Update README.md
Browse files
README.md
CHANGED
|
@@ -27,7 +27,7 @@ model-index:
|
|
| 27 |
value: 59.46
|
| 28 |
---
|
| 29 |
|
| 30 |
-
# Wav2Vec2-Large-XLSR-53-
|
| 31 |
|
| 32 |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice), and [FOSD](https://data.mendeley.com/datasets/k9sxg2twv4/4).
|
| 33 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
|
@@ -51,15 +51,15 @@ resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
|
| 51 |
# Preprocessing the datasets.
|
| 52 |
# We need to read the aduio files as arrays
|
| 53 |
def speech_file_to_array_fn(batch):
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
|
| 58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 60 |
|
| 61 |
with torch.no_grad():
|
| 62 |
-
|
| 63 |
|
| 64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 65 |
|
|
@@ -70,7 +70,7 @@ print("Reference:", test_dataset["sentence"][:2])
|
|
| 70 |
|
| 71 |
## Evaluation
|
| 72 |
|
| 73 |
-
The model can be evaluated as follows on the
|
| 74 |
|
| 75 |
|
| 76 |
```python
|
|
@@ -87,30 +87,30 @@ processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietname
|
|
| 87 |
model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
|
| 88 |
model.to("cuda")
|
| 89 |
|
| 90 |
-
chars_to_ignore_regex = '[
|
| 91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 92 |
|
| 93 |
# Preprocessing the datasets.
|
| 94 |
# We need to read the aduio files as arrays
|
| 95 |
def speech_file_to_array_fn(batch):
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
|
| 101 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 102 |
|
| 103 |
# Preprocessing the datasets.
|
| 104 |
# We need to read the aduio files as arrays
|
| 105 |
def evaluate(batch):
|
| 106 |
-
|
| 107 |
|
| 108 |
-
|
| 109 |
-
|
| 110 |
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
|
| 115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
| 116 |
|
|
|
|
| 27 |
value: 59.46
|
| 28 |
---
|
| 29 |
|
| 30 |
+
# Wav2Vec2-Large-XLSR-53-Vietnamese
|
| 31 |
|
| 32 |
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Vietnamese using the [Common Voice](https://huggingface.co/datasets/common_voice), and [FOSD](https://data.mendeley.com/datasets/k9sxg2twv4/4).
|
| 33 |
When using this model, make sure that your speech input is sampled at 16kHz.
|
|
|
|
| 51 |
# Preprocessing the datasets.
|
| 52 |
# We need to read the aduio files as arrays
|
| 53 |
def speech_file_to_array_fn(batch):
|
| 54 |
+
\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 55 |
+
\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 56 |
+
\\treturn batch
|
| 57 |
|
| 58 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 59 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 60 |
|
| 61 |
with torch.no_grad():
|
| 62 |
+
\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
| 63 |
|
| 64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 65 |
|
|
|
|
| 70 |
|
| 71 |
## Evaluation
|
| 72 |
|
| 73 |
+
The model can be evaluated as follows on the Vietnamese test data of Common Voice.
|
| 74 |
|
| 75 |
|
| 76 |
```python
|
|
|
|
| 87 |
model = Wav2Vec2ForCTC.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
|
| 88 |
model.to("cuda")
|
| 89 |
|
| 90 |
+
chars_to_ignore_regex = '[\\\\\\\\\\\\+\\\\@\\\\ǀ\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“\\\\%\\\\‘\\\\”\\\\�0123456789]'
|
| 91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 92 |
|
| 93 |
# Preprocessing the datasets.
|
| 94 |
# We need to read the aduio files as arrays
|
| 95 |
def speech_file_to_array_fn(batch):
|
| 96 |
+
\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
| 97 |
+
\\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 98 |
+
\\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 99 |
+
\\treturn batch
|
| 100 |
|
| 101 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 102 |
|
| 103 |
# Preprocessing the datasets.
|
| 104 |
# We need to read the aduio files as arrays
|
| 105 |
def evaluate(batch):
|
| 106 |
+
\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 107 |
|
| 108 |
+
\\twith torch.no_grad():
|
| 109 |
+
\\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
| 110 |
|
| 111 |
+
\\tpred_ids = torch.argmax(logits, dim=-1)
|
| 112 |
+
\\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
| 113 |
+
\\treturn batch
|
| 114 |
|
| 115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
| 116 |
|