---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:333
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: keepitreal/vietnamese-sbert
widget:
- source_sentence: Tôi Thấy Hoa Vàng Trên Cỏ Xanh
sentences:
- mềm mại, thoáng khí và bền đẹp
- Nike Air Force 1 phong cách không lỗi mốt
- Tôi Thấy Hoa Vàng Trên Cỏ Xanh thông điệp trân trọng tuổi thơ và cuộc sống bình
dị
- source_sentence: iPhone 16
sentences:
- Cà Phê Cùng Tony kết hợp giải trí và giáo dục
- iPhone 16 Pro RAM 12GB đa nhiệm mạnh mẽ
- Loafer Gucci size từ 38 đến 45
- source_sentence: Áo Thun
sentences:
- phù hợp trong thời tiết nóng bức
- thấm hút mồ hôi, nhẹ và thoáng khí
- Giày chạy đường dài bền nhẹ
- source_sentence: Son Môi MAC Matte Lipstick - Ruby Woo
sentences:
- bảo quản dễ dàng bằng cách lộn trái khi giặt, tránh chất tẩy mạnh và phơi nơi
thoáng mát
- chất son lì mịn, bám màu 6-8 giờ
- tác phẩm kinh điển về tâm linh và triết học
- source_sentence: LEGO City Police Station
sentences:
- mô hình đẹp mắt để trưng bày
- dễ dàng phối đồ từ áo thun, sơ mi đến blazer
- chỉ số SPF 50+ PA+++ bảo vệ tối ưu khỏi tia UV
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on keepitreal/vietnamese-sbert
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.02702702702702703
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5675675675675675
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.005405405405405406
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.056756756756756774
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.02702702702702703
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5675675675675675
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.1783581729179075
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.07062419562419564
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.07973358512714
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5405405405405406
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.0
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.054054054054054064
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5405405405405406
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.1701742309301506
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.06747104247104248
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.0782135520060237
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5405405405405406
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.0
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.054054054054054064
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5405405405405406
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.17224374024595593
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.06948734448734449
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.07938312163919391
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.0
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5405405405405406
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.0
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.054054054054054064
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.0
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5405405405405406
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.1706353981690823
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.06785714285714285
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.07606072355570134
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.0
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.0
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.02702702702702703
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.5135135135135135
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.0
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.0
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.005405405405405406
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.05135135135135136
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.0
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.0
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.02702702702702703
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.5135135135135135
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.16481648451068456
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.06733161733161734
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.07793528025726168
name: Cosine Map@100
---
# SentenceTransformer based on keepitreal/vietnamese-sbert
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [keepitreal/vietnamese-sbert](https://huggingface.co/keepitreal/vietnamese-sbert)
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- json
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("NghiBuine/ecommerce-product-search-model")
# Run inference
sentences = [
'LEGO City Police Station',
'mô hình đẹp mắt để trưng bày',
'dễ dàng phối đồ từ áo thun, sơ mi đến blazer',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 768
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0 |
| cosine_accuracy@3 | 0.0 |
| cosine_accuracy@5 | 0.027 |
| cosine_accuracy@10 | 0.5676 |
| cosine_precision@1 | 0.0 |
| cosine_precision@3 | 0.0 |
| cosine_precision@5 | 0.0054 |
| cosine_precision@10 | 0.0568 |
| cosine_recall@1 | 0.0 |
| cosine_recall@3 | 0.0 |
| cosine_recall@5 | 0.027 |
| cosine_recall@10 | 0.5676 |
| **cosine_ndcg@10** | **0.1784** |
| cosine_mrr@10 | 0.0706 |
| cosine_map@100 | 0.0797 |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 512
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0 |
| cosine_accuracy@3 | 0.0 |
| cosine_accuracy@5 | 0.0 |
| cosine_accuracy@10 | 0.5405 |
| cosine_precision@1 | 0.0 |
| cosine_precision@3 | 0.0 |
| cosine_precision@5 | 0.0 |
| cosine_precision@10 | 0.0541 |
| cosine_recall@1 | 0.0 |
| cosine_recall@3 | 0.0 |
| cosine_recall@5 | 0.0 |
| cosine_recall@10 | 0.5405 |
| **cosine_ndcg@10** | **0.1702** |
| cosine_mrr@10 | 0.0675 |
| cosine_map@100 | 0.0782 |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 256
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0 |
| cosine_accuracy@3 | 0.0 |
| cosine_accuracy@5 | 0.0 |
| cosine_accuracy@10 | 0.5405 |
| cosine_precision@1 | 0.0 |
| cosine_precision@3 | 0.0 |
| cosine_precision@5 | 0.0 |
| cosine_precision@10 | 0.0541 |
| cosine_recall@1 | 0.0 |
| cosine_recall@3 | 0.0 |
| cosine_recall@5 | 0.0 |
| cosine_recall@10 | 0.5405 |
| **cosine_ndcg@10** | **0.1722** |
| cosine_mrr@10 | 0.0695 |
| cosine_map@100 | 0.0794 |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 128
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0 |
| cosine_accuracy@3 | 0.0 |
| cosine_accuracy@5 | 0.0 |
| cosine_accuracy@10 | 0.5405 |
| cosine_precision@1 | 0.0 |
| cosine_precision@3 | 0.0 |
| cosine_precision@5 | 0.0 |
| cosine_precision@10 | 0.0541 |
| cosine_recall@1 | 0.0 |
| cosine_recall@3 | 0.0 |
| cosine_recall@5 | 0.0 |
| cosine_recall@10 | 0.5405 |
| **cosine_ndcg@10** | **0.1706** |
| cosine_mrr@10 | 0.0679 |
| cosine_map@100 | 0.0761 |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) with these parameters:
```json
{
"truncate_dim": 64
}
```
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.0 |
| cosine_accuracy@3 | 0.0 |
| cosine_accuracy@5 | 0.027 |
| cosine_accuracy@10 | 0.5135 |
| cosine_precision@1 | 0.0 |
| cosine_precision@3 | 0.0 |
| cosine_precision@5 | 0.0054 |
| cosine_precision@10 | 0.0514 |
| cosine_recall@1 | 0.0 |
| cosine_recall@3 | 0.0 |
| cosine_recall@5 | 0.027 |
| cosine_recall@10 | 0.5135 |
| **cosine_ndcg@10** | **0.1648** |
| cosine_mrr@10 | 0.0673 |
| cosine_map@100 | 0.0779 |
## Training Details
### Training Dataset
#### json
* Dataset: json
* Size: 333 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 333 samples:
| | positive | anchor |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string |
| details |
Giày Chạy Bộ Adidas Ultraboost
| Ultraboost đế continental chống trượt
|
| Cà Phê Cùng Tony
| Cà Phê Cùng Tony chia sẻ bài học phát triển bản thân và sống tích cực
|
| Đắc Nhân Tâm
| phát triển kỹ năng thuyết phục và giao tiếp tự nhiên
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `bf16`: True
- `load_best_model_at_end`: True
#### All Hyperparameters