508
+ "step": 70
509
+ },
510
+ {
511
+ "epoch": 1.206008583690987,
512
+ "grad_norm": 5.992547800498691,
513
+ "learning_rate": 9.704988276811883e-06,
514
+ "loss": 1.4771,
515
+ "step": 71
516
+ },
517
+ {
518
+ "epoch": 1.2231759656652361,
519
+ "grad_norm": 3.966804454715501,
520
+ "learning_rate": 9.675081213427076e-06,
521
+ "loss": 1.4715,
522
+ "step": 72
523
+ },
524
+ {
525
+ "epoch": 1.240343347639485,
526
+ "grad_norm": 5.018712503166457,
527
+ "learning_rate": 9.643781200626512e-06,
528
+ "loss": 1.483,
529
+ "step": 73
530
+ },
531
+ {
532
+ "epoch": 1.2575107296137338,
533
+ "grad_norm": 5.147155410650178,
534
+ "learning_rate": 9.611097564309054e-06,
535
+ "loss": 1.529,
536
+ "step": 74
537
+ },
538
+ {
539
+ "epoch": 1.2746781115879828,
540
+ "grad_norm": 4.430249361377804,
541
+ "learning_rate": 9.577040042626832e-06,
542
+ "loss": 1.5055,
543
+ "step": 75
544
+ },
545
+ {
546
+ "epoch": 1.2918454935622319,
547
+ "grad_norm": 3.3331885191043824,
548
+ "learning_rate": 9.54161878308377e-06,
549
+ "loss": 1.5686,
550
+ "step": 76
551
+ },
552
+ {
553
+ "epoch": 1.3090128755364807,
554
+ "grad_norm": 3.3765624318373684,
555
+ "learning_rate": 9.504844339512096e-06,
556
+ "loss": 1.4806,
557
+ "step": 77
558
+ },
559
+ {
560
+ "epoch": 1.3261802575107295,
561
+ "grad_norm": 3.0122848173838146,
562
+ "learning_rate": 9.466727668927817e-06,
563
+ "loss": 1.483,
564
+ "step": 78
565
+ },
566
+ {
567
+ "epoch": 1.3433476394849786,
568
+ "grad_norm": 2.8374889256024325,
569
+ "learning_rate": 9.427280128266049e-06,
570
+ "loss": 1.5371,
571
+ "step": 79
572
+ },
573
+ {
574
+ "epoch": 1.3605150214592274,
575
+ "grad_norm": 3.8591143057415067,
576
+ "learning_rate": 9.38651347099721e-06,
577
+ "loss": 1.515,
578
+ "step": 80
579
+ },
580
+ {
581
+ "epoch": 1.3776824034334765,
582
+ "grad_norm": 2.702387816445196,
583
+ "learning_rate": 9.344439843625034e-06,
584
+ "loss": 1.5065,
585
+ "step": 81
586
+ },
587
+ {
588
+ "epoch": 1.3948497854077253,
589
+ "grad_norm": 3.231309074741847,
590
+ "learning_rate": 9.301071782067504e-06,
591
+ "loss": 1.4691,
592
+ "step": 82
593
+ },
594
+ {
595
+ "epoch": 1.4120171673819741,
596
+ "grad_norm": 2.569345186210359,
597
+ "learning_rate": 9.256422207921757e-06,
598
+ "loss": 1.4551,
599
+ "step": 83
600
+ },
601
+ {
602
+ "epoch": 1.4291845493562232,
603
+ "grad_norm": 2.6936841928298763,
604
+ "learning_rate": 9.21050442461406e-06,
605
+ "loss": 1.5342,
606
+ "step": 84
607
+ },
608
+ {
609
+ "epoch": 1.4463519313304722,
610
+ "grad_norm": 3.1643389084628923,
611
+ "learning_rate": 9.163332113436031e-06,
612
+ "loss": 1.5134,
613
+ "step": 85
614
+ },
615
+ {
616
+ "epoch": 1.463519313304721,
617
+ "grad_norm": 2.0547003373714317,
618
+ "learning_rate": 9.114919329468283e-06,
619
+ "loss": 1.543,
620
+ "step": 86
621
+ },
622
+ {
623
+ "epoch": 1.48068669527897,
624
+ "grad_norm": 3.4765227820159628,
625
+ "learning_rate": 9.065280497392663e-06,
626
+ "loss": 1.4952,
627
+ "step": 87
628
+ },
629
+ {
630
+ "epoch": 1.497854077253219,
631
+ "grad_norm": 2.3605853021000245,
632
+ "learning_rate": 9.014430407194413e-06,
633
+ "loss": 1.4706,
634
+ "step": 88
635
+ },
636
+ {
637
+ "epoch": 1.5150214592274678,
638
+ "grad_norm": 2.79040585245284,
639
+ "learning_rate": 8.962384209755453e-06,
640
+ "loss": 1.5038,
641
+ "step": 89
642
+ },
643
+ {
644
+ "epoch": 1.5321888412017168,
645
+ "grad_norm": 3.130637987619235,
646
+ "learning_rate": 8.90915741234015e-06,
647
+ "loss": 1.5331,
648
+ "step": 90
649
+ },
650
+ {
651
+ "epoch": 1.5493562231759657,
652
+ "grad_norm": 2.1702749562184036,
653
+ "learning_rate": 8.854765873974898e-06,
654
+ "loss": 1.4362,
655
+ "step": 91
656
+ },
657
+ {
658
+ "epoch": 1.5665236051502145,
659
+ "grad_norm": 3.529361540533676,
660
+ "learning_rate": 8.799225800722895e-06,
661
+ "loss": 1.5103,
662
+ "step": 92
663
+ },
664
+ {
665
+ "epoch": 1.5836909871244635,
666
+ "grad_norm": 2.1288633137671362,
667
+ "learning_rate": 8.742553740855507e-06,
668
+ "loss": 1.4735,
669
+ "step": 93
670
+ },
671
+ {
672
+ "epoch": 1.6008583690987126,
673
+ "grad_norm": 4.653595880593553,
674
+ "learning_rate": 8.684766579921684e-06,
675
+ "loss": 1.4837,
676
+ "step": 94
677
+ },
678
+ {
679
+ "epoch": 1.6180257510729614,
680
+ "grad_norm": 4.183036771208689,
681
+ "learning_rate": 8.625881535716883e-06,
682
+ "loss": 1.4616,
683
+ "step": 95
684
+ },
685
+ {
686
+ "epoch": 1.6351931330472103,
687
+ "grad_norm": 3.583624228870984,
688
+ "learning_rate": 8.565916153152982e-06,
689
+ "loss": 1.452,
690
+ "step": 96
691
+ },
692
+ {
693
+ "epoch": 1.652360515021459,
694
+ "grad_norm": 2.9353226938465538,
695
+ "learning_rate": 8.504888299030748e-06,
696
+ "loss": 1.5003,
697
+ "step": 97
698
+ },
699
+ {
700
+ "epoch": 1.6695278969957081,
701
+ "grad_norm": 3.9811908362996387,
702
+ "learning_rate": 8.442816156716386e-06,
703
+ "loss": 1.4712,
704
+ "step": 98
705
+ },
706
+ {
707
+ "epoch": 1.6866952789699572,
708
+ "grad_norm": 4.507840289564422,
709
+ "learning_rate": 8.379718220723772e-06,
710
+ "loss": 1.5154,
711
+ "step": 99
712
+ },
713
+ {
714
+ "epoch": 1.703862660944206,
715
+ "grad_norm": 1.7351061691281462,
716
+ "learning_rate": 8.315613291203977e-06,
717
+ "loss": 1.5071,
718
+ "step": 100
719
+ },
720
+ {
721
+ "epoch": 1.7210300429184548,
722
+ "grad_norm": 2.1548506371633476,
723
+ "learning_rate": 8.250520468343722e-06,
724
+ "loss": 1.4847,
725
+ "step": 101
726
+ },
727
+ {
728
+ "epoch": 1.738197424892704,
729
+ "grad_norm": 2.915800387932283,
730
+ "learning_rate": 8.184459146674447e-06,
731
+ "loss": 1.5255,
732
+ "step": 102
733
+ },
734
+ {
735
+ "epoch": 1.755364806866953,
736
+ "grad_norm": 1.8127751226762168,
737
+ "learning_rate": 8.117449009293668e-06,
738
+ "loss": 1.4585,
739
+ "step": 103
740
+ },
741
+ {
742
+ "epoch": 1.7725321888412018,
743
+ "grad_norm": 3.2104447847604884,
744
+ "learning_rate": 8.049510022000365e-06,
745
+ "loss": 1.5145,
746
+ "step": 104
747
+ },
748
+ {
749
+ "epoch": 1.7896995708154506,
750
+ "grad_norm": 1.7409586719583194,
751
+ "learning_rate": 7.980662427346127e-06,
752
+ "loss": 1.5268,
753
+ "step": 105
754
+ },
755
+ {
756
+ "epoch": 1.8068669527896994,
757
+ "grad_norm": 4.142279628383546,
758
+ "learning_rate": 7.910926738603855e-06,
759
+ "loss": 1.4615,
760
+ "step": 106
761
+ },
762
+ {
763
+ "epoch": 1.8240343347639485,
764
+ "grad_norm": 3.877668467895349,
765
+ "learning_rate": 7.84032373365578e-06,
766
+ "loss": 1.465,
767
+ "step": 107
768
+ },
769
+ {
770
+ "epoch": 1.8412017167381975,
771
+ "grad_norm": 2.656628633387025,
772
+ "learning_rate": 7.768874448802665e-06,
773
+ "loss": 1.4922,
774
+ "step": 108
775
+ },
776
+ {
777
+ "epoch": 1.8583690987124464,
778
+ "grad_norm": 2.584883160911178,
779
+ "learning_rate": 7.696600172495997e-06,
780
+ "loss": 1.5179,
781
+ "step": 109
782
+ },
783
+ {
784
+ "epoch": 1.8755364806866952,
785
+ "grad_norm": 2.587010532927385,
786
+ "learning_rate": 7.62352243899504e-06,
787
+ "loss": 1.5014,
788
+ "step": 110
789
+ },
790
+ {
791
+ "epoch": 1.8927038626609443,
792
+ "grad_norm": 2.5107207102352915,
793
+ "learning_rate": 7.5496630219506805e-06,
794
+ "loss": 1.5064,
795
+ "step": 111
796
+ },
797
+ {
798
+ "epoch": 1.909871244635193,
799
+ "grad_norm": 2.0882468780951915,
800
+ "learning_rate": 7.475043927917908e-06,
801
+ "loss": 1.4503,
802
+ "step": 112
803
+ },
804
+ {
805
+ "epoch": 1.9270386266094421,
806
+ "grad_norm": 2.1486369526322924,
807
+ "learning_rate": 7.399687389798933e-06,
808
+ "loss": 1.5461,
809
+ "step": 113
810
+ },
811
+ {
812
+ "epoch": 1.944206008583691,
813
+ "grad_norm": 1.8242630296650162,
814
+ "learning_rate": 7.323615860218844e-06,
815
+ "loss": 1.4363,
816
+ "step": 114
817
+ },
818
+ {
819
+ "epoch": 1.9613733905579398,
820
+ "grad_norm": 2.145842755842824,
821
+ "learning_rate": 7.246852004835807e-06,
822
+ "loss": 1.4766,
823
+ "step": 115
824
+ },
825
+ {
826
+ "epoch": 1.9785407725321889,
827
+ "grad_norm": 1.6691578334566337,
828
+ "learning_rate": 7.169418695587791e-06,
829
+ "loss": 1.499,
830
+ "step": 116
831
+ },
832
+ {
833
+ "epoch": 1.995708154506438,
834
+ "grad_norm": 2.2108584637006863,
835
+ "learning_rate": 7.091339003877826e-06,
836
+ "loss": 1.4225,
837
+ "step": 117
838
+ },
839
+ {
840
+ "epoch": 2.0,
841
+ "grad_norm": 2.2108584637006863,
842
+ "learning_rate": 7.012636193699838e-06,
843
+ "loss": 1.5231,
844
+ "step": 118
845
+ },
846
+ {
847
+ "epoch": 2.0,
848
+ "eval_loss": 1.3721916675567627,
849
+ "eval_runtime": 55.5761,
850
+ "eval_samples_per_second": 6.478,
851
+ "eval_steps_per_second": 0.216,
852
+ "step": 118
853
+ },
854
+ {
855
+ "epoch": 2.017167381974249,
856
+ "grad_norm": 3.7388997063310248,
857
+ "learning_rate": 6.933333714707094e-06,
858
+ "loss": 1.4963,
859
+ "step": 119
860
+ },
861
+ {
862
+ "epoch": 2.0343347639484977,
863
+ "grad_norm": 1.9374219671850537,
864
+ "learning_rate": 6.8534551952253395e-06,
865
+ "loss": 1.511,
866
+ "step": 120
867
+ },
868
+ {
869
+ "epoch": 2.051502145922747,
870
+ "grad_norm": 2.137490994962777,
871
+ "learning_rate": 6.773024435212678e-06,
872
+ "loss": 1.4785,
873
+ "step": 121
874
+ },
875
+ {
876
+ "epoch": 2.0686695278969958,
877
+ "grad_norm": 1.5840707110043721,
878
+ "learning_rate": 6.692065399168352e-06,
879
+ "loss": 1.4386,
880
+ "step": 122
881
+ },
882
+ {
883
+ "epoch": 2.0858369098712446,
884
+ "grad_norm": 2.0353319612062175,
885
+ "learning_rate": 6.6106022089924535e-06,
886
+ "loss": 1.3749,
887
+ "step": 123
888
+ },
889
+ {
890
+ "epoch": 2.1030042918454934,
891
+ "grad_norm": 1.8137709307149847,
892
+ "learning_rate": 6.5286591367987655e-06,
893
+ "loss": 1.4849,
894
+ "step": 124
895
+ },
896
+ {
897
+ "epoch": 2.1201716738197427,
898
+ "grad_norm": 2.7161222343926212,
899
+ "learning_rate": 6.4462605976828395e-06,
900
+ "loss": 1.4845,
901
+ "step": 125
902
+ },
903
+ {
904
+ "epoch": 2.1373390557939915,
905
+ "grad_norm": 1.3620483576209157,
906
+ "learning_rate": 6.363431142447469e-06,
907
+ "loss": 1.4977,
908
+ "step": 126
909
+ },
910
+ {
911
+ "epoch": 2.1545064377682404,
912
+ "grad_norm": 1.8781921403392814,
913
+ "learning_rate": 6.280195450287736e-06,
914
+ "loss": 1.4339,
915
+ "step": 127
916
+ },
917
+ {
918
+ "epoch": 2.171673819742489,
919
+ "grad_norm": 1.8249006642987649,
920
+ "learning_rate": 6.1965783214377895e-06,
921
+ "loss": 1.4837,
922
+ "step": 128
923
+ },
924
+ {
925
+ "epoch": 2.188841201716738,
926
+ "grad_norm": 1.4576334521913883,
927
+ "learning_rate": 6.112604669781572e-06,
928
+ "loss": 1.4642,
929
+ "step": 129
930
+ },
931
+ {
932
+ "epoch": 2.2060085836909873,
933
+ "grad_norm": 1.8699628551915364,
934
+ "learning_rate": 6.028299515429683e-06,
935
+ "loss": 1.3993,
936
+ "step": 130
937
+ },
938
+ {
939
+ "epoch": 2.223175965665236,
940
+ "grad_norm": 1.1893820742085242,
941
+ "learning_rate": 5.943687977264584e-06,
942
+ "loss": 1.3989,
943
+ "step": 131
944
+ },
945
+ {
946
+ "epoch": 2.240343347639485,
947
+ "grad_norm": 1.7116247132028521,
948
+ "learning_rate": 5.858795265456382e-06,
949
+ "loss": 1.4183,
950
+ "step": 132
951
+ },
952
+ {
953
+ "epoch": 2.257510729613734,
954
+ "grad_norm": 1.5102064250019567,
955
+ "learning_rate": 5.773646673951406e-06,
956
+ "loss": 1.457,
957
+ "step": 133
958
+ },
959
+ {
960
+ "epoch": 2.274678111587983,
961
+ "grad_norm": 1.2667706935607246,
962
+ "learning_rate": 5.688267572935843e-06,
963
+ "loss": 1.436,
964
+ "step": 134
965
+ },
966
+ {
967
+ "epoch": 2.291845493562232,
968
+ "grad_norm": 1.6963247346173285,
969
+ "learning_rate": 5.6026834012766155e-06,
970
+ "loss": 1.4965,
971
+ "step": 135
972
+ },
973
+ {
974
+ "epoch": 2.3090128755364807,
975
+ "grad_norm": 1.2569488026568798,
976
+ "learning_rate": 5.51691965894185e-06,
977
+ "loss": 1.4098,
978
+ "step": 136
979
+ },
980
+ {
981
+ "epoch": 2.3261802575107295,
982
+ "grad_norm": 1.1272036077401364,
983
+ "learning_rate": 5.4310018994030974e-06,
984
+ "loss": 1.4119,
985
+ "step": 137
986
+ },
987
+ {
988
+ "epoch": 2.3433476394849784,
989
+ "grad_norm": 1.673271865613411,
990
+ "learning_rate": 5.3449557220216245e-06,
991
+ "loss": 1.4661,
992
+ "step": 138
993
+ },
994
+ {
995
+ "epoch": 2.3605150214592276,
996
+ "grad_norm": 1.2078563404488671,
997
+ "learning_rate": 5.258806764421048e-06,
998
+ "loss": 1.4497,
999
+ "step": 139
1000
+ },
1001
+ {
1002
+ "epoch": 2.3776824034334765,
1003
+ "grad_norm": 1.308716503746094,
1004
+ "learning_rate": 5.172580694848541e-06,
1005
+ "loss": 1.4351,
1006
+ "step": 140
1007
+ },
1008
+ {
1009
+ "epoch": 2.3948497854077253,
1010
+ "grad_norm": 1.6067743882863361,
1011
+ "learning_rate": 5.0863032045269435e-06,
1012
+ "loss": 1.4017,
1013
+ "step": 141
1014
+ },
1015
+ {
1016
+ "epoch": 2.412017167381974,
1017
+ "grad_norm": 1.15329126746228,
1018
+ "learning_rate": 5e-06,
1019
+ "loss": 1.3885,
1020
+ "step": 142
1021
+ },
1022
+ {
1023
+ "epoch": 2.429184549356223,
1024
+ "grad_norm": 1.3029425990628287,
1025
+ "learning_rate": 4.913696795473058e-06,
1026
+ "loss": 1.4686,
1027
+ "step": 143
1028
+ },
1029
+ {
1030
+ "epoch": 2.4463519313304722,
1031
+ "grad_norm": 1.3782312780671255,
1032
+ "learning_rate": 4.827419305151461e-06,
1033
+ "loss": 1.4472,
1034
+ "step": 144
1035
+ },
1036
+ {
1037
+ "epoch": 2.463519313304721,
1038
+ "grad_norm": 1.1387922784921702,
1039
+ "learning_rate": 4.741193235578953e-06,
1040
+ "loss": 1.4717,
1041
+ "step": 145
1042
+ },
1043
+ {
1044
+ "epoch": 2.48068669527897,
1045
+ "grad_norm": 1.4489271450805266,
1046
+ "learning_rate": 4.6550442779783755e-06,
1047
+ "loss": 1.4325,
1048
+ "step": 146
1049
+ },
1050
+ {
1051
+ "epoch": 2.4978540772532187,
1052
+ "grad_norm": 1.3782527667091915,
1053
+ "learning_rate": 4.568998100596903e-06,
1054
+ "loss": 1.405,
1055
+ "step": 147
1056
+ },
1057
+ {
1058
+ "epoch": 2.5150214592274676,
1059
+ "grad_norm": 1.2668976356990511,
1060
+ "learning_rate": 4.4830803410581506e-06,
1061
+ "loss": 1.4427,
1062
+ "step": 148
1063
+ },
1064
+ {
1065
+ "epoch": 2.532188841201717,
1066
+ "grad_norm": 1.4950710057650962,
1067
+ "learning_rate": 4.397316598723385e-06,
1068
+ "loss": 1.4714,
1069
+ "step": 149
1070
+ },
1071
+ {
1072
+ "epoch": 2.5493562231759657,
1073
+ "grad_norm": 1.0576970824111924,
1074
+ "learning_rate": 4.31173242706416e-06,
1075
+ "loss": 1.3698,
1076
+ "step": 150
1077
+ },
1078
+ {
1079
+ "epoch": 2.5665236051502145,
1080
+ "grad_norm": 1.6518504203265545,
1081
+ "learning_rate": 4.226353326048594e-06,
1082
+ "loss": 1.4462,
1083
+ "step": 151
1084
+ },
1085
+ {
1086
+ "epoch": 2.5836909871244638,
1087
+ "grad_norm": 1.0690977885341415,
1088
+ "learning_rate": 4.14120473454362e-06,
1089
+ "loss": 1.4094,
1090
+ "step": 152
1091
+ },
1092
+ {
1093
+ "epoch": 2.6008583690987126,
1094
+ "grad_norm": 1.2319353745161556,
1095
+ "learning_rate": 4.056312022735417e-06,
1096
+ "loss": 1.4279,
1097
+ "step": 153
1098
+ },
1099
+ {
1100
+ "epoch": 2.6180257510729614,
1101
+ "grad_norm": 1.4981453391586554,
1102
+ "learning_rate": 3.9717004845703175e-06,
1103
+ "loss": 1.404,
1104
+ "step": 154
1105
+ },
1106
+ {
1107
+ "epoch": 2.6351931330472103,
1108
+ "grad_norm": 1.1718194614512722,
1109
+ "learning_rate": 3.887395330218429e-06,
1110
+ "loss": 1.3936,
1111
+ "step": 155
1112
+ },
1113
+ {
1114
+ "epoch": 2.652360515021459,
1115
+ "grad_norm": 1.382020649765366,
1116
+ "learning_rate": 3.803421678562213e-06,
1117
+ "loss": 1.4432,
1118
+ "step": 156
1119
+ },
1120
+ {
1121
+ "epoch": 2.6695278969957084,
1122
+ "grad_norm": 1.0295860006980109,
1123
+ "learning_rate": 3.7198045497122647e-06,
1124
+ "loss": 1.4189,
1125
+ "step": 157
1126
+ },
1127
+ {
1128
+ "epoch": 2.686695278969957,
1129
+ "grad_norm": 1.6145284029231795,
1130
+ "learning_rate": 3.6365688575525315e-06,
1131
+ "loss": 1.4579,
1132
+ "step": 158
1133
+ },
1134
+ {
1135
+ "epoch": 2.703862660944206,
1136
+ "grad_norm": 1.1519727791811123,
1137
+ "learning_rate": 3.553739402317162e-06,
1138
+ "loss": 1.4404,
1139
+ "step": 159
1140
+ },
1141
+ {
1142
+ "epoch": 2.721030042918455,
1143
+ "grad_norm": 1.6702535379739811,
1144
+ "learning_rate": 3.471340863201237e-06,
1145
+ "loss": 1.4247,
1146
+ "step": 160
1147
+ },
1148
+ {
1149
+ "epoch": 2.7381974248927037,
1150
+ "grad_norm": 1.4413775372344653,
1151
+ "learning_rate": 3.389397791007548e-06,
1152
+ "loss": 1.4669,
1153
+ "step": 161
1154
+ },
1155
+ {
1156
+ "epoch": 2.755364806866953,
1157
+ "grad_norm": 1.6769364420250672,
1158
+ "learning_rate": 3.307934600831648e-06,
1159
+ "loss": 1.3987,
1160
+ "step": 162
1161
+ },
1162
+ {
1163
+ "epoch": 2.772532188841202,
1164
+ "grad_norm": 1.4127696099779041,
1165
+ "learning_rate": 3.226975564787322e-06,
1166
+ "loss": 1.4577,
1167
+ "step": 163
1168
+ },
1169
+ {
1170
+ "epoch": 2.7896995708154506,
1171
+ "grad_norm": 1.3981396160008468,
1172
+ "learning_rate": 3.1465448047746626e-06,
1173
+ "loss": 1.4643,
1174
+ "step": 164
1175
+ },
1176
+ {
1177
+ "epoch": 2.8068669527896994,
1178
+ "grad_norm": 1.1640956539171732,
1179
+ "learning_rate": 3.0666662852929063e-06,
1180
+ "loss": 1.4127,
1181
+ "step": 165
1182
+ },
1183
+ {
1184
+ "epoch": 2.8240343347639483,
1185
+ "grad_norm": 1.524450627139972,
1186
+ "learning_rate": 2.9873638063001633e-06,
1187
+ "loss": 1.4114,
1188
+ "step": 166
1189
+ },
1190
+ {
1191
+ "epoch": 2.8412017167381975,
1192
+ "grad_norm": 1.3456136782749846,
1193
+ "learning_rate": 2.9086609961221758e-06,
1194
+ "loss": 1.435,
1195
+ "step": 167
1196
+ },
1197
+ {
1198
+ "epoch": 2.8583690987124464,
1199
+ "grad_norm": 1.2127544846215854,
1200
+ "learning_rate": 2.83058130441221e-06,
1201
+ "loss": 1.464,
1202
+ "step": 168
1203
+ },
1204
+ {
1205
+ "epoch": 2.875536480686695,
1206
+ "grad_norm": 1.1389112761416087,
1207
+ "learning_rate": 2.7531479951641928e-06,
1208
+ "loss": 1.4468,
1209
+ "step": 169
1210
+ },
1211
+ {
1212
+ "epoch": 2.8927038626609445,
1213
+ "grad_norm": 1.2715694866770404,
1214
+ "learning_rate": 2.6763841397811576e-06,
1215
+ "loss": 1.451,
1216
+ "step": 170
1217
+ },
1218
+ {
1219
+ "epoch": 2.909871244635193,
1220
+ "grad_norm": 1.2899452182832583,
1221
+ "learning_rate": 2.6003126102010696e-06,
1222
+ "loss": 1.3969,
1223
+ "step": 171
1224
+ },
1225
+ {
1226
+ "epoch": 2.927038626609442,
1227
+ "grad_norm": 1.1876736667702164,
1228
+ "learning_rate": 2.524956072082093e-06,
1229
+ "loss": 1.4894,
1230
+ "step": 172
1231
+ },
1232
+ {
1233
+ "epoch": 2.944206008583691,
1234
+ "grad_norm": 1.0044043551342703,
1235
+ "learning_rate": 2.450336978049322e-06,
1236
+ "loss": 1.3833,
1237
+ "step": 173
1238
+ },
1239
+ {
1240
+ "epoch": 2.96137339055794,
1241
+ "grad_norm": 1.1006453119175361,
1242
+ "learning_rate": 2.37647756100496e-06,
1243
+ "loss": 1.422,
1244
+ "step": 174
1245
+ },
1246
+ {
1247
+ "epoch": 2.978540772532189,
1248
+ "grad_norm": 1.1339844183954066,
1249
+ "learning_rate": 2.3033998275040047e-06,
1250
+ "loss": 1.4416,
1251
+ "step": 175
1252
+ },
1253
+ {
1254
+ "epoch": 2.995708154506438,
1255
+ "grad_norm": 1.0443241596589774,
1256
+ "learning_rate": 2.2311255511973347e-06,
1257
+ "loss": 1.3739,
1258
+ "step": 176
1259
+ },
1260
+ {
1261
+ "epoch": 3.0,
1262
+ "grad_norm": 1.0443241596589774,
1263
+ "learning_rate": 2.159676266344222e-06,
1264
+ "loss": 1.4492,
1265
+ "step": 177
1266
+ },
1267
+ {
1268
+ "epoch": 3.0,
1269
+ "eval_loss": 1.3466758728027344,
1270
+ "eval_runtime": 55.4567,
1271
+ "eval_samples_per_second": 6.492,
1272
+ "eval_steps_per_second": 0.216,
1273
+ "step": 177
1274
+ },
1275
+ {
1276
+ "epoch": 3.017167381974249,
1277
+ "grad_norm": 2.208608681250419,
1278
+ "learning_rate": 2.089073261396148e-06,
1279
+ "loss": 1.4496,
1280
+ "step": 178
1281
+ },
1282
+ {
1283
+ "epoch": 3.0343347639484977,
1284
+ "grad_norm": 2.068961082241978,
1285
+ "learning_rate": 2.0193375726538737e-06,
1286
+ "loss": 1.4599,
1287
+ "step": 179
1288
+ },
1289
+ {
1290
+ "epoch": 3.051502145922747,
1291
+ "grad_norm": 1.2686715786339267,
1292
+ "learning_rate": 1.9504899779996354e-06,
1293
+ "loss": 1.4241,
1294
+ "step": 180
1295
+ },
1296
+ {
1297
+ "epoch": 3.0686695278969958,
1298
+ "grad_norm": 0.9766943956912364,
1299
+ "learning_rate": 1.8825509907063328e-06,
1300
+ "loss": 1.3856,
1301
+ "step": 181
1302
+ },
1303
+ {
1304
+ "epoch": 3.0858369098712446,
1305
+ "grad_norm": 0.9570891019240637,
1306
+ "learning_rate": 1.8155408533255553e-06,
1307
+ "loss": 1.3267,
1308
+ "step": 182
1309
+ },
1310
+ {
1311
+ "epoch": 3.1030042918454934,
1312
+ "grad_norm": 0.9858819209987062,
1313
+ "learning_rate": 1.7494795316562791e-06,
1314
+ "loss": 1.4371,
1315
+ "step": 183
1316
+ },
1317
+ {
1318
+ "epoch": 3.1201716738197427,
1319
+ "grad_norm": 0.9400585321740289,
1320
+ "learning_rate": 1.6843867087960252e-06,
1321
+ "loss": 1.4347,
1322
+ "step": 184
1323
+ },
1324
+ {
1325
+ "epoch": 3.1373390557939915,
1326
+ "grad_norm": 1.0563349262899193,
1327
+ "learning_rate": 1.6202817792762283e-06,
1328
+ "loss": 1.4431,
1329
+ "step": 185
1330
+ },
1331
+ {
1332
+ "epoch": 3.1545064377682404,
1333
+ "grad_norm": 0.9217174697986299,
1334
+ "learning_rate": 1.557183843283614e-06,
1335
+ "loss": 1.3872,
1336
+ "step": 186
1337
+ },
1338
+ {
1339
+ "epoch": 3.171673819742489,
1340
+ "grad_norm": 0.9537020658805889,
1341
+ "learning_rate": 1.4951117009692528e-06,
1342
+ "loss": 1.4342,
1343
+ "step": 187
1344
+ },
1345
+ {
1346
+ "epoch": 3.188841201716738,
1347
+ "grad_norm": 0.931415129363885,
1348
+ "learning_rate": 1.4340838468470198e-06,
1349
+ "loss": 1.4167,
1350
+ "step": 188
1351
+ },
1352
+ {
1353
+ "epoch": 3.2060085836909873,
1354
+ "grad_norm": 0.8848653838809811,
1355
+ "learning_rate": 1.374118464283119e-06,
1356
+ "loss": 1.3483,
1357
+ "step": 189
1358
+ },
1359
+ {
1360
+ "epoch": 3.223175965665236,
1361
+ "grad_norm": 0.8999049162268763,
1362
+ "learning_rate": 1.3152334200783167e-06,
1363
+ "loss": 1.3486,
1364
+ "step": 190
1365
+ },
1366
+ {
1367
+ "epoch": 3.240343347639485,
1368
+ "grad_norm": 0.913466824589116,
1369
+ "learning_rate": 1.257446259144494e-06,
1370
+ "loss": 1.372,
1371
+ "step": 191
1372
+ },
1373
+ {
1374
+ "epoch": 3.257510729613734,
1375
+ "grad_norm": 0.9910112277396748,
1376
+ "learning_rate": 1.2007741992771065e-06,
1377
+ "loss": 1.4064,
1378
+ "step": 192
1379
+ },
1380
+ {
1381
+ "epoch": 3.274678111587983,
1382
+ "grad_norm": 0.883357238281907,
1383
+ "learning_rate": 1.145234126025102e-06,
1384
+ "loss": 1.3869,
1385
+ "step": 193
1386
+ },
1387
+ {
1388
+ "epoch": 3.291845493562232,
1389
+ "grad_norm": 0.9234833713444595,
1390
+ "learning_rate": 1.0908425876598512e-06,
1391
+ "loss": 1.4469,
1392
+ "step": 194
1393
+ },
1394
+ {
1395
+ "epoch": 3.3090128755364807,
1396
+ "grad_norm": 0.859382750295263,
1397
+ "learning_rate": 1.037615790244549e-06,
1398
+ "loss": 1.3571,
1399
+ "step": 195
1400
+ },
1401
+ {
1402
+ "epoch": 3.3261802575107295,
1403
+ "grad_norm": 0.815275008698639,
1404
+ "learning_rate": 9.85569592805588e-07,
1405
+ "loss": 1.3635,
1406
+ "step": 196
1407
+ },
1408
+ {
1409
+ "epoch": 3.3433476394849784,
1410
+ "grad_norm": 0.8740357211724161,
1411
+ "learning_rate": 9.347195026073369e-07,
1412
+ "loss": 1.4195,
1413
+ "step": 197
1414
+ },
1415
+ {
1416
+ "epoch": 3.3605150214592276,
1417
+ "grad_norm": 0.8549841652198367,
1418
+ "learning_rate": 8.850806705317183e-07,
1419
+ "loss": 1.4011,
1420
+ "step": 198
1421
+ },
1422
+ {
1423
+ "epoch": 3.3776824034334765,
1424
+ "grad_norm": 0.8255973582968239,
1425
+ "learning_rate": 8.366678865639688e-07,
1426
+ "loss": 1.3907,
1427
+ "step": 199
1428
+ },
1429
+ {
1430
+ "epoch": 3.3948497854077253,
1431
+ "grad_norm": 0.8469777726661422,
1432
+ "learning_rate": 7.894955753859412e-07,
1433
+ "loss": 1.3586,
1434
+ "step": 200
1435
+ },
1436
+ {
1437
+ "epoch": 3.412017167381974,
1438
+ "grad_norm": 0.84555567071041,
1439
+ "learning_rate": 7.435777920782444e-07,
1440
+ "loss": 1.344,
1441
+ "step": 201
1442
+ },
1443
+ {
1444
+ "epoch": 3.429184549356223,
1445
+ "grad_norm": 0.8100696398102393,
1446
+ "learning_rate": 6.989282179324963e-07,
1447
+ "loss": 1.4253,
1448
+ "step": 202
1449
+ },
1450
+ {
1451
+ "epoch": 3.4463519313304722,
1452
+ "grad_norm": 0.853525501890134,
1453
+ "learning_rate": 6.555601563749675e-07,
1454
+ "loss": 1.4028,
1455
+ "step": 203
1456
+ },
1457
+ {
1458
+ "epoch": 3.463519313304721,
1459
+ "grad_norm": 2.5389247756358455,
1460
+ "learning_rate": 6.134865290027903e-07,
1461
+ "loss": 1.4282,
1462
+ "step": 204
1463
+ },
1464
+ {
1465
+ "epoch": 3.48068669527897,
1466
+ "grad_norm": 1.2453666685589984,
1467
+ "learning_rate": 5.727198717339511e-07,
1468
+ "loss": 1.3921,
1469
+ "step": 205
1470
+ },
1471
+ {
1472
+ "epoch": 3.4978540772532187,
1473
+ "grad_norm": 0.7642367373812298,
1474
+ "learning_rate": 5.332723310721855e-07,
1475
+ "loss": 1.365,
1476
+ "step": 206
1477
+ },
1478
+ {
1479
+ "epoch": 3.5150214592274676,
1480
+ "grad_norm": 0.9270502698949785,
1481
+ "learning_rate": 4.951556604879049e-07,
1482
+ "loss": 1.4041,
1483
+ "step": 207
1484
+ },
1485
+ {
1486
+ "epoch": 3.532188841201717,
1487
+ "grad_norm": 0.8098170144667726,
1488
+ "learning_rate": 4.5838121691622995e-07,
1489
+ "loss": 1.4315,
1490
+ "step": 208
1491
+ },
1492
+ {
1493
+ "epoch": 3.5493562231759657,
1494
+ "grad_norm": 0.7857989969064568,
1495
+ "learning_rate": 4.2295995737316854e-07,
1496
+ "loss": 1.332,
1497
+ "step": 209
1498
+ },
1499
+ {
1500
+ "epoch": 3.5665236051502145,
1501
+ "grad_norm": 0.8648677468818124,
1502
+ "learning_rate": 3.8890243569094874e-07,
1503
+ "loss": 1.4088,
1504
+ "step": 210
1505
+ },
1506
+ {
1507
+ "epoch": 3.5836909871244638,
1508
+ "grad_norm": 0.8148105107754193,
1509
+ "learning_rate": 3.5621879937348836e-07,
1510
+ "loss": 1.3708,
1511
+ "step": 211
1512
+ },
1513
+ {
1514
+ "epoch": 3.6008583690987126,
1515
+ "grad_norm": 0.8784091247812043,
1516
+ "learning_rate": 3.2491878657292643e-07,
1517
+ "loss": 1.3931,
1518
+ "step": 212
1519
+ },
1520
+ {
1521
+ "epoch": 3.6180257510729614,
1522
+ "grad_norm": 0.8314788876032824,
1523
+ "learning_rate": 2.9501172318811834e-07,
1524
+ "loss": 1.3706,
1525
+ "step": 213
1526
+ },
1527
+ {
1528
+ "epoch": 3.6351931330472103,
1529
+ "grad_norm": 0.8122583055213561,
1530
+ "learning_rate": 2.6650652008597067e-07,
1531
+ "loss": 1.3595,
1532
+ "step": 214
1533
+ },
1534
+ {
1535
+ "epoch": 3.652360515021459,
1536
+ "grad_norm": 0.8988415508956524,
1537
+ "learning_rate": 2.394116704464294e-07,
1538
+ "loss": 1.4083,
1539
+ "step": 215
1540
+ },
1541
+ {
1542
+ "epoch": 3.6695278969957084,
1543
+ "grad_norm": 0.7489347389916948,
1544
+ "learning_rate": 2.137352472319215e-07,
1545
+ "loss": 1.3862,
1546
+ "step": 216
1547
+ },
1548
+ {
1549
+ "epoch": 3.686695278969957,
1550
+ "grad_norm": 0.8026525023223839,
1551
+ "learning_rate": 1.8948490078199767e-07,
1552
+ "loss": 1.4263,
1553
+ "step": 217
1554
+ },
1555
+ {
1556
+ "epoch": 3.703862660944206,
1557
+ "grad_norm": 0.8691178194849434,
1558
+ "learning_rate": 1.666678565339025e-07,
1559
+ "loss": 1.4107,
1560
+ "step": 218
1561
+ },
1562
+ {
1563
+ "epoch": 3.721030042918455,
1564
+ "grad_norm": 0.8295342705741752,
1565
+ "learning_rate": 1.4529091286973994e-07,
1566
+ "loss": 1.3977,
1567
+ "step": 219
1568
+ },
1569
+ {
1570
+ "epoch": 3.7381974248927037,
1571
+ "grad_norm": 0.9952946458735904,
1572
+ "learning_rate": 1.253604390908819e-07,
1573
+ "loss": 1.44,
1574
+ "step": 220
1575
+ },
1576
+ {
1577
+ "epoch": 3.755364806866953,
1578
+ "grad_norm": 0.8929004736914973,
1579
+ "learning_rate": 1.0688237352022346e-07,
1580
+ "loss": 1.3744,
1581
+ "step": 221
1582
+ },
1583
+ {
1584
+ "epoch": 3.772532188841202,
1585
+ "grad_norm": 0.7817159407340549,
1586
+ "learning_rate": 8.986222173284876e-08,
1587
+ "loss": 1.4323,
1588
+ "step": 222
1589
+ },
1590
+ {
1591
+ "epoch": 3.7896995708154506,
1592
+ "grad_norm": 0.7269772041119471,
1593
+ "learning_rate": 7.430505491563101e-08,
1594
+ "loss": 1.4378,
1595
+ "step": 223
1596
+ },
1597
+ {
1598
+ "epoch": 3.8068669527896994,
1599
+ "grad_norm": 0.846076015787421,
1600
+ "learning_rate": 6.021550835626777e-08,
1601
+ "loss": 1.3876,
1602
+ "step": 224
1603
+ },
1604
+ {
1605
+ "epoch": 3.8240343347639483,
1606
+ "grad_norm": 0.7622844494333099,
1607
+ "learning_rate": 4.759778006218407e-08,
1608
+ "loss": 1.3879,
1609
+ "step": 225
1610
+ },
1611
+ {
1612
+ "epoch": 3.8412017167381975,
1613
+ "grad_norm": 0.7517386279788537,
1614
+ "learning_rate": 3.645562950973014e-08,
1615
+ "loss": 1.4094,
1616
+ "step": 226
1617
+ },
1618
+ {
1619
+ "epoch": 3.8583690987124464,
1620
+ "grad_norm": 0.7555615969516848,
1621
+ "learning_rate": 2.6792376524036878e-08,
1622
+ "loss": 1.4385,
1623
+ "step": 227
1624
+ },
1625
+ {
1626
+ "epoch": 3.875536480686695,
1627
+ "grad_norm": 0.759032041862736,
1628
+ "learning_rate": 1.8610900289867673e-08,
1629
+ "loss": 1.4219,
1630
+ "step": 228
1631
+ },
1632
+ {
1633
+ "epoch": 3.8927038626609445,
1634
+ "grad_norm": 0.8896057625292756,
1635
+ "learning_rate": 1.1913638493762369e-08,
1636
+ "loss": 1.4286,
1637
+ "step": 229
1638
+ },
1639
+ {
1640
+ "epoch": 3.909871244635193,
1641
+ "grad_norm": 0.8049879121289703,
1642
+ "learning_rate": 6.702586597719385e-09,
1643
+ "loss": 1.3756,
1644
+ "step": 230
1645
+ },
1646
+ {
1647
+ "epoch": 3.927038626609442,
1648
+ "grad_norm": 0.8081459120471564,
1649
+ "learning_rate": 2.9792972446479605e-09,
1650
+ "loss": 1.4649,
1651
+ "step": 231
1652
+ },
1653
+ {
1654
+ "epoch": 3.944206008583691,
1655
+ "grad_norm": 0.7889695020980092,
1656
+ "learning_rate": 7.448797957526621e-10,
1657
+ "loss": 1.3612,
1658
+ "step": 232
1659
+ }
1660
+ ],
1661
+ "logging_steps": 1,
1662
+ "max_steps": 232,
1663
+ "num_input_tokens_seen": 0,
1664
+ "num_train_epochs": 4,
1665
+ "save_steps": 29,
1666
+ "stateful_callbacks": {
1667
+ "TrainerControl": {
1668
+ "args": {
1669
+ "should_epoch_stop": false,
1670
+ "should_evaluate": false,
1671
+ "should_log": false,
1672
+ "should_save": true,
1673
+ "should_training_stop": true
1674
+ },
1675
+ "attributes": {}
1676
+ }
1677
+ },
1678
+ "total_flos": 2.9152650971882455e+18,
1679
+ "train_batch_size": 4,
1680
+ "trial_name": null,
1681
+ "trial_params": null
1682
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73b486ccd0c0143e3e570dbeebcb0c4131aa4e86047e6147f2d8f8c5842f3421
3
+ size 8913
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)