Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- config.json +26 -0
- generation_config.json +7 -0
- latest +1 -0
- model-00001-of-00010.safetensors +3 -0
- model-00002-of-00010.safetensors +3 -0
- model-00003-of-00010.safetensors +3 -0
- model-00004-of-00010.safetensors +3 -0
- model-00005-of-00010.safetensors +3 -0
- model-00006-of-00010.safetensors +3 -0
- model-00007-of-00010.safetensors +3 -0
- model-00008-of-00010.safetensors +3 -0
- model-00009-of-00010.safetensors +3 -0
- model-00010-of-00010.safetensors +3 -0
- model.safetensors.index.json +370 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +1032 -0
- tokenizer.json +3 -0
- tokenizer_config.json +0 -0
- trainer_state.json +1682 -0
- training_args.bin +3 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MistralForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"head_dim": 128,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 5120,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 32768,
|
13 |
+
"max_position_embeddings": 131072,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 40,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 1000000000.0,
|
20 |
+
"sliding_window": null,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.51.3",
|
24 |
+
"use_cache": false,
|
25 |
+
"vocab_size": 131072
|
26 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.51.3"
|
7 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step229
|
model-00001-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2932c6ca76193bb2cb1ba5909551091e22e4e20c2fa2c36cca3cd77c054a8263
|
3 |
+
size 4781571736
|
model-00002-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b9415df40b10227fea2e12091ed9f38120b074d349c1f6bfd4d6b9adb6e3fb5
|
3 |
+
size 4781592784
|
model-00003-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af053515fb7a368798be753a823b71a731ccefa442cfbe8de37d2d17d0ffc505
|
3 |
+
size 4781592800
|
model-00004-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8fb54f34865ce4d04275096a9896b0d0726d6e0e96e7a42d1c2ea127a81cc69
|
3 |
+
size 4886471600
|
model-00005-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:95cc51fba7765b840a057355427d4079b6b1735f2b81212a3ac138c3dcc03a93
|
3 |
+
size 4781592824
|
model-00006-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8068b6f2e09e4efedcd8475fad5b919b73c3ea2b82b72b9f36afd263b942ff97
|
3 |
+
size 4781592816
|
model-00007-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d462646ab870d0d28c78e0a06034b8a5b84c6fe59a4899a20604f8639d16deed
|
3 |
+
size 4886471600
|
model-00008-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03b3104bbe969a741bc5872de72a09f1aa0c12cd1ae12336110234541cfd62ee
|
3 |
+
size 4781592824
|
model-00009-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c3885a22e297056b12307f3dfe905b2cc73433faecc7134b828279bfe5cdd227
|
3 |
+
size 4781592816
|
model-00010-of-00010.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fd1abc985dff36d45cf513a47fd3a165a9487f5ecc5e81aa47536a6a94a86584
|
3 |
+
size 3900777072
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 47144806400
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00010-of-00010.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00010.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00010.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00010.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00003-of-00010.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00004-of-00010.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00004-of-00010.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00004-of-00010.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00004-of-00010.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00004-of-00010.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00005-of-00010.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00004-of-00010.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00004-of-00010.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00004-of-00010.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00004-of-00010.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00005-of-00010.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00005-of-00010.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00005-of-00010.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00005-of-00010.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00005-of-00010.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00005-of-00010.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00010.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00010.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00010.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00010.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00010.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00006-of-00010.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00005-of-00010.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00005-of-00010.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00005-of-00010.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00005-of-00010.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00005-of-00010.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00006-of-00010.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00006-of-00010.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00006-of-00010.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00006-of-00010.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00006-of-00010.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00006-of-00010.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00006-of-00010.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00006-of-00010.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00006-of-00010.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00006-of-00010.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00006-of-00010.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00007-of-00010.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00007-of-00010.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00007-of-00010.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00007-of-00010.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00007-of-00010.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00008-of-00010.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00007-of-00010.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00007-of-00010.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00007-of-00010.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00007-of-00010.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00002-of-00010.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00010.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00010.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00010.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00010.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00008-of-00010.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00008-of-00010.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
|
242 |
+
"model.layers.32.input_layernorm.weight": "model-00008-of-00010.safetensors",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00008-of-00010.safetensors",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00008-of-00010.safetensors",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00008-of-00010.safetensors",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
|
251 |
+
"model.layers.33.input_layernorm.weight": "model-00009-of-00010.safetensors",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00008-of-00010.safetensors",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00008-of-00010.safetensors",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00008-of-00010.safetensors",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00008-of-00010.safetensors",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00008-of-00010.safetensors",
|
260 |
+
"model.layers.34.input_layernorm.weight": "model-00009-of-00010.safetensors",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
|
269 |
+
"model.layers.35.input_layernorm.weight": "model-00009-of-00010.safetensors",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
|
278 |
+
"model.layers.36.input_layernorm.weight": "model-00009-of-00010.safetensors",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00009-of-00010.safetensors",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00009-of-00010.safetensors",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
|
287 |
+
"model.layers.37.input_layernorm.weight": "model-00010-of-00010.safetensors",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00009-of-00010.safetensors",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00009-of-00010.safetensors",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00009-of-00010.safetensors",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00009-of-00010.safetensors",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00009-of-00010.safetensors",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00009-of-00010.safetensors",
|
296 |
+
"model.layers.38.input_layernorm.weight": "model-00010-of-00010.safetensors",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00010-of-00010.safetensors",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00010-of-00010.safetensors",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00010-of-00010.safetensors",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00010-of-00010.safetensors",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00010-of-00010.safetensors",
|
305 |
+
"model.layers.39.input_layernorm.weight": "model-00010-of-00010.safetensors",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00010-of-00010.safetensors",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00010-of-00010.safetensors",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00010-of-00010.safetensors",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00010-of-00010.safetensors",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00010-of-00010.safetensors",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00010-of-00010.safetensors",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00010-of-00010.safetensors",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00010-of-00010.safetensors",
|
314 |
+
"model.layers.4.input_layernorm.weight": "model-00002-of-00010.safetensors",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
|
323 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00010.safetensors",
|
324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
|
325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
|
327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
|
328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
|
329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
|
330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
|
331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
|
332 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00010.safetensors",
|
333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00010.safetensors",
|
334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00010.safetensors",
|
336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00010.safetensors",
|
337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
|
338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
|
339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
|
340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
|
341 |
+
"model.layers.7.input_layernorm.weight": "model-00003-of-00010.safetensors",
|
342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
|
343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00010.safetensors",
|
344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
|
346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00010.safetensors",
|
347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00010.safetensors",
|
348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00010.safetensors",
|
349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00010.safetensors",
|
350 |
+
"model.layers.8.input_layernorm.weight": "model-00003-of-00010.safetensors",
|
351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
|
352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
|
353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
|
355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
|
356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
|
357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
|
358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
|
359 |
+
"model.layers.9.input_layernorm.weight": "model-00003-of-00010.safetensors",
|
360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00003-of-00010.safetensors",
|
361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00003-of-00010.safetensors",
|
362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00003-of-00010.safetensors",
|
363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00003-of-00010.safetensors",
|
364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00003-of-00010.safetensors",
|
365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00003-of-00010.safetensors",
|
366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00003-of-00010.safetensors",
|
367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00003-of-00010.safetensors",
|
368 |
+
"model.norm.weight": "model-00010-of-00010.safetensors"
|
369 |
+
}
|
370 |
+
}
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f469fb6a869fe76761e1194ed0a7948ca397689bbc8ac0a9ea85a077fd50929
|
3 |
+
size 16389
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77e31efd49e7c2510fff79f966c879db58740a4187714c13003ffa53d0d441c5
|
3 |
+
size 16389
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:755aba68d004de8b7239e4451f96d8aaad4274ed7f03ec57d204f73d7b768a54
|
3 |
+
size 16389
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1e57948798e97ec4bd65e4f2bab0090fd58ab95e9d421be20702021446d2636
|
3 |
+
size 16389
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7930f1c6dd64fe161f166b710675bea007029bf2a54e835287c8517c8d61b7e
|
3 |
+
size 16389
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c098b3d19df4c6a4261105183eb9357e2715d784d681c1426e4bb88c847c317
|
3 |
+
size 16389
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c914eacfcdfa6cf1a18175490235b8bf14f4521cc8ebda28a827fb8611e2958d
|
3 |
+
size 16389
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad02907448ab52a0de6407d8cc85b4523850947654c14a8ca1a3772f6c8c9cf8
|
3 |
+
size 16389
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:295bdcf639363dd785518768a76e7a8e159d706da63702bed87e48e057b7a525
|
3 |
+
size 1465
|
special_tokens_map.json
ADDED
@@ -0,0 +1,1032 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<unk>",
|
4 |
+
"<s>",
|
5 |
+
"</s>",
|
6 |
+
"[INST]",
|
7 |
+
"[/INST]",
|
8 |
+
"[AVAILABLE_TOOLS]",
|
9 |
+
"[/AVAILABLE_TOOLS]",
|
10 |
+
"[TOOL_RESULTS]",
|
11 |
+
"[/TOOL_RESULTS]",
|
12 |
+
"[TOOL_CALLS]",
|
13 |
+
"[IMG]",
|
14 |
+
"<pad>",
|
15 |
+
"[IMG_BREAK]",
|
16 |
+
"[IMG_END]",
|
17 |
+
"[PREFIX]",
|
18 |
+
"[MIDDLE]",
|
19 |
+
"[SUFFIX]",
|
20 |
+
"[SYSTEM_PROMPT]",
|
21 |
+
"[/SYSTEM_PROMPT]",
|
22 |
+
"[TOOL_CONTENT]",
|
23 |
+
"<SPECIAL_20>",
|
24 |
+
"<SPECIAL_21>",
|
25 |
+
"<SPECIAL_22>",
|
26 |
+
"<SPECIAL_23>",
|
27 |
+
"<SPECIAL_24>",
|
28 |
+
"<SPECIAL_25>",
|
29 |
+
"<SPECIAL_26>",
|
30 |
+
"<SPECIAL_27>",
|
31 |
+
"<SPECIAL_28>",
|
32 |
+
"<SPECIAL_29>",
|
33 |
+
"<SPECIAL_30>",
|
34 |
+
"<SPECIAL_31>",
|
35 |
+
"<SPECIAL_32>",
|
36 |
+
"<SPECIAL_33>",
|
37 |
+
"<SPECIAL_34>",
|
38 |
+
"<SPECIAL_35>",
|
39 |
+
"<SPECIAL_36>",
|
40 |
+
"<SPECIAL_37>",
|
41 |
+
"<SPECIAL_38>",
|
42 |
+
"<SPECIAL_39>",
|
43 |
+
"<SPECIAL_40>",
|
44 |
+
"<SPECIAL_41>",
|
45 |
+
"<SPECIAL_42>",
|
46 |
+
"<SPECIAL_43>",
|
47 |
+
"<SPECIAL_44>",
|
48 |
+
"<SPECIAL_45>",
|
49 |
+
"<SPECIAL_46>",
|
50 |
+
"<SPECIAL_47>",
|
51 |
+
"<SPECIAL_48>",
|
52 |
+
"<SPECIAL_49>",
|
53 |
+
"<SPECIAL_50>",
|
54 |
+
"<SPECIAL_51>",
|
55 |
+
"<SPECIAL_52>",
|
56 |
+
"<SPECIAL_53>",
|
57 |
+
"<SPECIAL_54>",
|
58 |
+
"<SPECIAL_55>",
|
59 |
+
"<SPECIAL_56>",
|
60 |
+
"<SPECIAL_57>",
|
61 |
+
"<SPECIAL_58>",
|
62 |
+
"<SPECIAL_59>",
|
63 |
+
"<SPECIAL_60>",
|
64 |
+
"<SPECIAL_61>",
|
65 |
+
"<SPECIAL_62>",
|
66 |
+
"<SPECIAL_63>",
|
67 |
+
"<SPECIAL_64>",
|
68 |
+
"<SPECIAL_65>",
|
69 |
+
"<SPECIAL_66>",
|
70 |
+
"<SPECIAL_67>",
|
71 |
+
"<SPECIAL_68>",
|
72 |
+
"<SPECIAL_69>",
|
73 |
+
"<SPECIAL_70>",
|
74 |
+
"<SPECIAL_71>",
|
75 |
+
"<SPECIAL_72>",
|
76 |
+
"<SPECIAL_73>",
|
77 |
+
"<SPECIAL_74>",
|
78 |
+
"<SPECIAL_75>",
|
79 |
+
"<SPECIAL_76>",
|
80 |
+
"<SPECIAL_77>",
|
81 |
+
"<SPECIAL_78>",
|
82 |
+
"<SPECIAL_79>",
|
83 |
+
"<SPECIAL_80>",
|
84 |
+
"<SPECIAL_81>",
|
85 |
+
"<SPECIAL_82>",
|
86 |
+
"<SPECIAL_83>",
|
87 |
+
"<SPECIAL_84>",
|
88 |
+
"<SPECIAL_85>",
|
89 |
+
"<SPECIAL_86>",
|
90 |
+
"<SPECIAL_87>",
|
91 |
+
"<SPECIAL_88>",
|
92 |
+
"<SPECIAL_89>",
|
93 |
+
"<SPECIAL_90>",
|
94 |
+
"<SPECIAL_91>",
|
95 |
+
"<SPECIAL_92>",
|
96 |
+
"<SPECIAL_93>",
|
97 |
+
"<SPECIAL_94>",
|
98 |
+
"<SPECIAL_95>",
|
99 |
+
"<SPECIAL_96>",
|
100 |
+
"<SPECIAL_97>",
|
101 |
+
"<SPECIAL_98>",
|
102 |
+
"<SPECIAL_99>",
|
103 |
+
"<SPECIAL_100>",
|
104 |
+
"<SPECIAL_101>",
|
105 |
+
"<SPECIAL_102>",
|
106 |
+
"<SPECIAL_103>",
|
107 |
+
"<SPECIAL_104>",
|
108 |
+
"<SPECIAL_105>",
|
109 |
+
"<SPECIAL_106>",
|
110 |
+
"<SPECIAL_107>",
|
111 |
+
"<SPECIAL_108>",
|
112 |
+
"<SPECIAL_109>",
|
113 |
+
"<SPECIAL_110>",
|
114 |
+
"<SPECIAL_111>",
|
115 |
+
"<SPECIAL_112>",
|
116 |
+
"<SPECIAL_113>",
|
117 |
+
"<SPECIAL_114>",
|
118 |
+
"<SPECIAL_115>",
|
119 |
+
"<SPECIAL_116>",
|
120 |
+
"<SPECIAL_117>",
|
121 |
+
"<SPECIAL_118>",
|
122 |
+
"<SPECIAL_119>",
|
123 |
+
"<SPECIAL_120>",
|
124 |
+
"<SPECIAL_121>",
|
125 |
+
"<SPECIAL_122>",
|
126 |
+
"<SPECIAL_123>",
|
127 |
+
"<SPECIAL_124>",
|
128 |
+
"<SPECIAL_125>",
|
129 |
+
"<SPECIAL_126>",
|
130 |
+
"<SPECIAL_127>",
|
131 |
+
"<SPECIAL_128>",
|
132 |
+
"<SPECIAL_129>",
|
133 |
+
"<SPECIAL_130>",
|
134 |
+
"<SPECIAL_131>",
|
135 |
+
"<SPECIAL_132>",
|
136 |
+
"<SPECIAL_133>",
|
137 |
+
"<SPECIAL_134>",
|
138 |
+
"<SPECIAL_135>",
|
139 |
+
"<SPECIAL_136>",
|
140 |
+
"<SPECIAL_137>",
|
141 |
+
"<SPECIAL_138>",
|
142 |
+
"<SPECIAL_139>",
|
143 |
+
"<SPECIAL_140>",
|
144 |
+
"<SPECIAL_141>",
|
145 |
+
"<SPECIAL_142>",
|
146 |
+
"<SPECIAL_143>",
|
147 |
+
"<SPECIAL_144>",
|
148 |
+
"<SPECIAL_145>",
|
149 |
+
"<SPECIAL_146>",
|
150 |
+
"<SPECIAL_147>",
|
151 |
+
"<SPECIAL_148>",
|
152 |
+
"<SPECIAL_149>",
|
153 |
+
"<SPECIAL_150>",
|
154 |
+
"<SPECIAL_151>",
|
155 |
+
"<SPECIAL_152>",
|
156 |
+
"<SPECIAL_153>",
|
157 |
+
"<SPECIAL_154>",
|
158 |
+
"<SPECIAL_155>",
|
159 |
+
"<SPECIAL_156>",
|
160 |
+
"<SPECIAL_157>",
|
161 |
+
"<SPECIAL_158>",
|
162 |
+
"<SPECIAL_159>",
|
163 |
+
"<SPECIAL_160>",
|
164 |
+
"<SPECIAL_161>",
|
165 |
+
"<SPECIAL_162>",
|
166 |
+
"<SPECIAL_163>",
|
167 |
+
"<SPECIAL_164>",
|
168 |
+
"<SPECIAL_165>",
|
169 |
+
"<SPECIAL_166>",
|
170 |
+
"<SPECIAL_167>",
|
171 |
+
"<SPECIAL_168>",
|
172 |
+
"<SPECIAL_169>",
|
173 |
+
"<SPECIAL_170>",
|
174 |
+
"<SPECIAL_171>",
|
175 |
+
"<SPECIAL_172>",
|
176 |
+
"<SPECIAL_173>",
|
177 |
+
"<SPECIAL_174>",
|
178 |
+
"<SPECIAL_175>",
|
179 |
+
"<SPECIAL_176>",
|
180 |
+
"<SPECIAL_177>",
|
181 |
+
"<SPECIAL_178>",
|
182 |
+
"<SPECIAL_179>",
|
183 |
+
"<SPECIAL_180>",
|
184 |
+
"<SPECIAL_181>",
|
185 |
+
"<SPECIAL_182>",
|
186 |
+
"<SPECIAL_183>",
|
187 |
+
"<SPECIAL_184>",
|
188 |
+
"<SPECIAL_185>",
|
189 |
+
"<SPECIAL_186>",
|
190 |
+
"<SPECIAL_187>",
|
191 |
+
"<SPECIAL_188>",
|
192 |
+
"<SPECIAL_189>",
|
193 |
+
"<SPECIAL_190>",
|
194 |
+
"<SPECIAL_191>",
|
195 |
+
"<SPECIAL_192>",
|
196 |
+
"<SPECIAL_193>",
|
197 |
+
"<SPECIAL_194>",
|
198 |
+
"<SPECIAL_195>",
|
199 |
+
"<SPECIAL_196>",
|
200 |
+
"<SPECIAL_197>",
|
201 |
+
"<SPECIAL_198>",
|
202 |
+
"<SPECIAL_199>",
|
203 |
+
"<SPECIAL_200>",
|
204 |
+
"<SPECIAL_201>",
|
205 |
+
"<SPECIAL_202>",
|
206 |
+
"<SPECIAL_203>",
|
207 |
+
"<SPECIAL_204>",
|
208 |
+
"<SPECIAL_205>",
|
209 |
+
"<SPECIAL_206>",
|
210 |
+
"<SPECIAL_207>",
|
211 |
+
"<SPECIAL_208>",
|
212 |
+
"<SPECIAL_209>",
|
213 |
+
"<SPECIAL_210>",
|
214 |
+
"<SPECIAL_211>",
|
215 |
+
"<SPECIAL_212>",
|
216 |
+
"<SPECIAL_213>",
|
217 |
+
"<SPECIAL_214>",
|
218 |
+
"<SPECIAL_215>",
|
219 |
+
"<SPECIAL_216>",
|
220 |
+
"<SPECIAL_217>",
|
221 |
+
"<SPECIAL_218>",
|
222 |
+
"<SPECIAL_219>",
|
223 |
+
"<SPECIAL_220>",
|
224 |
+
"<SPECIAL_221>",
|
225 |
+
"<SPECIAL_222>",
|
226 |
+
"<SPECIAL_223>",
|
227 |
+
"<SPECIAL_224>",
|
228 |
+
"<SPECIAL_225>",
|
229 |
+
"<SPECIAL_226>",
|
230 |
+
"<SPECIAL_227>",
|
231 |
+
"<SPECIAL_228>",
|
232 |
+
"<SPECIAL_229>",
|
233 |
+
"<SPECIAL_230>",
|
234 |
+
"<SPECIAL_231>",
|
235 |
+
"<SPECIAL_232>",
|
236 |
+
"<SPECIAL_233>",
|
237 |
+
"<SPECIAL_234>",
|
238 |
+
"<SPECIAL_235>",
|
239 |
+
"<SPECIAL_236>",
|
240 |
+
"<SPECIAL_237>",
|
241 |
+
"<SPECIAL_238>",
|
242 |
+
"<SPECIAL_239>",
|
243 |
+
"<SPECIAL_240>",
|
244 |
+
"<SPECIAL_241>",
|
245 |
+
"<SPECIAL_242>",
|
246 |
+
"<SPECIAL_243>",
|
247 |
+
"<SPECIAL_244>",
|
248 |
+
"<SPECIAL_245>",
|
249 |
+
"<SPECIAL_246>",
|
250 |
+
"<SPECIAL_247>",
|
251 |
+
"<SPECIAL_248>",
|
252 |
+
"<SPECIAL_249>",
|
253 |
+
"<SPECIAL_250>",
|
254 |
+
"<SPECIAL_251>",
|
255 |
+
"<SPECIAL_252>",
|
256 |
+
"<SPECIAL_253>",
|
257 |
+
"<SPECIAL_254>",
|
258 |
+
"<SPECIAL_255>",
|
259 |
+
"<SPECIAL_256>",
|
260 |
+
"<SPECIAL_257>",
|
261 |
+
"<SPECIAL_258>",
|
262 |
+
"<SPECIAL_259>",
|
263 |
+
"<SPECIAL_260>",
|
264 |
+
"<SPECIAL_261>",
|
265 |
+
"<SPECIAL_262>",
|
266 |
+
"<SPECIAL_263>",
|
267 |
+
"<SPECIAL_264>",
|
268 |
+
"<SPECIAL_265>",
|
269 |
+
"<SPECIAL_266>",
|
270 |
+
"<SPECIAL_267>",
|
271 |
+
"<SPECIAL_268>",
|
272 |
+
"<SPECIAL_269>",
|
273 |
+
"<SPECIAL_270>",
|
274 |
+
"<SPECIAL_271>",
|
275 |
+
"<SPECIAL_272>",
|
276 |
+
"<SPECIAL_273>",
|
277 |
+
"<SPECIAL_274>",
|
278 |
+
"<SPECIAL_275>",
|
279 |
+
"<SPECIAL_276>",
|
280 |
+
"<SPECIAL_277>",
|
281 |
+
"<SPECIAL_278>",
|
282 |
+
"<SPECIAL_279>",
|
283 |
+
"<SPECIAL_280>",
|
284 |
+
"<SPECIAL_281>",
|
285 |
+
"<SPECIAL_282>",
|
286 |
+
"<SPECIAL_283>",
|
287 |
+
"<SPECIAL_284>",
|
288 |
+
"<SPECIAL_285>",
|
289 |
+
"<SPECIAL_286>",
|
290 |
+
"<SPECIAL_287>",
|
291 |
+
"<SPECIAL_288>",
|
292 |
+
"<SPECIAL_289>",
|
293 |
+
"<SPECIAL_290>",
|
294 |
+
"<SPECIAL_291>",
|
295 |
+
"<SPECIAL_292>",
|
296 |
+
"<SPECIAL_293>",
|
297 |
+
"<SPECIAL_294>",
|
298 |
+
"<SPECIAL_295>",
|
299 |
+
"<SPECIAL_296>",
|
300 |
+
"<SPECIAL_297>",
|
301 |
+
"<SPECIAL_298>",
|
302 |
+
"<SPECIAL_299>",
|
303 |
+
"<SPECIAL_300>",
|
304 |
+
"<SPECIAL_301>",
|
305 |
+
"<SPECIAL_302>",
|
306 |
+
"<SPECIAL_303>",
|
307 |
+
"<SPECIAL_304>",
|
308 |
+
"<SPECIAL_305>",
|
309 |
+
"<SPECIAL_306>",
|
310 |
+
"<SPECIAL_307>",
|
311 |
+
"<SPECIAL_308>",
|
312 |
+
"<SPECIAL_309>",
|
313 |
+
"<SPECIAL_310>",
|
314 |
+
"<SPECIAL_311>",
|
315 |
+
"<SPECIAL_312>",
|
316 |
+
"<SPECIAL_313>",
|
317 |
+
"<SPECIAL_314>",
|
318 |
+
"<SPECIAL_315>",
|
319 |
+
"<SPECIAL_316>",
|
320 |
+
"<SPECIAL_317>",
|
321 |
+
"<SPECIAL_318>",
|
322 |
+
"<SPECIAL_319>",
|
323 |
+
"<SPECIAL_320>",
|
324 |
+
"<SPECIAL_321>",
|
325 |
+
"<SPECIAL_322>",
|
326 |
+
"<SPECIAL_323>",
|
327 |
+
"<SPECIAL_324>",
|
328 |
+
"<SPECIAL_325>",
|
329 |
+
"<SPECIAL_326>",
|
330 |
+
"<SPECIAL_327>",
|
331 |
+
"<SPECIAL_328>",
|
332 |
+
"<SPECIAL_329>",
|
333 |
+
"<SPECIAL_330>",
|
334 |
+
"<SPECIAL_331>",
|
335 |
+
"<SPECIAL_332>",
|
336 |
+
"<SPECIAL_333>",
|
337 |
+
"<SPECIAL_334>",
|
338 |
+
"<SPECIAL_335>",
|
339 |
+
"<SPECIAL_336>",
|
340 |
+
"<SPECIAL_337>",
|
341 |
+
"<SPECIAL_338>",
|
342 |
+
"<SPECIAL_339>",
|
343 |
+
"<SPECIAL_340>",
|
344 |
+
"<SPECIAL_341>",
|
345 |
+
"<SPECIAL_342>",
|
346 |
+
"<SPECIAL_343>",
|
347 |
+
"<SPECIAL_344>",
|
348 |
+
"<SPECIAL_345>",
|
349 |
+
"<SPECIAL_346>",
|
350 |
+
"<SPECIAL_347>",
|
351 |
+
"<SPECIAL_348>",
|
352 |
+
"<SPECIAL_349>",
|
353 |
+
"<SPECIAL_350>",
|
354 |
+
"<SPECIAL_351>",
|
355 |
+
"<SPECIAL_352>",
|
356 |
+
"<SPECIAL_353>",
|
357 |
+
"<SPECIAL_354>",
|
358 |
+
"<SPECIAL_355>",
|
359 |
+
"<SPECIAL_356>",
|
360 |
+
"<SPECIAL_357>",
|
361 |
+
"<SPECIAL_358>",
|
362 |
+
"<SPECIAL_359>",
|
363 |
+
"<SPECIAL_360>",
|
364 |
+
"<SPECIAL_361>",
|
365 |
+
"<SPECIAL_362>",
|
366 |
+
"<SPECIAL_363>",
|
367 |
+
"<SPECIAL_364>",
|
368 |
+
"<SPECIAL_365>",
|
369 |
+
"<SPECIAL_366>",
|
370 |
+
"<SPECIAL_367>",
|
371 |
+
"<SPECIAL_368>",
|
372 |
+
"<SPECIAL_369>",
|
373 |
+
"<SPECIAL_370>",
|
374 |
+
"<SPECIAL_371>",
|
375 |
+
"<SPECIAL_372>",
|
376 |
+
"<SPECIAL_373>",
|
377 |
+
"<SPECIAL_374>",
|
378 |
+
"<SPECIAL_375>",
|
379 |
+
"<SPECIAL_376>",
|
380 |
+
"<SPECIAL_377>",
|
381 |
+
"<SPECIAL_378>",
|
382 |
+
"<SPECIAL_379>",
|
383 |
+
"<SPECIAL_380>",
|
384 |
+
"<SPECIAL_381>",
|
385 |
+
"<SPECIAL_382>",
|
386 |
+
"<SPECIAL_383>",
|
387 |
+
"<SPECIAL_384>",
|
388 |
+
"<SPECIAL_385>",
|
389 |
+
"<SPECIAL_386>",
|
390 |
+
"<SPECIAL_387>",
|
391 |
+
"<SPECIAL_388>",
|
392 |
+
"<SPECIAL_389>",
|
393 |
+
"<SPECIAL_390>",
|
394 |
+
"<SPECIAL_391>",
|
395 |
+
"<SPECIAL_392>",
|
396 |
+
"<SPECIAL_393>",
|
397 |
+
"<SPECIAL_394>",
|
398 |
+
"<SPECIAL_395>",
|
399 |
+
"<SPECIAL_396>",
|
400 |
+
"<SPECIAL_397>",
|
401 |
+
"<SPECIAL_398>",
|
402 |
+
"<SPECIAL_399>",
|
403 |
+
"<SPECIAL_400>",
|
404 |
+
"<SPECIAL_401>",
|
405 |
+
"<SPECIAL_402>",
|
406 |
+
"<SPECIAL_403>",
|
407 |
+
"<SPECIAL_404>",
|
408 |
+
"<SPECIAL_405>",
|
409 |
+
"<SPECIAL_406>",
|
410 |
+
"<SPECIAL_407>",
|
411 |
+
"<SPECIAL_408>",
|
412 |
+
"<SPECIAL_409>",
|
413 |
+
"<SPECIAL_410>",
|
414 |
+
"<SPECIAL_411>",
|
415 |
+
"<SPECIAL_412>",
|
416 |
+
"<SPECIAL_413>",
|
417 |
+
"<SPECIAL_414>",
|
418 |
+
"<SPECIAL_415>",
|
419 |
+
"<SPECIAL_416>",
|
420 |
+
"<SPECIAL_417>",
|
421 |
+
"<SPECIAL_418>",
|
422 |
+
"<SPECIAL_419>",
|
423 |
+
"<SPECIAL_420>",
|
424 |
+
"<SPECIAL_421>",
|
425 |
+
"<SPECIAL_422>",
|
426 |
+
"<SPECIAL_423>",
|
427 |
+
"<SPECIAL_424>",
|
428 |
+
"<SPECIAL_425>",
|
429 |
+
"<SPECIAL_426>",
|
430 |
+
"<SPECIAL_427>",
|
431 |
+
"<SPECIAL_428>",
|
432 |
+
"<SPECIAL_429>",
|
433 |
+
"<SPECIAL_430>",
|
434 |
+
"<SPECIAL_431>",
|
435 |
+
"<SPECIAL_432>",
|
436 |
+
"<SPECIAL_433>",
|
437 |
+
"<SPECIAL_434>",
|
438 |
+
"<SPECIAL_435>",
|
439 |
+
"<SPECIAL_436>",
|
440 |
+
"<SPECIAL_437>",
|
441 |
+
"<SPECIAL_438>",
|
442 |
+
"<SPECIAL_439>",
|
443 |
+
"<SPECIAL_440>",
|
444 |
+
"<SPECIAL_441>",
|
445 |
+
"<SPECIAL_442>",
|
446 |
+
"<SPECIAL_443>",
|
447 |
+
"<SPECIAL_444>",
|
448 |
+
"<SPECIAL_445>",
|
449 |
+
"<SPECIAL_446>",
|
450 |
+
"<SPECIAL_447>",
|
451 |
+
"<SPECIAL_448>",
|
452 |
+
"<SPECIAL_449>",
|
453 |
+
"<SPECIAL_450>",
|
454 |
+
"<SPECIAL_451>",
|
455 |
+
"<SPECIAL_452>",
|
456 |
+
"<SPECIAL_453>",
|
457 |
+
"<SPECIAL_454>",
|
458 |
+
"<SPECIAL_455>",
|
459 |
+
"<SPECIAL_456>",
|
460 |
+
"<SPECIAL_457>",
|
461 |
+
"<SPECIAL_458>",
|
462 |
+
"<SPECIAL_459>",
|
463 |
+
"<SPECIAL_460>",
|
464 |
+
"<SPECIAL_461>",
|
465 |
+
"<SPECIAL_462>",
|
466 |
+
"<SPECIAL_463>",
|
467 |
+
"<SPECIAL_464>",
|
468 |
+
"<SPECIAL_465>",
|
469 |
+
"<SPECIAL_466>",
|
470 |
+
"<SPECIAL_467>",
|
471 |
+
"<SPECIAL_468>",
|
472 |
+
"<SPECIAL_469>",
|
473 |
+
"<SPECIAL_470>",
|
474 |
+
"<SPECIAL_471>",
|
475 |
+
"<SPECIAL_472>",
|
476 |
+
"<SPECIAL_473>",
|
477 |
+
"<SPECIAL_474>",
|
478 |
+
"<SPECIAL_475>",
|
479 |
+
"<SPECIAL_476>",
|
480 |
+
"<SPECIAL_477>",
|
481 |
+
"<SPECIAL_478>",
|
482 |
+
"<SPECIAL_479>",
|
483 |
+
"<SPECIAL_480>",
|
484 |
+
"<SPECIAL_481>",
|
485 |
+
"<SPECIAL_482>",
|
486 |
+
"<SPECIAL_483>",
|
487 |
+
"<SPECIAL_484>",
|
488 |
+
"<SPECIAL_485>",
|
489 |
+
"<SPECIAL_486>",
|
490 |
+
"<SPECIAL_487>",
|
491 |
+
"<SPECIAL_488>",
|
492 |
+
"<SPECIAL_489>",
|
493 |
+
"<SPECIAL_490>",
|
494 |
+
"<SPECIAL_491>",
|
495 |
+
"<SPECIAL_492>",
|
496 |
+
"<SPECIAL_493>",
|
497 |
+
"<SPECIAL_494>",
|
498 |
+
"<SPECIAL_495>",
|
499 |
+
"<SPECIAL_496>",
|
500 |
+
"<SPECIAL_497>",
|
501 |
+
"<SPECIAL_498>",
|
502 |
+
"<SPECIAL_499>",
|
503 |
+
"<SPECIAL_500>",
|
504 |
+
"<SPECIAL_501>",
|
505 |
+
"<SPECIAL_502>",
|
506 |
+
"<SPECIAL_503>",
|
507 |
+
"<SPECIAL_504>",
|
508 |
+
"<SPECIAL_505>",
|
509 |
+
"<SPECIAL_506>",
|
510 |
+
"<SPECIAL_507>",
|
511 |
+
"<SPECIAL_508>",
|
512 |
+
"<SPECIAL_509>",
|
513 |
+
"<SPECIAL_510>",
|
514 |
+
"<SPECIAL_511>",
|
515 |
+
"<SPECIAL_512>",
|
516 |
+
"<SPECIAL_513>",
|
517 |
+
"<SPECIAL_514>",
|
518 |
+
"<SPECIAL_515>",
|
519 |
+
"<SPECIAL_516>",
|
520 |
+
"<SPECIAL_517>",
|
521 |
+
"<SPECIAL_518>",
|
522 |
+
"<SPECIAL_519>",
|
523 |
+
"<SPECIAL_520>",
|
524 |
+
"<SPECIAL_521>",
|
525 |
+
"<SPECIAL_522>",
|
526 |
+
"<SPECIAL_523>",
|
527 |
+
"<SPECIAL_524>",
|
528 |
+
"<SPECIAL_525>",
|
529 |
+
"<SPECIAL_526>",
|
530 |
+
"<SPECIAL_527>",
|
531 |
+
"<SPECIAL_528>",
|
532 |
+
"<SPECIAL_529>",
|
533 |
+
"<SPECIAL_530>",
|
534 |
+
"<SPECIAL_531>",
|
535 |
+
"<SPECIAL_532>",
|
536 |
+
"<SPECIAL_533>",
|
537 |
+
"<SPECIAL_534>",
|
538 |
+
"<SPECIAL_535>",
|
539 |
+
"<SPECIAL_536>",
|
540 |
+
"<SPECIAL_537>",
|
541 |
+
"<SPECIAL_538>",
|
542 |
+
"<SPECIAL_539>",
|
543 |
+
"<SPECIAL_540>",
|
544 |
+
"<SPECIAL_541>",
|
545 |
+
"<SPECIAL_542>",
|
546 |
+
"<SPECIAL_543>",
|
547 |
+
"<SPECIAL_544>",
|
548 |
+
"<SPECIAL_545>",
|
549 |
+
"<SPECIAL_546>",
|
550 |
+
"<SPECIAL_547>",
|
551 |
+
"<SPECIAL_548>",
|
552 |
+
"<SPECIAL_549>",
|
553 |
+
"<SPECIAL_550>",
|
554 |
+
"<SPECIAL_551>",
|
555 |
+
"<SPECIAL_552>",
|
556 |
+
"<SPECIAL_553>",
|
557 |
+
"<SPECIAL_554>",
|
558 |
+
"<SPECIAL_555>",
|
559 |
+
"<SPECIAL_556>",
|
560 |
+
"<SPECIAL_557>",
|
561 |
+
"<SPECIAL_558>",
|
562 |
+
"<SPECIAL_559>",
|
563 |
+
"<SPECIAL_560>",
|
564 |
+
"<SPECIAL_561>",
|
565 |
+
"<SPECIAL_562>",
|
566 |
+
"<SPECIAL_563>",
|
567 |
+
"<SPECIAL_564>",
|
568 |
+
"<SPECIAL_565>",
|
569 |
+
"<SPECIAL_566>",
|
570 |
+
"<SPECIAL_567>",
|
571 |
+
"<SPECIAL_568>",
|
572 |
+
"<SPECIAL_569>",
|
573 |
+
"<SPECIAL_570>",
|
574 |
+
"<SPECIAL_571>",
|
575 |
+
"<SPECIAL_572>",
|
576 |
+
"<SPECIAL_573>",
|
577 |
+
"<SPECIAL_574>",
|
578 |
+
"<SPECIAL_575>",
|
579 |
+
"<SPECIAL_576>",
|
580 |
+
"<SPECIAL_577>",
|
581 |
+
"<SPECIAL_578>",
|
582 |
+
"<SPECIAL_579>",
|
583 |
+
"<SPECIAL_580>",
|
584 |
+
"<SPECIAL_581>",
|
585 |
+
"<SPECIAL_582>",
|
586 |
+
"<SPECIAL_583>",
|
587 |
+
"<SPECIAL_584>",
|
588 |
+
"<SPECIAL_585>",
|
589 |
+
"<SPECIAL_586>",
|
590 |
+
"<SPECIAL_587>",
|
591 |
+
"<SPECIAL_588>",
|
592 |
+
"<SPECIAL_589>",
|
593 |
+
"<SPECIAL_590>",
|
594 |
+
"<SPECIAL_591>",
|
595 |
+
"<SPECIAL_592>",
|
596 |
+
"<SPECIAL_593>",
|
597 |
+
"<SPECIAL_594>",
|
598 |
+
"<SPECIAL_595>",
|
599 |
+
"<SPECIAL_596>",
|
600 |
+
"<SPECIAL_597>",
|
601 |
+
"<SPECIAL_598>",
|
602 |
+
"<SPECIAL_599>",
|
603 |
+
"<SPECIAL_600>",
|
604 |
+
"<SPECIAL_601>",
|
605 |
+
"<SPECIAL_602>",
|
606 |
+
"<SPECIAL_603>",
|
607 |
+
"<SPECIAL_604>",
|
608 |
+
"<SPECIAL_605>",
|
609 |
+
"<SPECIAL_606>",
|
610 |
+
"<SPECIAL_607>",
|
611 |
+
"<SPECIAL_608>",
|
612 |
+
"<SPECIAL_609>",
|
613 |
+
"<SPECIAL_610>",
|
614 |
+
"<SPECIAL_611>",
|
615 |
+
"<SPECIAL_612>",
|
616 |
+
"<SPECIAL_613>",
|
617 |
+
"<SPECIAL_614>",
|
618 |
+
"<SPECIAL_615>",
|
619 |
+
"<SPECIAL_616>",
|
620 |
+
"<SPECIAL_617>",
|
621 |
+
"<SPECIAL_618>",
|
622 |
+
"<SPECIAL_619>",
|
623 |
+
"<SPECIAL_620>",
|
624 |
+
"<SPECIAL_621>",
|
625 |
+
"<SPECIAL_622>",
|
626 |
+
"<SPECIAL_623>",
|
627 |
+
"<SPECIAL_624>",
|
628 |
+
"<SPECIAL_625>",
|
629 |
+
"<SPECIAL_626>",
|
630 |
+
"<SPECIAL_627>",
|
631 |
+
"<SPECIAL_628>",
|
632 |
+
"<SPECIAL_629>",
|
633 |
+
"<SPECIAL_630>",
|
634 |
+
"<SPECIAL_631>",
|
635 |
+
"<SPECIAL_632>",
|
636 |
+
"<SPECIAL_633>",
|
637 |
+
"<SPECIAL_634>",
|
638 |
+
"<SPECIAL_635>",
|
639 |
+
"<SPECIAL_636>",
|
640 |
+
"<SPECIAL_637>",
|
641 |
+
"<SPECIAL_638>",
|
642 |
+
"<SPECIAL_639>",
|
643 |
+
"<SPECIAL_640>",
|
644 |
+
"<SPECIAL_641>",
|
645 |
+
"<SPECIAL_642>",
|
646 |
+
"<SPECIAL_643>",
|
647 |
+
"<SPECIAL_644>",
|
648 |
+
"<SPECIAL_645>",
|
649 |
+
"<SPECIAL_646>",
|
650 |
+
"<SPECIAL_647>",
|
651 |
+
"<SPECIAL_648>",
|
652 |
+
"<SPECIAL_649>",
|
653 |
+
"<SPECIAL_650>",
|
654 |
+
"<SPECIAL_651>",
|
655 |
+
"<SPECIAL_652>",
|
656 |
+
"<SPECIAL_653>",
|
657 |
+
"<SPECIAL_654>",
|
658 |
+
"<SPECIAL_655>",
|
659 |
+
"<SPECIAL_656>",
|
660 |
+
"<SPECIAL_657>",
|
661 |
+
"<SPECIAL_658>",
|
662 |
+
"<SPECIAL_659>",
|
663 |
+
"<SPECIAL_660>",
|
664 |
+
"<SPECIAL_661>",
|
665 |
+
"<SPECIAL_662>",
|
666 |
+
"<SPECIAL_663>",
|
667 |
+
"<SPECIAL_664>",
|
668 |
+
"<SPECIAL_665>",
|
669 |
+
"<SPECIAL_666>",
|
670 |
+
"<SPECIAL_667>",
|
671 |
+
"<SPECIAL_668>",
|
672 |
+
"<SPECIAL_669>",
|
673 |
+
"<SPECIAL_670>",
|
674 |
+
"<SPECIAL_671>",
|
675 |
+
"<SPECIAL_672>",
|
676 |
+
"<SPECIAL_673>",
|
677 |
+
"<SPECIAL_674>",
|
678 |
+
"<SPECIAL_675>",
|
679 |
+
"<SPECIAL_676>",
|
680 |
+
"<SPECIAL_677>",
|
681 |
+
"<SPECIAL_678>",
|
682 |
+
"<SPECIAL_679>",
|
683 |
+
"<SPECIAL_680>",
|
684 |
+
"<SPECIAL_681>",
|
685 |
+
"<SPECIAL_682>",
|
686 |
+
"<SPECIAL_683>",
|
687 |
+
"<SPECIAL_684>",
|
688 |
+
"<SPECIAL_685>",
|
689 |
+
"<SPECIAL_686>",
|
690 |
+
"<SPECIAL_687>",
|
691 |
+
"<SPECIAL_688>",
|
692 |
+
"<SPECIAL_689>",
|
693 |
+
"<SPECIAL_690>",
|
694 |
+
"<SPECIAL_691>",
|
695 |
+
"<SPECIAL_692>",
|
696 |
+
"<SPECIAL_693>",
|
697 |
+
"<SPECIAL_694>",
|
698 |
+
"<SPECIAL_695>",
|
699 |
+
"<SPECIAL_696>",
|
700 |
+
"<SPECIAL_697>",
|
701 |
+
"<SPECIAL_698>",
|
702 |
+
"<SPECIAL_699>",
|
703 |
+
"<SPECIAL_700>",
|
704 |
+
"<SPECIAL_701>",
|
705 |
+
"<SPECIAL_702>",
|
706 |
+
"<SPECIAL_703>",
|
707 |
+
"<SPECIAL_704>",
|
708 |
+
"<SPECIAL_705>",
|
709 |
+
"<SPECIAL_706>",
|
710 |
+
"<SPECIAL_707>",
|
711 |
+
"<SPECIAL_708>",
|
712 |
+
"<SPECIAL_709>",
|
713 |
+
"<SPECIAL_710>",
|
714 |
+
"<SPECIAL_711>",
|
715 |
+
"<SPECIAL_712>",
|
716 |
+
"<SPECIAL_713>",
|
717 |
+
"<SPECIAL_714>",
|
718 |
+
"<SPECIAL_715>",
|
719 |
+
"<SPECIAL_716>",
|
720 |
+
"<SPECIAL_717>",
|
721 |
+
"<SPECIAL_718>",
|
722 |
+
"<SPECIAL_719>",
|
723 |
+
"<SPECIAL_720>",
|
724 |
+
"<SPECIAL_721>",
|
725 |
+
"<SPECIAL_722>",
|
726 |
+
"<SPECIAL_723>",
|
727 |
+
"<SPECIAL_724>",
|
728 |
+
"<SPECIAL_725>",
|
729 |
+
"<SPECIAL_726>",
|
730 |
+
"<SPECIAL_727>",
|
731 |
+
"<SPECIAL_728>",
|
732 |
+
"<SPECIAL_729>",
|
733 |
+
"<SPECIAL_730>",
|
734 |
+
"<SPECIAL_731>",
|
735 |
+
"<SPECIAL_732>",
|
736 |
+
"<SPECIAL_733>",
|
737 |
+
"<SPECIAL_734>",
|
738 |
+
"<SPECIAL_735>",
|
739 |
+
"<SPECIAL_736>",
|
740 |
+
"<SPECIAL_737>",
|
741 |
+
"<SPECIAL_738>",
|
742 |
+
"<SPECIAL_739>",
|
743 |
+
"<SPECIAL_740>",
|
744 |
+
"<SPECIAL_741>",
|
745 |
+
"<SPECIAL_742>",
|
746 |
+
"<SPECIAL_743>",
|
747 |
+
"<SPECIAL_744>",
|
748 |
+
"<SPECIAL_745>",
|
749 |
+
"<SPECIAL_746>",
|
750 |
+
"<SPECIAL_747>",
|
751 |
+
"<SPECIAL_748>",
|
752 |
+
"<SPECIAL_749>",
|
753 |
+
"<SPECIAL_750>",
|
754 |
+
"<SPECIAL_751>",
|
755 |
+
"<SPECIAL_752>",
|
756 |
+
"<SPECIAL_753>",
|
757 |
+
"<SPECIAL_754>",
|
758 |
+
"<SPECIAL_755>",
|
759 |
+
"<SPECIAL_756>",
|
760 |
+
"<SPECIAL_757>",
|
761 |
+
"<SPECIAL_758>",
|
762 |
+
"<SPECIAL_759>",
|
763 |
+
"<SPECIAL_760>",
|
764 |
+
"<SPECIAL_761>",
|
765 |
+
"<SPECIAL_762>",
|
766 |
+
"<SPECIAL_763>",
|
767 |
+
"<SPECIAL_764>",
|
768 |
+
"<SPECIAL_765>",
|
769 |
+
"<SPECIAL_766>",
|
770 |
+
"<SPECIAL_767>",
|
771 |
+
"<SPECIAL_768>",
|
772 |
+
"<SPECIAL_769>",
|
773 |
+
"<SPECIAL_770>",
|
774 |
+
"<SPECIAL_771>",
|
775 |
+
"<SPECIAL_772>",
|
776 |
+
"<SPECIAL_773>",
|
777 |
+
"<SPECIAL_774>",
|
778 |
+
"<SPECIAL_775>",
|
779 |
+
"<SPECIAL_776>",
|
780 |
+
"<SPECIAL_777>",
|
781 |
+
"<SPECIAL_778>",
|
782 |
+
"<SPECIAL_779>",
|
783 |
+
"<SPECIAL_780>",
|
784 |
+
"<SPECIAL_781>",
|
785 |
+
"<SPECIAL_782>",
|
786 |
+
"<SPECIAL_783>",
|
787 |
+
"<SPECIAL_784>",
|
788 |
+
"<SPECIAL_785>",
|
789 |
+
"<SPECIAL_786>",
|
790 |
+
"<SPECIAL_787>",
|
791 |
+
"<SPECIAL_788>",
|
792 |
+
"<SPECIAL_789>",
|
793 |
+
"<SPECIAL_790>",
|
794 |
+
"<SPECIAL_791>",
|
795 |
+
"<SPECIAL_792>",
|
796 |
+
"<SPECIAL_793>",
|
797 |
+
"<SPECIAL_794>",
|
798 |
+
"<SPECIAL_795>",
|
799 |
+
"<SPECIAL_796>",
|
800 |
+
"<SPECIAL_797>",
|
801 |
+
"<SPECIAL_798>",
|
802 |
+
"<SPECIAL_799>",
|
803 |
+
"<SPECIAL_800>",
|
804 |
+
"<SPECIAL_801>",
|
805 |
+
"<SPECIAL_802>",
|
806 |
+
"<SPECIAL_803>",
|
807 |
+
"<SPECIAL_804>",
|
808 |
+
"<SPECIAL_805>",
|
809 |
+
"<SPECIAL_806>",
|
810 |
+
"<SPECIAL_807>",
|
811 |
+
"<SPECIAL_808>",
|
812 |
+
"<SPECIAL_809>",
|
813 |
+
"<SPECIAL_810>",
|
814 |
+
"<SPECIAL_811>",
|
815 |
+
"<SPECIAL_812>",
|
816 |
+
"<SPECIAL_813>",
|
817 |
+
"<SPECIAL_814>",
|
818 |
+
"<SPECIAL_815>",
|
819 |
+
"<SPECIAL_816>",
|
820 |
+
"<SPECIAL_817>",
|
821 |
+
"<SPECIAL_818>",
|
822 |
+
"<SPECIAL_819>",
|
823 |
+
"<SPECIAL_820>",
|
824 |
+
"<SPECIAL_821>",
|
825 |
+
"<SPECIAL_822>",
|
826 |
+
"<SPECIAL_823>",
|
827 |
+
"<SPECIAL_824>",
|
828 |
+
"<SPECIAL_825>",
|
829 |
+
"<SPECIAL_826>",
|
830 |
+
"<SPECIAL_827>",
|
831 |
+
"<SPECIAL_828>",
|
832 |
+
"<SPECIAL_829>",
|
833 |
+
"<SPECIAL_830>",
|
834 |
+
"<SPECIAL_831>",
|
835 |
+
"<SPECIAL_832>",
|
836 |
+
"<SPECIAL_833>",
|
837 |
+
"<SPECIAL_834>",
|
838 |
+
"<SPECIAL_835>",
|
839 |
+
"<SPECIAL_836>",
|
840 |
+
"<SPECIAL_837>",
|
841 |
+
"<SPECIAL_838>",
|
842 |
+
"<SPECIAL_839>",
|
843 |
+
"<SPECIAL_840>",
|
844 |
+
"<SPECIAL_841>",
|
845 |
+
"<SPECIAL_842>",
|
846 |
+
"<SPECIAL_843>",
|
847 |
+
"<SPECIAL_844>",
|
848 |
+
"<SPECIAL_845>",
|
849 |
+
"<SPECIAL_846>",
|
850 |
+
"<SPECIAL_847>",
|
851 |
+
"<SPECIAL_848>",
|
852 |
+
"<SPECIAL_849>",
|
853 |
+
"<SPECIAL_850>",
|
854 |
+
"<SPECIAL_851>",
|
855 |
+
"<SPECIAL_852>",
|
856 |
+
"<SPECIAL_853>",
|
857 |
+
"<SPECIAL_854>",
|
858 |
+
"<SPECIAL_855>",
|
859 |
+
"<SPECIAL_856>",
|
860 |
+
"<SPECIAL_857>",
|
861 |
+
"<SPECIAL_858>",
|
862 |
+
"<SPECIAL_859>",
|
863 |
+
"<SPECIAL_860>",
|
864 |
+
"<SPECIAL_861>",
|
865 |
+
"<SPECIAL_862>",
|
866 |
+
"<SPECIAL_863>",
|
867 |
+
"<SPECIAL_864>",
|
868 |
+
"<SPECIAL_865>",
|
869 |
+
"<SPECIAL_866>",
|
870 |
+
"<SPECIAL_867>",
|
871 |
+
"<SPECIAL_868>",
|
872 |
+
"<SPECIAL_869>",
|
873 |
+
"<SPECIAL_870>",
|
874 |
+
"<SPECIAL_871>",
|
875 |
+
"<SPECIAL_872>",
|
876 |
+
"<SPECIAL_873>",
|
877 |
+
"<SPECIAL_874>",
|
878 |
+
"<SPECIAL_875>",
|
879 |
+
"<SPECIAL_876>",
|
880 |
+
"<SPECIAL_877>",
|
881 |
+
"<SPECIAL_878>",
|
882 |
+
"<SPECIAL_879>",
|
883 |
+
"<SPECIAL_880>",
|
884 |
+
"<SPECIAL_881>",
|
885 |
+
"<SPECIAL_882>",
|
886 |
+
"<SPECIAL_883>",
|
887 |
+
"<SPECIAL_884>",
|
888 |
+
"<SPECIAL_885>",
|
889 |
+
"<SPECIAL_886>",
|
890 |
+
"<SPECIAL_887>",
|
891 |
+
"<SPECIAL_888>",
|
892 |
+
"<SPECIAL_889>",
|
893 |
+
"<SPECIAL_890>",
|
894 |
+
"<SPECIAL_891>",
|
895 |
+
"<SPECIAL_892>",
|
896 |
+
"<SPECIAL_893>",
|
897 |
+
"<SPECIAL_894>",
|
898 |
+
"<SPECIAL_895>",
|
899 |
+
"<SPECIAL_896>",
|
900 |
+
"<SPECIAL_897>",
|
901 |
+
"<SPECIAL_898>",
|
902 |
+
"<SPECIAL_899>",
|
903 |
+
"<SPECIAL_900>",
|
904 |
+
"<SPECIAL_901>",
|
905 |
+
"<SPECIAL_902>",
|
906 |
+
"<SPECIAL_903>",
|
907 |
+
"<SPECIAL_904>",
|
908 |
+
"<SPECIAL_905>",
|
909 |
+
"<SPECIAL_906>",
|
910 |
+
"<SPECIAL_907>",
|
911 |
+
"<SPECIAL_908>",
|
912 |
+
"<SPECIAL_909>",
|
913 |
+
"<SPECIAL_910>",
|
914 |
+
"<SPECIAL_911>",
|
915 |
+
"<SPECIAL_912>",
|
916 |
+
"<SPECIAL_913>",
|
917 |
+
"<SPECIAL_914>",
|
918 |
+
"<SPECIAL_915>",
|
919 |
+
"<SPECIAL_916>",
|
920 |
+
"<SPECIAL_917>",
|
921 |
+
"<SPECIAL_918>",
|
922 |
+
"<SPECIAL_919>",
|
923 |
+
"<SPECIAL_920>",
|
924 |
+
"<SPECIAL_921>",
|
925 |
+
"<SPECIAL_922>",
|
926 |
+
"<SPECIAL_923>",
|
927 |
+
"<SPECIAL_924>",
|
928 |
+
"<SPECIAL_925>",
|
929 |
+
"<SPECIAL_926>",
|
930 |
+
"<SPECIAL_927>",
|
931 |
+
"<SPECIAL_928>",
|
932 |
+
"<SPECIAL_929>",
|
933 |
+
"<SPECIAL_930>",
|
934 |
+
"<SPECIAL_931>",
|
935 |
+
"<SPECIAL_932>",
|
936 |
+
"<SPECIAL_933>",
|
937 |
+
"<SPECIAL_934>",
|
938 |
+
"<SPECIAL_935>",
|
939 |
+
"<SPECIAL_936>",
|
940 |
+
"<SPECIAL_937>",
|
941 |
+
"<SPECIAL_938>",
|
942 |
+
"<SPECIAL_939>",
|
943 |
+
"<SPECIAL_940>",
|
944 |
+
"<SPECIAL_941>",
|
945 |
+
"<SPECIAL_942>",
|
946 |
+
"<SPECIAL_943>",
|
947 |
+
"<SPECIAL_944>",
|
948 |
+
"<SPECIAL_945>",
|
949 |
+
"<SPECIAL_946>",
|
950 |
+
"<SPECIAL_947>",
|
951 |
+
"<SPECIAL_948>",
|
952 |
+
"<SPECIAL_949>",
|
953 |
+
"<SPECIAL_950>",
|
954 |
+
"<SPECIAL_951>",
|
955 |
+
"<SPECIAL_952>",
|
956 |
+
"<SPECIAL_953>",
|
957 |
+
"<SPECIAL_954>",
|
958 |
+
"<SPECIAL_955>",
|
959 |
+
"<SPECIAL_956>",
|
960 |
+
"<SPECIAL_957>",
|
961 |
+
"<SPECIAL_958>",
|
962 |
+
"<SPECIAL_959>",
|
963 |
+
"<SPECIAL_960>",
|
964 |
+
"<SPECIAL_961>",
|
965 |
+
"<SPECIAL_962>",
|
966 |
+
"<SPECIAL_963>",
|
967 |
+
"<SPECIAL_964>",
|
968 |
+
"<SPECIAL_965>",
|
969 |
+
"<SPECIAL_966>",
|
970 |
+
"<SPECIAL_967>",
|
971 |
+
"<SPECIAL_968>",
|
972 |
+
"<SPECIAL_969>",
|
973 |
+
"<SPECIAL_970>",
|
974 |
+
"<SPECIAL_971>",
|
975 |
+
"<SPECIAL_972>",
|
976 |
+
"<SPECIAL_973>",
|
977 |
+
"<SPECIAL_974>",
|
978 |
+
"<SPECIAL_975>",
|
979 |
+
"<SPECIAL_976>",
|
980 |
+
"<SPECIAL_977>",
|
981 |
+
"<SPECIAL_978>",
|
982 |
+
"<SPECIAL_979>",
|
983 |
+
"<SPECIAL_980>",
|
984 |
+
"<SPECIAL_981>",
|
985 |
+
"<SPECIAL_982>",
|
986 |
+
"<SPECIAL_983>",
|
987 |
+
"<SPECIAL_984>",
|
988 |
+
"<SPECIAL_985>",
|
989 |
+
"<SPECIAL_986>",
|
990 |
+
"<SPECIAL_987>",
|
991 |
+
"<SPECIAL_988>",
|
992 |
+
"<SPECIAL_989>",
|
993 |
+
"<SPECIAL_990>",
|
994 |
+
"<SPECIAL_991>",
|
995 |
+
"<SPECIAL_992>",
|
996 |
+
"<SPECIAL_993>",
|
997 |
+
"<SPECIAL_994>",
|
998 |
+
"<SPECIAL_995>",
|
999 |
+
"<SPECIAL_996>",
|
1000 |
+
"<SPECIAL_997>",
|
1001 |
+
"<SPECIAL_998>",
|
1002 |
+
"<SPECIAL_999>"
|
1003 |
+
],
|
1004 |
+
"bos_token": {
|
1005 |
+
"content": "<s>",
|
1006 |
+
"lstrip": false,
|
1007 |
+
"normalized": false,
|
1008 |
+
"rstrip": false,
|
1009 |
+
"single_word": false
|
1010 |
+
},
|
1011 |
+
"eos_token": {
|
1012 |
+
"content": "</s>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false
|
1017 |
+
},
|
1018 |
+
"pad_token": {
|
1019 |
+
"content": "<pad>",
|
1020 |
+
"lstrip": false,
|
1021 |
+
"normalized": false,
|
1022 |
+
"rstrip": false,
|
1023 |
+
"single_word": false
|
1024 |
+
},
|
1025 |
+
"unk_token": {
|
1026 |
+
"content": "<unk>",
|
1027 |
+
"lstrip": false,
|
1028 |
+
"normalized": false,
|
1029 |
+
"rstrip": false,
|
1030 |
+
"single_word": false
|
1031 |
+
}
|
1032 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b76085f9923309d873994d444989f7eb6ec074b06f25b58f1e8d7b7741070949
|
3 |
+
size 17078037
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
trainer_state.json
ADDED
@@ -0,0 +1,1682 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 3.944206008583691,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 232,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.017167381974248927,
|
14 |
+
"grad_norm": 24.894664359139377,
|
15 |
+
"learning_rate": 0.0,
|
16 |
+
"loss": 2.0734,
|
17 |
+
"step": 1
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.034334763948497854,
|
21 |
+
"grad_norm": 24.00031672844471,
|
22 |
+
"learning_rate": 2.0000000000000002e-07,
|
23 |
+
"loss": 2.0836,
|
24 |
+
"step": 2
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.05150214592274678,
|
28 |
+
"grad_norm": 29.716249933336616,
|
29 |
+
"learning_rate": 4.0000000000000003e-07,
|
30 |
+
"loss": 2.1693,
|
31 |
+
"step": 3
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.06866952789699571,
|
35 |
+
"grad_norm": 24.37331054435917,
|
36 |
+
"learning_rate": 6.000000000000001e-07,
|
37 |
+
"loss": 2.0201,
|
38 |
+
"step": 4
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.08583690987124463,
|
42 |
+
"grad_norm": 19.789582138660975,
|
43 |
+
"learning_rate": 8.000000000000001e-07,
|
44 |
+
"loss": 1.9014,
|
45 |
+
"step": 5
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.10300429184549356,
|
49 |
+
"grad_norm": 18.92438805672366,
|
50 |
+
"learning_rate": 1.0000000000000002e-06,
|
51 |
+
"loss": 2.0578,
|
52 |
+
"step": 6
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.12017167381974249,
|
56 |
+
"grad_norm": 13.872256454769323,
|
57 |
+
"learning_rate": 1.2000000000000002e-06,
|
58 |
+
"loss": 1.9303,
|
59 |
+
"step": 7
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.13733905579399142,
|
63 |
+
"grad_norm": 17.41216169856372,
|
64 |
+
"learning_rate": 1.4000000000000001e-06,
|
65 |
+
"loss": 1.9427,
|
66 |
+
"step": 8
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.15450643776824036,
|
70 |
+
"grad_norm": 13.884818846193818,
|
71 |
+
"learning_rate": 1.6000000000000001e-06,
|
72 |
+
"loss": 1.7924,
|
73 |
+
"step": 9
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.17167381974248927,
|
77 |
+
"grad_norm": 10.563149359389286,
|
78 |
+
"learning_rate": 1.8000000000000001e-06,
|
79 |
+
"loss": 1.8341,
|
80 |
+
"step": 10
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.1888412017167382,
|
84 |
+
"grad_norm": 17.065510513137394,
|
85 |
+
"learning_rate": 2.0000000000000003e-06,
|
86 |
+
"loss": 1.8003,
|
87 |
+
"step": 11
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.20600858369098712,
|
91 |
+
"grad_norm": 13.365031970331449,
|
92 |
+
"learning_rate": 2.2e-06,
|
93 |
+
"loss": 1.7405,
|
94 |
+
"step": 12
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.22317596566523606,
|
98 |
+
"grad_norm": 10.184190757772281,
|
99 |
+
"learning_rate": 2.4000000000000003e-06,
|
100 |
+
"loss": 1.7369,
|
101 |
+
"step": 13
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.24034334763948498,
|
105 |
+
"grad_norm": 8.522394959606002,
|
106 |
+
"learning_rate": 2.6e-06,
|
107 |
+
"loss": 1.7161,
|
108 |
+
"step": 14
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.2575107296137339,
|
112 |
+
"grad_norm": 7.4639532795389885,
|
113 |
+
"learning_rate": 2.8000000000000003e-06,
|
114 |
+
"loss": 1.7516,
|
115 |
+
"step": 15
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.27467811158798283,
|
119 |
+
"grad_norm": 6.885531173304724,
|
120 |
+
"learning_rate": 3e-06,
|
121 |
+
"loss": 1.7291,
|
122 |
+
"step": 16
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.2918454935622318,
|
126 |
+
"grad_norm": 8.124663030531377,
|
127 |
+
"learning_rate": 3.2000000000000003e-06,
|
128 |
+
"loss": 1.8113,
|
129 |
+
"step": 17
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.3090128755364807,
|
133 |
+
"grad_norm": 7.505534742466626,
|
134 |
+
"learning_rate": 3.4000000000000005e-06,
|
135 |
+
"loss": 1.7011,
|
136 |
+
"step": 18
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.3261802575107296,
|
140 |
+
"grad_norm": 6.546353703058948,
|
141 |
+
"learning_rate": 3.6000000000000003e-06,
|
142 |
+
"loss": 1.679,
|
143 |
+
"step": 19
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.34334763948497854,
|
147 |
+
"grad_norm": 8.084166970057376,
|
148 |
+
"learning_rate": 3.8000000000000005e-06,
|
149 |
+
"loss": 1.7672,
|
150 |
+
"step": 20
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.3605150214592275,
|
154 |
+
"grad_norm": 7.39493724533185,
|
155 |
+
"learning_rate": 4.000000000000001e-06,
|
156 |
+
"loss": 1.7273,
|
157 |
+
"step": 21
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.3776824034334764,
|
161 |
+
"grad_norm": 7.897097334092764,
|
162 |
+
"learning_rate": 4.2000000000000004e-06,
|
163 |
+
"loss": 1.723,
|
164 |
+
"step": 22
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.3948497854077253,
|
168 |
+
"grad_norm": 6.969310652434427,
|
169 |
+
"learning_rate": 4.4e-06,
|
170 |
+
"loss": 1.6652,
|
171 |
+
"step": 23
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.41201716738197425,
|
175 |
+
"grad_norm": 6.593881510049774,
|
176 |
+
"learning_rate": 4.600000000000001e-06,
|
177 |
+
"loss": 1.6471,
|
178 |
+
"step": 24
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.4291845493562232,
|
182 |
+
"grad_norm": 7.447075197928159,
|
183 |
+
"learning_rate": 4.800000000000001e-06,
|
184 |
+
"loss": 1.7447,
|
185 |
+
"step": 25
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.44635193133047213,
|
189 |
+
"grad_norm": 7.593703083280446,
|
190 |
+
"learning_rate": 5e-06,
|
191 |
+
"loss": 1.7199,
|
192 |
+
"step": 26
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.463519313304721,
|
196 |
+
"grad_norm": 7.670358465509374,
|
197 |
+
"learning_rate": 5.2e-06,
|
198 |
+
"loss": 1.7528,
|
199 |
+
"step": 27
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.48068669527896996,
|
203 |
+
"grad_norm": 6.816789703879088,
|
204 |
+
"learning_rate": 5.400000000000001e-06,
|
205 |
+
"loss": 1.69,
|
206 |
+
"step": 28
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.4978540772532189,
|
210 |
+
"grad_norm": 6.703285346233008,
|
211 |
+
"learning_rate": 5.600000000000001e-06,
|
212 |
+
"loss": 1.6589,
|
213 |
+
"step": 29
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.5150214592274678,
|
217 |
+
"grad_norm": 6.319351833531301,
|
218 |
+
"learning_rate": 5.8e-06,
|
219 |
+
"loss": 1.6783,
|
220 |
+
"step": 30
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 0.5321888412017167,
|
224 |
+
"grad_norm": 7.668634230120905,
|
225 |
+
"learning_rate": 6e-06,
|
226 |
+
"loss": 1.7307,
|
227 |
+
"step": 31
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.5493562231759657,
|
231 |
+
"grad_norm": 7.216605386564187,
|
232 |
+
"learning_rate": 6.200000000000001e-06,
|
233 |
+
"loss": 1.6241,
|
234 |
+
"step": 32
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 0.5665236051502146,
|
238 |
+
"grad_norm": 7.95986167238638,
|
239 |
+
"learning_rate": 6.4000000000000006e-06,
|
240 |
+
"loss": 1.7027,
|
241 |
+
"step": 33
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 0.5836909871244635,
|
245 |
+
"grad_norm": 7.567869929265614,
|
246 |
+
"learning_rate": 6.600000000000001e-06,
|
247 |
+
"loss": 1.6541,
|
248 |
+
"step": 34
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 0.6008583690987125,
|
252 |
+
"grad_norm": 7.583204324051831,
|
253 |
+
"learning_rate": 6.800000000000001e-06,
|
254 |
+
"loss": 1.6605,
|
255 |
+
"step": 35
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.6180257510729614,
|
259 |
+
"grad_norm": 7.927092569421214,
|
260 |
+
"learning_rate": 7e-06,
|
261 |
+
"loss": 1.6376,
|
262 |
+
"step": 36
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 0.6351931330472103,
|
266 |
+
"grad_norm": 6.777169937117983,
|
267 |
+
"learning_rate": 7.2000000000000005e-06,
|
268 |
+
"loss": 1.6076,
|
269 |
+
"step": 37
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 0.6523605150214592,
|
273 |
+
"grad_norm": 7.376746584211704,
|
274 |
+
"learning_rate": 7.4e-06,
|
275 |
+
"loss": 1.6631,
|
276 |
+
"step": 38
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 0.6695278969957081,
|
280 |
+
"grad_norm": 5.931441717917702,
|
281 |
+
"learning_rate": 7.600000000000001e-06,
|
282 |
+
"loss": 1.6105,
|
283 |
+
"step": 39
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 0.6866952789699571,
|
287 |
+
"grad_norm": 7.788470294493901,
|
288 |
+
"learning_rate": 7.800000000000002e-06,
|
289 |
+
"loss": 1.6777,
|
290 |
+
"step": 40
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 0.703862660944206,
|
294 |
+
"grad_norm": 7.201871110419962,
|
295 |
+
"learning_rate": 8.000000000000001e-06,
|
296 |
+
"loss": 1.6622,
|
297 |
+
"step": 41
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.721030042918455,
|
301 |
+
"grad_norm": 7.351004222204919,
|
302 |
+
"learning_rate": 8.2e-06,
|
303 |
+
"loss": 1.6343,
|
304 |
+
"step": 42
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 0.7381974248927039,
|
308 |
+
"grad_norm": 7.116370756646885,
|
309 |
+
"learning_rate": 8.400000000000001e-06,
|
310 |
+
"loss": 1.6713,
|
311 |
+
"step": 43
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.7553648068669528,
|
315 |
+
"grad_norm": 6.804638326754223,
|
316 |
+
"learning_rate": 8.6e-06,
|
317 |
+
"loss": 1.5942,
|
318 |
+
"step": 44
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.7725321888412017,
|
322 |
+
"grad_norm": 7.1784709545283025,
|
323 |
+
"learning_rate": 8.8e-06,
|
324 |
+
"loss": 1.6453,
|
325 |
+
"step": 45
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 0.7896995708154506,
|
329 |
+
"grad_norm": 6.578248052500373,
|
330 |
+
"learning_rate": 9e-06,
|
331 |
+
"loss": 1.6493,
|
332 |
+
"step": 46
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 0.8068669527896996,
|
336 |
+
"grad_norm": 5.835458640344457,
|
337 |
+
"learning_rate": 9.200000000000002e-06,
|
338 |
+
"loss": 1.5686,
|
339 |
+
"step": 47
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.8240343347639485,
|
343 |
+
"grad_norm": 6.024182879280123,
|
344 |
+
"learning_rate": 9.4e-06,
|
345 |
+
"loss": 1.5686,
|
346 |
+
"step": 48
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 0.8412017167381974,
|
350 |
+
"grad_norm": 5.931203630890797,
|
351 |
+
"learning_rate": 9.600000000000001e-06,
|
352 |
+
"loss": 1.5948,
|
353 |
+
"step": 49
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 0.8583690987124464,
|
357 |
+
"grad_norm": 5.741506735885901,
|
358 |
+
"learning_rate": 9.800000000000001e-06,
|
359 |
+
"loss": 1.6167,
|
360 |
+
"step": 50
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.8755364806866953,
|
364 |
+
"grad_norm": 6.248428015586314,
|
365 |
+
"learning_rate": 1e-05,
|
366 |
+
"loss": 1.6021,
|
367 |
+
"step": 51
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.8927038626609443,
|
371 |
+
"grad_norm": 5.523348714272916,
|
372 |
+
"learning_rate": 9.999255120204248e-06,
|
373 |
+
"loss": 1.6021,
|
374 |
+
"step": 52
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 0.9098712446351931,
|
378 |
+
"grad_norm": 5.486958421466518,
|
379 |
+
"learning_rate": 9.997020702755353e-06,
|
380 |
+
"loss": 1.5414,
|
381 |
+
"step": 53
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.927038626609442,
|
385 |
+
"grad_norm": 4.906442579745384,
|
386 |
+
"learning_rate": 9.993297413402282e-06,
|
387 |
+
"loss": 1.6355,
|
388 |
+
"step": 54
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 0.944206008583691,
|
392 |
+
"grad_norm": 3.4477648478182217,
|
393 |
+
"learning_rate": 9.98808636150624e-06,
|
394 |
+
"loss": 1.5204,
|
395 |
+
"step": 55
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 0.9613733905579399,
|
399 |
+
"grad_norm": 5.283485667760506,
|
400 |
+
"learning_rate": 9.981389099710132e-06,
|
401 |
+
"loss": 1.557,
|
402 |
+
"step": 56
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 0.9785407725321889,
|
406 |
+
"grad_norm": 4.864774414469769,
|
407 |
+
"learning_rate": 9.973207623475964e-06,
|
408 |
+
"loss": 1.5847,
|
409 |
+
"step": 57
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.9957081545064378,
|
413 |
+
"grad_norm": 4.99512035052619,
|
414 |
+
"learning_rate": 9.96354437049027e-06,
|
415 |
+
"loss": 1.4972,
|
416 |
+
"step": 58
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 1.0,
|
420 |
+
"grad_norm": 4.99512035052619,
|
421 |
+
"learning_rate": 9.952402219937817e-06,
|
422 |
+
"loss": 1.6505,
|
423 |
+
"step": 59
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 1.0,
|
427 |
+
"eval_loss": 1.425569772720337,
|
428 |
+
"eval_runtime": 55.3506,
|
429 |
+
"eval_samples_per_second": 6.504,
|
430 |
+
"eval_steps_per_second": 0.217,
|
431 |
+
"step": 59
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"epoch": 1.0171673819742488,
|
435 |
+
"grad_norm": 3.9912629226494145,
|
436 |
+
"learning_rate": 9.939784491643734e-06,
|
437 |
+
"loss": 1.5689,
|
438 |
+
"step": 60
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"epoch": 1.0343347639484979,
|
442 |
+
"grad_norm": 3.5037206814091273,
|
443 |
+
"learning_rate": 9.925694945084369e-06,
|
444 |
+
"loss": 1.5846,
|
445 |
+
"step": 61
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 1.0515021459227467,
|
449 |
+
"grad_norm": 3.096134013860231,
|
450 |
+
"learning_rate": 9.910137778267153e-06,
|
451 |
+
"loss": 1.561,
|
452 |
+
"step": 62
|
453 |
+
},
|
454 |
+
{
|
455 |
+
"epoch": 1.0686695278969958,
|
456 |
+
"grad_norm": 6.745525969869406,
|
457 |
+
"learning_rate": 9.893117626479778e-06,
|
458 |
+
"loss": 1.5086,
|
459 |
+
"step": 63
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 1.0858369098712446,
|
463 |
+
"grad_norm": 3.771654699845576,
|
464 |
+
"learning_rate": 9.874639560909118e-06,
|
465 |
+
"loss": 1.4463,
|
466 |
+
"step": 64
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"epoch": 1.1030042918454936,
|
470 |
+
"grad_norm": 7.348146928107017,
|
471 |
+
"learning_rate": 9.854709087130261e-06,
|
472 |
+
"loss": 1.5732,
|
473 |
+
"step": 65
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"epoch": 1.1201716738197425,
|
477 |
+
"grad_norm": 4.285886261726828,
|
478 |
+
"learning_rate": 9.833332143466099e-06,
|
479 |
+
"loss": 1.5634,
|
480 |
+
"step": 66
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"epoch": 1.1373390557939915,
|
484 |
+
"grad_norm": 9.50651645737036,
|
485 |
+
"learning_rate": 9.810515099218004e-06,
|
486 |
+
"loss": 1.5832,
|
487 |
+
"step": 67
|
488 |
+
},
|
489 |
+
{
|
490 |
+
"epoch": 1.1545064377682404,
|
491 |
+
"grad_norm": 9.85903247254424,
|
492 |
+
"learning_rate": 9.78626475276808e-06,
|
493 |
+
"loss": 1.5158,
|
494 |
+
"step": 68
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 1.1716738197424892,
|
498 |
+
"grad_norm": 4.500325598034437,
|
499 |
+
"learning_rate": 9.76058832955357e-06,
|
500 |
+
"loss": 1.5577,
|
501 |
+
"step": 69
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 1.1888412017167382,
|
505 |
+
"grad_norm": 6.726627673373393,
|
506 |
+
"learning_rate": 9.733493479914031e-06,
|
507 |
+
"loss": 1.5402,
|
508 |
+
"step": 70
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"epoch": 1.206008583690987,
|
512 |
+
"grad_norm": 5.992547800498691,
|
513 |
+
"learning_rate": 9.704988276811883e-06,
|
514 |
+
"loss": 1.4771,
|
515 |
+
"step": 71
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 1.2231759656652361,
|
519 |
+
"grad_norm": 3.966804454715501,
|
520 |
+
"learning_rate": 9.675081213427076e-06,
|
521 |
+
"loss": 1.4715,
|
522 |
+
"step": 72
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 1.240343347639485,
|
526 |
+
"grad_norm": 5.018712503166457,
|
527 |
+
"learning_rate": 9.643781200626512e-06,
|
528 |
+
"loss": 1.483,
|
529 |
+
"step": 73
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 1.2575107296137338,
|
533 |
+
"grad_norm": 5.147155410650178,
|
534 |
+
"learning_rate": 9.611097564309054e-06,
|
535 |
+
"loss": 1.529,
|
536 |
+
"step": 74
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 1.2746781115879828,
|
540 |
+
"grad_norm": 4.430249361377804,
|
541 |
+
"learning_rate": 9.577040042626832e-06,
|
542 |
+
"loss": 1.5055,
|
543 |
+
"step": 75
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 1.2918454935622319,
|
547 |
+
"grad_norm": 3.3331885191043824,
|
548 |
+
"learning_rate": 9.54161878308377e-06,
|
549 |
+
"loss": 1.5686,
|
550 |
+
"step": 76
|
551 |
+
},
|
552 |
+
{
|
553 |
+
"epoch": 1.3090128755364807,
|
554 |
+
"grad_norm": 3.3765624318373684,
|
555 |
+
"learning_rate": 9.504844339512096e-06,
|
556 |
+
"loss": 1.4806,
|
557 |
+
"step": 77
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 1.3261802575107295,
|
561 |
+
"grad_norm": 3.0122848173838146,
|
562 |
+
"learning_rate": 9.466727668927817e-06,
|
563 |
+
"loss": 1.483,
|
564 |
+
"step": 78
|
565 |
+
},
|
566 |
+
{
|
567 |
+
"epoch": 1.3433476394849786,
|
568 |
+
"grad_norm": 2.8374889256024325,
|
569 |
+
"learning_rate": 9.427280128266049e-06,
|
570 |
+
"loss": 1.5371,
|
571 |
+
"step": 79
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 1.3605150214592274,
|
575 |
+
"grad_norm": 3.8591143057415067,
|
576 |
+
"learning_rate": 9.38651347099721e-06,
|
577 |
+
"loss": 1.515,
|
578 |
+
"step": 80
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"epoch": 1.3776824034334765,
|
582 |
+
"grad_norm": 2.702387816445196,
|
583 |
+
"learning_rate": 9.344439843625034e-06,
|
584 |
+
"loss": 1.5065,
|
585 |
+
"step": 81
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 1.3948497854077253,
|
589 |
+
"grad_norm": 3.231309074741847,
|
590 |
+
"learning_rate": 9.301071782067504e-06,
|
591 |
+
"loss": 1.4691,
|
592 |
+
"step": 82
|
593 |
+
},
|
594 |
+
{
|
595 |
+
"epoch": 1.4120171673819741,
|
596 |
+
"grad_norm": 2.569345186210359,
|
597 |
+
"learning_rate": 9.256422207921757e-06,
|
598 |
+
"loss": 1.4551,
|
599 |
+
"step": 83
|
600 |
+
},
|
601 |
+
{
|
602 |
+
"epoch": 1.4291845493562232,
|
603 |
+
"grad_norm": 2.6936841928298763,
|
604 |
+
"learning_rate": 9.21050442461406e-06,
|
605 |
+
"loss": 1.5342,
|
606 |
+
"step": 84
|
607 |
+
},
|
608 |
+
{
|
609 |
+
"epoch": 1.4463519313304722,
|
610 |
+
"grad_norm": 3.1643389084628923,
|
611 |
+
"learning_rate": 9.163332113436031e-06,
|
612 |
+
"loss": 1.5134,
|
613 |
+
"step": 85
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 1.463519313304721,
|
617 |
+
"grad_norm": 2.0547003373714317,
|
618 |
+
"learning_rate": 9.114919329468283e-06,
|
619 |
+
"loss": 1.543,
|
620 |
+
"step": 86
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"epoch": 1.48068669527897,
|
624 |
+
"grad_norm": 3.4765227820159628,
|
625 |
+
"learning_rate": 9.065280497392663e-06,
|
626 |
+
"loss": 1.4952,
|
627 |
+
"step": 87
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 1.497854077253219,
|
631 |
+
"grad_norm": 2.3605853021000245,
|
632 |
+
"learning_rate": 9.014430407194413e-06,
|
633 |
+
"loss": 1.4706,
|
634 |
+
"step": 88
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"epoch": 1.5150214592274678,
|
638 |
+
"grad_norm": 2.79040585245284,
|
639 |
+
"learning_rate": 8.962384209755453e-06,
|
640 |
+
"loss": 1.5038,
|
641 |
+
"step": 89
|
642 |
+
},
|
643 |
+
{
|
644 |
+
"epoch": 1.5321888412017168,
|
645 |
+
"grad_norm": 3.130637987619235,
|
646 |
+
"learning_rate": 8.90915741234015e-06,
|
647 |
+
"loss": 1.5331,
|
648 |
+
"step": 90
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 1.5493562231759657,
|
652 |
+
"grad_norm": 2.1702749562184036,
|
653 |
+
"learning_rate": 8.854765873974898e-06,
|
654 |
+
"loss": 1.4362,
|
655 |
+
"step": 91
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 1.5665236051502145,
|
659 |
+
"grad_norm": 3.529361540533676,
|
660 |
+
"learning_rate": 8.799225800722895e-06,
|
661 |
+
"loss": 1.5103,
|
662 |
+
"step": 92
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 1.5836909871244635,
|
666 |
+
"grad_norm": 2.1288633137671362,
|
667 |
+
"learning_rate": 8.742553740855507e-06,
|
668 |
+
"loss": 1.4735,
|
669 |
+
"step": 93
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 1.6008583690987126,
|
673 |
+
"grad_norm": 4.653595880593553,
|
674 |
+
"learning_rate": 8.684766579921684e-06,
|
675 |
+
"loss": 1.4837,
|
676 |
+
"step": 94
|
677 |
+
},
|
678 |
+
{
|
679 |
+
"epoch": 1.6180257510729614,
|
680 |
+
"grad_norm": 4.183036771208689,
|
681 |
+
"learning_rate": 8.625881535716883e-06,
|
682 |
+
"loss": 1.4616,
|
683 |
+
"step": 95
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"epoch": 1.6351931330472103,
|
687 |
+
"grad_norm": 3.583624228870984,
|
688 |
+
"learning_rate": 8.565916153152982e-06,
|
689 |
+
"loss": 1.452,
|
690 |
+
"step": 96
|
691 |
+
},
|
692 |
+
{
|
693 |
+
"epoch": 1.652360515021459,
|
694 |
+
"grad_norm": 2.9353226938465538,
|
695 |
+
"learning_rate": 8.504888299030748e-06,
|
696 |
+
"loss": 1.5003,
|
697 |
+
"step": 97
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 1.6695278969957081,
|
701 |
+
"grad_norm": 3.9811908362996387,
|
702 |
+
"learning_rate": 8.442816156716386e-06,
|
703 |
+
"loss": 1.4712,
|
704 |
+
"step": 98
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 1.6866952789699572,
|
708 |
+
"grad_norm": 4.507840289564422,
|
709 |
+
"learning_rate": 8.379718220723772e-06,
|
710 |
+
"loss": 1.5154,
|
711 |
+
"step": 99
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 1.703862660944206,
|
715 |
+
"grad_norm": 1.7351061691281462,
|
716 |
+
"learning_rate": 8.315613291203977e-06,
|
717 |
+
"loss": 1.5071,
|
718 |
+
"step": 100
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 1.7210300429184548,
|
722 |
+
"grad_norm": 2.1548506371633476,
|
723 |
+
"learning_rate": 8.250520468343722e-06,
|
724 |
+
"loss": 1.4847,
|
725 |
+
"step": 101
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 1.738197424892704,
|
729 |
+
"grad_norm": 2.915800387932283,
|
730 |
+
"learning_rate": 8.184459146674447e-06,
|
731 |
+
"loss": 1.5255,
|
732 |
+
"step": 102
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 1.755364806866953,
|
736 |
+
"grad_norm": 1.8127751226762168,
|
737 |
+
"learning_rate": 8.117449009293668e-06,
|
738 |
+
"loss": 1.4585,
|
739 |
+
"step": 103
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 1.7725321888412018,
|
743 |
+
"grad_norm": 3.2104447847604884,
|
744 |
+
"learning_rate": 8.049510022000365e-06,
|
745 |
+
"loss": 1.5145,
|
746 |
+
"step": 104
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 1.7896995708154506,
|
750 |
+
"grad_norm": 1.7409586719583194,
|
751 |
+
"learning_rate": 7.980662427346127e-06,
|
752 |
+
"loss": 1.5268,
|
753 |
+
"step": 105
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 1.8068669527896994,
|
757 |
+
"grad_norm": 4.142279628383546,
|
758 |
+
"learning_rate": 7.910926738603855e-06,
|
759 |
+
"loss": 1.4615,
|
760 |
+
"step": 106
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 1.8240343347639485,
|
764 |
+
"grad_norm": 3.877668467895349,
|
765 |
+
"learning_rate": 7.84032373365578e-06,
|
766 |
+
"loss": 1.465,
|
767 |
+
"step": 107
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 1.8412017167381975,
|
771 |
+
"grad_norm": 2.656628633387025,
|
772 |
+
"learning_rate": 7.768874448802665e-06,
|
773 |
+
"loss": 1.4922,
|
774 |
+
"step": 108
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 1.8583690987124464,
|
778 |
+
"grad_norm": 2.584883160911178,
|
779 |
+
"learning_rate": 7.696600172495997e-06,
|
780 |
+
"loss": 1.5179,
|
781 |
+
"step": 109
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 1.8755364806866952,
|
785 |
+
"grad_norm": 2.587010532927385,
|
786 |
+
"learning_rate": 7.62352243899504e-06,
|
787 |
+
"loss": 1.5014,
|
788 |
+
"step": 110
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 1.8927038626609443,
|
792 |
+
"grad_norm": 2.5107207102352915,
|
793 |
+
"learning_rate": 7.5496630219506805e-06,
|
794 |
+
"loss": 1.5064,
|
795 |
+
"step": 111
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 1.909871244635193,
|
799 |
+
"grad_norm": 2.0882468780951915,
|
800 |
+
"learning_rate": 7.475043927917908e-06,
|
801 |
+
"loss": 1.4503,
|
802 |
+
"step": 112
|
803 |
+
},
|
804 |
+
{
|
805 |
+
"epoch": 1.9270386266094421,
|
806 |
+
"grad_norm": 2.1486369526322924,
|
807 |
+
"learning_rate": 7.399687389798933e-06,
|
808 |
+
"loss": 1.5461,
|
809 |
+
"step": 113
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 1.944206008583691,
|
813 |
+
"grad_norm": 1.8242630296650162,
|
814 |
+
"learning_rate": 7.323615860218844e-06,
|
815 |
+
"loss": 1.4363,
|
816 |
+
"step": 114
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"epoch": 1.9613733905579398,
|
820 |
+
"grad_norm": 2.145842755842824,
|
821 |
+
"learning_rate": 7.246852004835807e-06,
|
822 |
+
"loss": 1.4766,
|
823 |
+
"step": 115
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"epoch": 1.9785407725321889,
|
827 |
+
"grad_norm": 1.6691578334566337,
|
828 |
+
"learning_rate": 7.169418695587791e-06,
|
829 |
+
"loss": 1.499,
|
830 |
+
"step": 116
|
831 |
+
},
|
832 |
+
{
|
833 |
+
"epoch": 1.995708154506438,
|
834 |
+
"grad_norm": 2.2108584637006863,
|
835 |
+
"learning_rate": 7.091339003877826e-06,
|
836 |
+
"loss": 1.4225,
|
837 |
+
"step": 117
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 2.0,
|
841 |
+
"grad_norm": 2.2108584637006863,
|
842 |
+
"learning_rate": 7.012636193699838e-06,
|
843 |
+
"loss": 1.5231,
|
844 |
+
"step": 118
|
845 |
+
},
|
846 |
+
{
|
847 |
+
"epoch": 2.0,
|
848 |
+
"eval_loss": 1.3721916675567627,
|
849 |
+
"eval_runtime": 55.5761,
|
850 |
+
"eval_samples_per_second": 6.478,
|
851 |
+
"eval_steps_per_second": 0.216,
|
852 |
+
"step": 118
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"epoch": 2.017167381974249,
|
856 |
+
"grad_norm": 3.7388997063310248,
|
857 |
+
"learning_rate": 6.933333714707094e-06,
|
858 |
+
"loss": 1.4963,
|
859 |
+
"step": 119
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 2.0343347639484977,
|
863 |
+
"grad_norm": 1.9374219671850537,
|
864 |
+
"learning_rate": 6.8534551952253395e-06,
|
865 |
+
"loss": 1.511,
|
866 |
+
"step": 120
|
867 |
+
},
|
868 |
+
{
|
869 |
+
"epoch": 2.051502145922747,
|
870 |
+
"grad_norm": 2.137490994962777,
|
871 |
+
"learning_rate": 6.773024435212678e-06,
|
872 |
+
"loss": 1.4785,
|
873 |
+
"step": 121
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 2.0686695278969958,
|
877 |
+
"grad_norm": 1.5840707110043721,
|
878 |
+
"learning_rate": 6.692065399168352e-06,
|
879 |
+
"loss": 1.4386,
|
880 |
+
"step": 122
|
881 |
+
},
|
882 |
+
{
|
883 |
+
"epoch": 2.0858369098712446,
|
884 |
+
"grad_norm": 2.0353319612062175,
|
885 |
+
"learning_rate": 6.6106022089924535e-06,
|
886 |
+
"loss": 1.3749,
|
887 |
+
"step": 123
|
888 |
+
},
|
889 |
+
{
|
890 |
+
"epoch": 2.1030042918454934,
|
891 |
+
"grad_norm": 1.8137709307149847,
|
892 |
+
"learning_rate": 6.5286591367987655e-06,
|
893 |
+
"loss": 1.4849,
|
894 |
+
"step": 124
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 2.1201716738197427,
|
898 |
+
"grad_norm": 2.7161222343926212,
|
899 |
+
"learning_rate": 6.4462605976828395e-06,
|
900 |
+
"loss": 1.4845,
|
901 |
+
"step": 125
|
902 |
+
},
|
903 |
+
{
|
904 |
+
"epoch": 2.1373390557939915,
|
905 |
+
"grad_norm": 1.3620483576209157,
|
906 |
+
"learning_rate": 6.363431142447469e-06,
|
907 |
+
"loss": 1.4977,
|
908 |
+
"step": 126
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"epoch": 2.1545064377682404,
|
912 |
+
"grad_norm": 1.8781921403392814,
|
913 |
+
"learning_rate": 6.280195450287736e-06,
|
914 |
+
"loss": 1.4339,
|
915 |
+
"step": 127
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 2.171673819742489,
|
919 |
+
"grad_norm": 1.8249006642987649,
|
920 |
+
"learning_rate": 6.1965783214377895e-06,
|
921 |
+
"loss": 1.4837,
|
922 |
+
"step": 128
|
923 |
+
},
|
924 |
+
{
|
925 |
+
"epoch": 2.188841201716738,
|
926 |
+
"grad_norm": 1.4576334521913883,
|
927 |
+
"learning_rate": 6.112604669781572e-06,
|
928 |
+
"loss": 1.4642,
|
929 |
+
"step": 129
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 2.2060085836909873,
|
933 |
+
"grad_norm": 1.8699628551915364,
|
934 |
+
"learning_rate": 6.028299515429683e-06,
|
935 |
+
"loss": 1.3993,
|
936 |
+
"step": 130
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 2.223175965665236,
|
940 |
+
"grad_norm": 1.1893820742085242,
|
941 |
+
"learning_rate": 5.943687977264584e-06,
|
942 |
+
"loss": 1.3989,
|
943 |
+
"step": 131
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"epoch": 2.240343347639485,
|
947 |
+
"grad_norm": 1.7116247132028521,
|
948 |
+
"learning_rate": 5.858795265456382e-06,
|
949 |
+
"loss": 1.4183,
|
950 |
+
"step": 132
|
951 |
+
},
|
952 |
+
{
|
953 |
+
"epoch": 2.257510729613734,
|
954 |
+
"grad_norm": 1.5102064250019567,
|
955 |
+
"learning_rate": 5.773646673951406e-06,
|
956 |
+
"loss": 1.457,
|
957 |
+
"step": 133
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 2.274678111587983,
|
961 |
+
"grad_norm": 1.2667706935607246,
|
962 |
+
"learning_rate": 5.688267572935843e-06,
|
963 |
+
"loss": 1.436,
|
964 |
+
"step": 134
|
965 |
+
},
|
966 |
+
{
|
967 |
+
"epoch": 2.291845493562232,
|
968 |
+
"grad_norm": 1.6963247346173285,
|
969 |
+
"learning_rate": 5.6026834012766155e-06,
|
970 |
+
"loss": 1.4965,
|
971 |
+
"step": 135
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 2.3090128755364807,
|
975 |
+
"grad_norm": 1.2569488026568798,
|
976 |
+
"learning_rate": 5.51691965894185e-06,
|
977 |
+
"loss": 1.4098,
|
978 |
+
"step": 136
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 2.3261802575107295,
|
982 |
+
"grad_norm": 1.1272036077401364,
|
983 |
+
"learning_rate": 5.4310018994030974e-06,
|
984 |
+
"loss": 1.4119,
|
985 |
+
"step": 137
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 2.3433476394849784,
|
989 |
+
"grad_norm": 1.673271865613411,
|
990 |
+
"learning_rate": 5.3449557220216245e-06,
|
991 |
+
"loss": 1.4661,
|
992 |
+
"step": 138
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"epoch": 2.3605150214592276,
|
996 |
+
"grad_norm": 1.2078563404488671,
|
997 |
+
"learning_rate": 5.258806764421048e-06,
|
998 |
+
"loss": 1.4497,
|
999 |
+
"step": 139
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 2.3776824034334765,
|
1003 |
+
"grad_norm": 1.308716503746094,
|
1004 |
+
"learning_rate": 5.172580694848541e-06,
|
1005 |
+
"loss": 1.4351,
|
1006 |
+
"step": 140
|
1007 |
+
},
|
1008 |
+
{
|
1009 |
+
"epoch": 2.3948497854077253,
|
1010 |
+
"grad_norm": 1.6067743882863361,
|
1011 |
+
"learning_rate": 5.0863032045269435e-06,
|
1012 |
+
"loss": 1.4017,
|
1013 |
+
"step": 141
|
1014 |
+
},
|
1015 |
+
{
|
1016 |
+
"epoch": 2.412017167381974,
|
1017 |
+
"grad_norm": 1.15329126746228,
|
1018 |
+
"learning_rate": 5e-06,
|
1019 |
+
"loss": 1.3885,
|
1020 |
+
"step": 142
|
1021 |
+
},
|
1022 |
+
{
|
1023 |
+
"epoch": 2.429184549356223,
|
1024 |
+
"grad_norm": 1.3029425990628287,
|
1025 |
+
"learning_rate": 4.913696795473058e-06,
|
1026 |
+
"loss": 1.4686,
|
1027 |
+
"step": 143
|
1028 |
+
},
|
1029 |
+
{
|
1030 |
+
"epoch": 2.4463519313304722,
|
1031 |
+
"grad_norm": 1.3782312780671255,
|
1032 |
+
"learning_rate": 4.827419305151461e-06,
|
1033 |
+
"loss": 1.4472,
|
1034 |
+
"step": 144
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"epoch": 2.463519313304721,
|
1038 |
+
"grad_norm": 1.1387922784921702,
|
1039 |
+
"learning_rate": 4.741193235578953e-06,
|
1040 |
+
"loss": 1.4717,
|
1041 |
+
"step": 145
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 2.48068669527897,
|
1045 |
+
"grad_norm": 1.4489271450805266,
|
1046 |
+
"learning_rate": 4.6550442779783755e-06,
|
1047 |
+
"loss": 1.4325,
|
1048 |
+
"step": 146
|
1049 |
+
},
|
1050 |
+
{
|
1051 |
+
"epoch": 2.4978540772532187,
|
1052 |
+
"grad_norm": 1.3782527667091915,
|
1053 |
+
"learning_rate": 4.568998100596903e-06,
|
1054 |
+
"loss": 1.405,
|
1055 |
+
"step": 147
|
1056 |
+
},
|
1057 |
+
{
|
1058 |
+
"epoch": 2.5150214592274676,
|
1059 |
+
"grad_norm": 1.2668976356990511,
|
1060 |
+
"learning_rate": 4.4830803410581506e-06,
|
1061 |
+
"loss": 1.4427,
|
1062 |
+
"step": 148
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"epoch": 2.532188841201717,
|
1066 |
+
"grad_norm": 1.4950710057650962,
|
1067 |
+
"learning_rate": 4.397316598723385e-06,
|
1068 |
+
"loss": 1.4714,
|
1069 |
+
"step": 149
|
1070 |
+
},
|
1071 |
+
{
|
1072 |
+
"epoch": 2.5493562231759657,
|
1073 |
+
"grad_norm": 1.0576970824111924,
|
1074 |
+
"learning_rate": 4.31173242706416e-06,
|
1075 |
+
"loss": 1.3698,
|
1076 |
+
"step": 150
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 2.5665236051502145,
|
1080 |
+
"grad_norm": 1.6518504203265545,
|
1081 |
+
"learning_rate": 4.226353326048594e-06,
|
1082 |
+
"loss": 1.4462,
|
1083 |
+
"step": 151
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 2.5836909871244638,
|
1087 |
+
"grad_norm": 1.0690977885341415,
|
1088 |
+
"learning_rate": 4.14120473454362e-06,
|
1089 |
+
"loss": 1.4094,
|
1090 |
+
"step": 152
|
1091 |
+
},
|
1092 |
+
{
|
1093 |
+
"epoch": 2.6008583690987126,
|
1094 |
+
"grad_norm": 1.2319353745161556,
|
1095 |
+
"learning_rate": 4.056312022735417e-06,
|
1096 |
+
"loss": 1.4279,
|
1097 |
+
"step": 153
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 2.6180257510729614,
|
1101 |
+
"grad_norm": 1.4981453391586554,
|
1102 |
+
"learning_rate": 3.9717004845703175e-06,
|
1103 |
+
"loss": 1.404,
|
1104 |
+
"step": 154
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 2.6351931330472103,
|
1108 |
+
"grad_norm": 1.1718194614512722,
|
1109 |
+
"learning_rate": 3.887395330218429e-06,
|
1110 |
+
"loss": 1.3936,
|
1111 |
+
"step": 155
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 2.652360515021459,
|
1115 |
+
"grad_norm": 1.382020649765366,
|
1116 |
+
"learning_rate": 3.803421678562213e-06,
|
1117 |
+
"loss": 1.4432,
|
1118 |
+
"step": 156
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 2.6695278969957084,
|
1122 |
+
"grad_norm": 1.0295860006980109,
|
1123 |
+
"learning_rate": 3.7198045497122647e-06,
|
1124 |
+
"loss": 1.4189,
|
1125 |
+
"step": 157
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"epoch": 2.686695278969957,
|
1129 |
+
"grad_norm": 1.6145284029231795,
|
1130 |
+
"learning_rate": 3.6365688575525315e-06,
|
1131 |
+
"loss": 1.4579,
|
1132 |
+
"step": 158
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"epoch": 2.703862660944206,
|
1136 |
+
"grad_norm": 1.1519727791811123,
|
1137 |
+
"learning_rate": 3.553739402317162e-06,
|
1138 |
+
"loss": 1.4404,
|
1139 |
+
"step": 159
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 2.721030042918455,
|
1143 |
+
"grad_norm": 1.6702535379739811,
|
1144 |
+
"learning_rate": 3.471340863201237e-06,
|
1145 |
+
"loss": 1.4247,
|
1146 |
+
"step": 160
|
1147 |
+
},
|
1148 |
+
{
|
1149 |
+
"epoch": 2.7381974248927037,
|
1150 |
+
"grad_norm": 1.4413775372344653,
|
1151 |
+
"learning_rate": 3.389397791007548e-06,
|
1152 |
+
"loss": 1.4669,
|
1153 |
+
"step": 161
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"epoch": 2.755364806866953,
|
1157 |
+
"grad_norm": 1.6769364420250672,
|
1158 |
+
"learning_rate": 3.307934600831648e-06,
|
1159 |
+
"loss": 1.3987,
|
1160 |
+
"step": 162
|
1161 |
+
},
|
1162 |
+
{
|
1163 |
+
"epoch": 2.772532188841202,
|
1164 |
+
"grad_norm": 1.4127696099779041,
|
1165 |
+
"learning_rate": 3.226975564787322e-06,
|
1166 |
+
"loss": 1.4577,
|
1167 |
+
"step": 163
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"epoch": 2.7896995708154506,
|
1171 |
+
"grad_norm": 1.3981396160008468,
|
1172 |
+
"learning_rate": 3.1465448047746626e-06,
|
1173 |
+
"loss": 1.4643,
|
1174 |
+
"step": 164
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"epoch": 2.8068669527896994,
|
1178 |
+
"grad_norm": 1.1640956539171732,
|
1179 |
+
"learning_rate": 3.0666662852929063e-06,
|
1180 |
+
"loss": 1.4127,
|
1181 |
+
"step": 165
|
1182 |
+
},
|
1183 |
+
{
|
1184 |
+
"epoch": 2.8240343347639483,
|
1185 |
+
"grad_norm": 1.524450627139972,
|
1186 |
+
"learning_rate": 2.9873638063001633e-06,
|
1187 |
+
"loss": 1.4114,
|
1188 |
+
"step": 166
|
1189 |
+
},
|
1190 |
+
{
|
1191 |
+
"epoch": 2.8412017167381975,
|
1192 |
+
"grad_norm": 1.3456136782749846,
|
1193 |
+
"learning_rate": 2.9086609961221758e-06,
|
1194 |
+
"loss": 1.435,
|
1195 |
+
"step": 167
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 2.8583690987124464,
|
1199 |
+
"grad_norm": 1.2127544846215854,
|
1200 |
+
"learning_rate": 2.83058130441221e-06,
|
1201 |
+
"loss": 1.464,
|
1202 |
+
"step": 168
|
1203 |
+
},
|
1204 |
+
{
|
1205 |
+
"epoch": 2.875536480686695,
|
1206 |
+
"grad_norm": 1.1389112761416087,
|
1207 |
+
"learning_rate": 2.7531479951641928e-06,
|
1208 |
+
"loss": 1.4468,
|
1209 |
+
"step": 169
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 2.8927038626609445,
|
1213 |
+
"grad_norm": 1.2715694866770404,
|
1214 |
+
"learning_rate": 2.6763841397811576e-06,
|
1215 |
+
"loss": 1.451,
|
1216 |
+
"step": 170
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"epoch": 2.909871244635193,
|
1220 |
+
"grad_norm": 1.2899452182832583,
|
1221 |
+
"learning_rate": 2.6003126102010696e-06,
|
1222 |
+
"loss": 1.3969,
|
1223 |
+
"step": 171
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 2.927038626609442,
|
1227 |
+
"grad_norm": 1.1876736667702164,
|
1228 |
+
"learning_rate": 2.524956072082093e-06,
|
1229 |
+
"loss": 1.4894,
|
1230 |
+
"step": 172
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 2.944206008583691,
|
1234 |
+
"grad_norm": 1.0044043551342703,
|
1235 |
+
"learning_rate": 2.450336978049322e-06,
|
1236 |
+
"loss": 1.3833,
|
1237 |
+
"step": 173
|
1238 |
+
},
|
1239 |
+
{
|
1240 |
+
"epoch": 2.96137339055794,
|
1241 |
+
"grad_norm": 1.1006453119175361,
|
1242 |
+
"learning_rate": 2.37647756100496e-06,
|
1243 |
+
"loss": 1.422,
|
1244 |
+
"step": 174
|
1245 |
+
},
|
1246 |
+
{
|
1247 |
+
"epoch": 2.978540772532189,
|
1248 |
+
"grad_norm": 1.1339844183954066,
|
1249 |
+
"learning_rate": 2.3033998275040047e-06,
|
1250 |
+
"loss": 1.4416,
|
1251 |
+
"step": 175
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 2.995708154506438,
|
1255 |
+
"grad_norm": 1.0443241596589774,
|
1256 |
+
"learning_rate": 2.2311255511973347e-06,
|
1257 |
+
"loss": 1.3739,
|
1258 |
+
"step": 176
|
1259 |
+
},
|
1260 |
+
{
|
1261 |
+
"epoch": 3.0,
|
1262 |
+
"grad_norm": 1.0443241596589774,
|
1263 |
+
"learning_rate": 2.159676266344222e-06,
|
1264 |
+
"loss": 1.4492,
|
1265 |
+
"step": 177
|
1266 |
+
},
|
1267 |
+
{
|
1268 |
+
"epoch": 3.0,
|
1269 |
+
"eval_loss": 1.3466758728027344,
|
1270 |
+
"eval_runtime": 55.4567,
|
1271 |
+
"eval_samples_per_second": 6.492,
|
1272 |
+
"eval_steps_per_second": 0.216,
|
1273 |
+
"step": 177
|
1274 |
+
},
|
1275 |
+
{
|
1276 |
+
"epoch": 3.017167381974249,
|
1277 |
+
"grad_norm": 2.208608681250419,
|
1278 |
+
"learning_rate": 2.089073261396148e-06,
|
1279 |
+
"loss": 1.4496,
|
1280 |
+
"step": 178
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"epoch": 3.0343347639484977,
|
1284 |
+
"grad_norm": 2.068961082241978,
|
1285 |
+
"learning_rate": 2.0193375726538737e-06,
|
1286 |
+
"loss": 1.4599,
|
1287 |
+
"step": 179
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 3.051502145922747,
|
1291 |
+
"grad_norm": 1.2686715786339267,
|
1292 |
+
"learning_rate": 1.9504899779996354e-06,
|
1293 |
+
"loss": 1.4241,
|
1294 |
+
"step": 180
|
1295 |
+
},
|
1296 |
+
{
|
1297 |
+
"epoch": 3.0686695278969958,
|
1298 |
+
"grad_norm": 0.9766943956912364,
|
1299 |
+
"learning_rate": 1.8825509907063328e-06,
|
1300 |
+
"loss": 1.3856,
|
1301 |
+
"step": 181
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 3.0858369098712446,
|
1305 |
+
"grad_norm": 0.9570891019240637,
|
1306 |
+
"learning_rate": 1.8155408533255553e-06,
|
1307 |
+
"loss": 1.3267,
|
1308 |
+
"step": 182
|
1309 |
+
},
|
1310 |
+
{
|
1311 |
+
"epoch": 3.1030042918454934,
|
1312 |
+
"grad_norm": 0.9858819209987062,
|
1313 |
+
"learning_rate": 1.7494795316562791e-06,
|
1314 |
+
"loss": 1.4371,
|
1315 |
+
"step": 183
|
1316 |
+
},
|
1317 |
+
{
|
1318 |
+
"epoch": 3.1201716738197427,
|
1319 |
+
"grad_norm": 0.9400585321740289,
|
1320 |
+
"learning_rate": 1.6843867087960252e-06,
|
1321 |
+
"loss": 1.4347,
|
1322 |
+
"step": 184
|
1323 |
+
},
|
1324 |
+
{
|
1325 |
+
"epoch": 3.1373390557939915,
|
1326 |
+
"grad_norm": 1.0563349262899193,
|
1327 |
+
"learning_rate": 1.6202817792762283e-06,
|
1328 |
+
"loss": 1.4431,
|
1329 |
+
"step": 185
|
1330 |
+
},
|
1331 |
+
{
|
1332 |
+
"epoch": 3.1545064377682404,
|
1333 |
+
"grad_norm": 0.9217174697986299,
|
1334 |
+
"learning_rate": 1.557183843283614e-06,
|
1335 |
+
"loss": 1.3872,
|
1336 |
+
"step": 186
|
1337 |
+
},
|
1338 |
+
{
|
1339 |
+
"epoch": 3.171673819742489,
|
1340 |
+
"grad_norm": 0.9537020658805889,
|
1341 |
+
"learning_rate": 1.4951117009692528e-06,
|
1342 |
+
"loss": 1.4342,
|
1343 |
+
"step": 187
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 3.188841201716738,
|
1347 |
+
"grad_norm": 0.931415129363885,
|
1348 |
+
"learning_rate": 1.4340838468470198e-06,
|
1349 |
+
"loss": 1.4167,
|
1350 |
+
"step": 188
|
1351 |
+
},
|
1352 |
+
{
|
1353 |
+
"epoch": 3.2060085836909873,
|
1354 |
+
"grad_norm": 0.8848653838809811,
|
1355 |
+
"learning_rate": 1.374118464283119e-06,
|
1356 |
+
"loss": 1.3483,
|
1357 |
+
"step": 189
|
1358 |
+
},
|
1359 |
+
{
|
1360 |
+
"epoch": 3.223175965665236,
|
1361 |
+
"grad_norm": 0.8999049162268763,
|
1362 |
+
"learning_rate": 1.3152334200783167e-06,
|
1363 |
+
"loss": 1.3486,
|
1364 |
+
"step": 190
|
1365 |
+
},
|
1366 |
+
{
|
1367 |
+
"epoch": 3.240343347639485,
|
1368 |
+
"grad_norm": 0.913466824589116,
|
1369 |
+
"learning_rate": 1.257446259144494e-06,
|
1370 |
+
"loss": 1.372,
|
1371 |
+
"step": 191
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"epoch": 3.257510729613734,
|
1375 |
+
"grad_norm": 0.9910112277396748,
|
1376 |
+
"learning_rate": 1.2007741992771065e-06,
|
1377 |
+
"loss": 1.4064,
|
1378 |
+
"step": 192
|
1379 |
+
},
|
1380 |
+
{
|
1381 |
+
"epoch": 3.274678111587983,
|
1382 |
+
"grad_norm": 0.883357238281907,
|
1383 |
+
"learning_rate": 1.145234126025102e-06,
|
1384 |
+
"loss": 1.3869,
|
1385 |
+
"step": 193
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 3.291845493562232,
|
1389 |
+
"grad_norm": 0.9234833713444595,
|
1390 |
+
"learning_rate": 1.0908425876598512e-06,
|
1391 |
+
"loss": 1.4469,
|
1392 |
+
"step": 194
|
1393 |
+
},
|
1394 |
+
{
|
1395 |
+
"epoch": 3.3090128755364807,
|
1396 |
+
"grad_norm": 0.859382750295263,
|
1397 |
+
"learning_rate": 1.037615790244549e-06,
|
1398 |
+
"loss": 1.3571,
|
1399 |
+
"step": 195
|
1400 |
+
},
|
1401 |
+
{
|
1402 |
+
"epoch": 3.3261802575107295,
|
1403 |
+
"grad_norm": 0.815275008698639,
|
1404 |
+
"learning_rate": 9.85569592805588e-07,
|
1405 |
+
"loss": 1.3635,
|
1406 |
+
"step": 196
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"epoch": 3.3433476394849784,
|
1410 |
+
"grad_norm": 0.8740357211724161,
|
1411 |
+
"learning_rate": 9.347195026073369e-07,
|
1412 |
+
"loss": 1.4195,
|
1413 |
+
"step": 197
|
1414 |
+
},
|
1415 |
+
{
|
1416 |
+
"epoch": 3.3605150214592276,
|
1417 |
+
"grad_norm": 0.8549841652198367,
|
1418 |
+
"learning_rate": 8.850806705317183e-07,
|
1419 |
+
"loss": 1.4011,
|
1420 |
+
"step": 198
|
1421 |
+
},
|
1422 |
+
{
|
1423 |
+
"epoch": 3.3776824034334765,
|
1424 |
+
"grad_norm": 0.8255973582968239,
|
1425 |
+
"learning_rate": 8.366678865639688e-07,
|
1426 |
+
"loss": 1.3907,
|
1427 |
+
"step": 199
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"epoch": 3.3948497854077253,
|
1431 |
+
"grad_norm": 0.8469777726661422,
|
1432 |
+
"learning_rate": 7.894955753859412e-07,
|
1433 |
+
"loss": 1.3586,
|
1434 |
+
"step": 200
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 3.412017167381974,
|
1438 |
+
"grad_norm": 0.84555567071041,
|
1439 |
+
"learning_rate": 7.435777920782444e-07,
|
1440 |
+
"loss": 1.344,
|
1441 |
+
"step": 201
|
1442 |
+
},
|
1443 |
+
{
|
1444 |
+
"epoch": 3.429184549356223,
|
1445 |
+
"grad_norm": 0.8100696398102393,
|
1446 |
+
"learning_rate": 6.989282179324963e-07,
|
1447 |
+
"loss": 1.4253,
|
1448 |
+
"step": 202
|
1449 |
+
},
|
1450 |
+
{
|
1451 |
+
"epoch": 3.4463519313304722,
|
1452 |
+
"grad_norm": 0.853525501890134,
|
1453 |
+
"learning_rate": 6.555601563749675e-07,
|
1454 |
+
"loss": 1.4028,
|
1455 |
+
"step": 203
|
1456 |
+
},
|
1457 |
+
{
|
1458 |
+
"epoch": 3.463519313304721,
|
1459 |
+
"grad_norm": 2.5389247756358455,
|
1460 |
+
"learning_rate": 6.134865290027903e-07,
|
1461 |
+
"loss": 1.4282,
|
1462 |
+
"step": 204
|
1463 |
+
},
|
1464 |
+
{
|
1465 |
+
"epoch": 3.48068669527897,
|
1466 |
+
"grad_norm": 1.2453666685589984,
|
1467 |
+
"learning_rate": 5.727198717339511e-07,
|
1468 |
+
"loss": 1.3921,
|
1469 |
+
"step": 205
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"epoch": 3.4978540772532187,
|
1473 |
+
"grad_norm": 0.7642367373812298,
|
1474 |
+
"learning_rate": 5.332723310721855e-07,
|
1475 |
+
"loss": 1.365,
|
1476 |
+
"step": 206
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"epoch": 3.5150214592274676,
|
1480 |
+
"grad_norm": 0.9270502698949785,
|
1481 |
+
"learning_rate": 4.951556604879049e-07,
|
1482 |
+
"loss": 1.4041,
|
1483 |
+
"step": 207
|
1484 |
+
},
|
1485 |
+
{
|
1486 |
+
"epoch": 3.532188841201717,
|
1487 |
+
"grad_norm": 0.8098170144667726,
|
1488 |
+
"learning_rate": 4.5838121691622995e-07,
|
1489 |
+
"loss": 1.4315,
|
1490 |
+
"step": 208
|
1491 |
+
},
|
1492 |
+
{
|
1493 |
+
"epoch": 3.5493562231759657,
|
1494 |
+
"grad_norm": 0.7857989969064568,
|
1495 |
+
"learning_rate": 4.2295995737316854e-07,
|
1496 |
+
"loss": 1.332,
|
1497 |
+
"step": 209
|
1498 |
+
},
|
1499 |
+
{
|
1500 |
+
"epoch": 3.5665236051502145,
|
1501 |
+
"grad_norm": 0.8648677468818124,
|
1502 |
+
"learning_rate": 3.8890243569094874e-07,
|
1503 |
+
"loss": 1.4088,
|
1504 |
+
"step": 210
|
1505 |
+
},
|
1506 |
+
{
|
1507 |
+
"epoch": 3.5836909871244638,
|
1508 |
+
"grad_norm": 0.8148105107754193,
|
1509 |
+
"learning_rate": 3.5621879937348836e-07,
|
1510 |
+
"loss": 1.3708,
|
1511 |
+
"step": 211
|
1512 |
+
},
|
1513 |
+
{
|
1514 |
+
"epoch": 3.6008583690987126,
|
1515 |
+
"grad_norm": 0.8784091247812043,
|
1516 |
+
"learning_rate": 3.2491878657292643e-07,
|
1517 |
+
"loss": 1.3931,
|
1518 |
+
"step": 212
|
1519 |
+
},
|
1520 |
+
{
|
1521 |
+
"epoch": 3.6180257510729614,
|
1522 |
+
"grad_norm": 0.8314788876032824,
|
1523 |
+
"learning_rate": 2.9501172318811834e-07,
|
1524 |
+
"loss": 1.3706,
|
1525 |
+
"step": 213
|
1526 |
+
},
|
1527 |
+
{
|
1528 |
+
"epoch": 3.6351931330472103,
|
1529 |
+
"grad_norm": 0.8122583055213561,
|
1530 |
+
"learning_rate": 2.6650652008597067e-07,
|
1531 |
+
"loss": 1.3595,
|
1532 |
+
"step": 214
|
1533 |
+
},
|
1534 |
+
{
|
1535 |
+
"epoch": 3.652360515021459,
|
1536 |
+
"grad_norm": 0.8988415508956524,
|
1537 |
+
"learning_rate": 2.394116704464294e-07,
|
1538 |
+
"loss": 1.4083,
|
1539 |
+
"step": 215
|
1540 |
+
},
|
1541 |
+
{
|
1542 |
+
"epoch": 3.6695278969957084,
|
1543 |
+
"grad_norm": 0.7489347389916948,
|
1544 |
+
"learning_rate": 2.137352472319215e-07,
|
1545 |
+
"loss": 1.3862,
|
1546 |
+
"step": 216
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 3.686695278969957,
|
1550 |
+
"grad_norm": 0.8026525023223839,
|
1551 |
+
"learning_rate": 1.8948490078199767e-07,
|
1552 |
+
"loss": 1.4263,
|
1553 |
+
"step": 217
|
1554 |
+
},
|
1555 |
+
{
|
1556 |
+
"epoch": 3.703862660944206,
|
1557 |
+
"grad_norm": 0.8691178194849434,
|
1558 |
+
"learning_rate": 1.666678565339025e-07,
|
1559 |
+
"loss": 1.4107,
|
1560 |
+
"step": 218
|
1561 |
+
},
|
1562 |
+
{
|
1563 |
+
"epoch": 3.721030042918455,
|
1564 |
+
"grad_norm": 0.8295342705741752,
|
1565 |
+
"learning_rate": 1.4529091286973994e-07,
|
1566 |
+
"loss": 1.3977,
|
1567 |
+
"step": 219
|
1568 |
+
},
|
1569 |
+
{
|
1570 |
+
"epoch": 3.7381974248927037,
|
1571 |
+
"grad_norm": 0.9952946458735904,
|
1572 |
+
"learning_rate": 1.253604390908819e-07,
|
1573 |
+
"loss": 1.44,
|
1574 |
+
"step": 220
|
1575 |
+
},
|
1576 |
+
{
|
1577 |
+
"epoch": 3.755364806866953,
|
1578 |
+
"grad_norm": 0.8929004736914973,
|
1579 |
+
"learning_rate": 1.0688237352022346e-07,
|
1580 |
+
"loss": 1.3744,
|
1581 |
+
"step": 221
|
1582 |
+
},
|
1583 |
+
{
|
1584 |
+
"epoch": 3.772532188841202,
|
1585 |
+
"grad_norm": 0.7817159407340549,
|
1586 |
+
"learning_rate": 8.986222173284876e-08,
|
1587 |
+
"loss": 1.4323,
|
1588 |
+
"step": 222
|
1589 |
+
},
|
1590 |
+
{
|
1591 |
+
"epoch": 3.7896995708154506,
|
1592 |
+
"grad_norm": 0.7269772041119471,
|
1593 |
+
"learning_rate": 7.430505491563101e-08,
|
1594 |
+
"loss": 1.4378,
|
1595 |
+
"step": 223
|
1596 |
+
},
|
1597 |
+
{
|
1598 |
+
"epoch": 3.8068669527896994,
|
1599 |
+
"grad_norm": 0.846076015787421,
|
1600 |
+
"learning_rate": 6.021550835626777e-08,
|
1601 |
+
"loss": 1.3876,
|
1602 |
+
"step": 224
|
1603 |
+
},
|
1604 |
+
{
|
1605 |
+
"epoch": 3.8240343347639483,
|
1606 |
+
"grad_norm": 0.7622844494333099,
|
1607 |
+
"learning_rate": 4.759778006218407e-08,
|
1608 |
+
"loss": 1.3879,
|
1609 |
+
"step": 225
|
1610 |
+
},
|
1611 |
+
{
|
1612 |
+
"epoch": 3.8412017167381975,
|
1613 |
+
"grad_norm": 0.7517386279788537,
|
1614 |
+
"learning_rate": 3.645562950973014e-08,
|
1615 |
+
"loss": 1.4094,
|
1616 |
+
"step": 226
|
1617 |
+
},
|
1618 |
+
{
|
1619 |
+
"epoch": 3.8583690987124464,
|
1620 |
+
"grad_norm": 0.7555615969516848,
|
1621 |
+
"learning_rate": 2.6792376524036878e-08,
|
1622 |
+
"loss": 1.4385,
|
1623 |
+
"step": 227
|
1624 |
+
},
|
1625 |
+
{
|
1626 |
+
"epoch": 3.875536480686695,
|
1627 |
+
"grad_norm": 0.759032041862736,
|
1628 |
+
"learning_rate": 1.8610900289867673e-08,
|
1629 |
+
"loss": 1.4219,
|
1630 |
+
"step": 228
|
1631 |
+
},
|
1632 |
+
{
|
1633 |
+
"epoch": 3.8927038626609445,
|
1634 |
+
"grad_norm": 0.8896057625292756,
|
1635 |
+
"learning_rate": 1.1913638493762369e-08,
|
1636 |
+
"loss": 1.4286,
|
1637 |
+
"step": 229
|
1638 |
+
},
|
1639 |
+
{
|
1640 |
+
"epoch": 3.909871244635193,
|
1641 |
+
"grad_norm": 0.8049879121289703,
|
1642 |
+
"learning_rate": 6.702586597719385e-09,
|
1643 |
+
"loss": 1.3756,
|
1644 |
+
"step": 230
|
1645 |
+
},
|
1646 |
+
{
|
1647 |
+
"epoch": 3.927038626609442,
|
1648 |
+
"grad_norm": 0.8081459120471564,
|
1649 |
+
"learning_rate": 2.9792972446479605e-09,
|
1650 |
+
"loss": 1.4649,
|
1651 |
+
"step": 231
|
1652 |
+
},
|
1653 |
+
{
|
1654 |
+
"epoch": 3.944206008583691,
|
1655 |
+
"grad_norm": 0.7889695020980092,
|
1656 |
+
"learning_rate": 7.448797957526621e-10,
|
1657 |
+
"loss": 1.3612,
|
1658 |
+
"step": 232
|
1659 |
+
}
|
1660 |
+
],
|
1661 |
+
"logging_steps": 1,
|
1662 |
+
"max_steps": 232,
|
1663 |
+
"num_input_tokens_seen": 0,
|
1664 |
+
"num_train_epochs": 4,
|
1665 |
+
"save_steps": 29,
|
1666 |
+
"stateful_callbacks": {
|
1667 |
+
"TrainerControl": {
|
1668 |
+
"args": {
|
1669 |
+
"should_epoch_stop": false,
|
1670 |
+
"should_evaluate": false,
|
1671 |
+
"should_log": false,
|
1672 |
+
"should_save": true,
|
1673 |
+
"should_training_stop": true
|
1674 |
+
},
|
1675 |
+
"attributes": {}
|
1676 |
+
}
|
1677 |
+
},
|
1678 |
+
"total_flos": 2.9152650971882455e+18,
|
1679 |
+
"train_batch_size": 4,
|
1680 |
+
"trial_name": null,
|
1681 |
+
"trial_params": null
|
1682 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73b486ccd0c0143e3e570dbeebcb0c4131aa4e86047e6147f2d8f8c5842f3421
|
3 |
+
size 8913
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|