Nhut DOANNGUYEN
commited on
Commit
·
c038370
1
Parent(s):
cdffa6b
Version 2.27
Browse files- .DS_Store +0 -0
- README.md +223 -14
- added_tokens.json +0 -1
- config.json +5 -5
- pytorch_model.bin +2 -2
- tokenizer_config.json +1 -1
- vocab.json +1 -1
.DS_Store
CHANGED
|
Binary files a/.DS_Store and b/.DS_Store differ
|
|
|
README.md
CHANGED
|
@@ -42,6 +42,115 @@ import torchaudio
|
|
| 42 |
from datasets import load_dataset
|
| 43 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
test_dataset = load_dataset("common_voice", "vi", split="test[:2%]")
|
| 46 |
|
| 47 |
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
|
|
@@ -63,7 +172,7 @@ with torch.no_grad():
|
|
| 63 |
|
| 64 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 65 |
|
| 66 |
-
print("Prediction:", processor.batch_decode(predicted_ids))
|
| 67 |
print("Reference:", test_dataset["sentence"][:2])
|
| 68 |
```
|
| 69 |
|
|
@@ -80,26 +189,125 @@ from datasets import load_dataset, load_metric
|
|
| 80 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 81 |
import re
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
test_dataset = load_dataset("common_voice", "vi", split="test")
|
| 84 |
wer = load_metric("wer")
|
| 85 |
|
| 86 |
-
processor = Wav2Vec2Processor.from_pretrained(
|
| 87 |
-
model = Wav2Vec2ForCTC.from_pretrained(
|
| 88 |
model.to("cuda")
|
| 89 |
|
| 90 |
chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
|
| 91 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 92 |
|
| 93 |
-
# Preprocessing the datasets.
|
| 94 |
-
# We need to read the aduio files as arrays
|
| 95 |
-
def speech_file_to_array_fn(batch):
|
| 96 |
-
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
| 97 |
-
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
| 98 |
-
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
| 99 |
-
return batch
|
| 100 |
-
|
| 101 |
-
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 102 |
-
|
| 103 |
# Preprocessing the datasets.
|
| 104 |
# We need to read the aduio files as arrays
|
| 105 |
def evaluate(batch):
|
|
@@ -110,10 +318,11 @@ def evaluate(batch):
|
|
| 110 |
|
| 111 |
pred_ids = torch.argmax(logits, dim=-1)
|
| 112 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
|
|
|
|
|
|
| 113 |
return batch
|
| 114 |
|
| 115 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
| 116 |
-
|
| 117 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
| 118 |
```
|
| 119 |
|
|
|
|
| 42 |
from datasets import load_dataset
|
| 43 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 44 |
|
| 45 |
+
ENCODER = {
|
| 46 |
+
"ia ": "iê ",
|
| 47 |
+
"ìa ": "iề ",
|
| 48 |
+
"ía ": "iế ",
|
| 49 |
+
"ỉa ": "iể ",
|
| 50 |
+
"ĩa ": "iễ ",
|
| 51 |
+
"ịa ": "iệ ",
|
| 52 |
+
"ya ": "yê ",
|
| 53 |
+
"ỳa ": "yề ",
|
| 54 |
+
"ýa ": "yế ",
|
| 55 |
+
"ỷa ": "yể ",
|
| 56 |
+
"ỹa ": "yễ ",
|
| 57 |
+
"ỵa ": "yệ ",
|
| 58 |
+
"ua ": "uô ",
|
| 59 |
+
"ùa ": "uồ ",
|
| 60 |
+
"úa ": "uố ",
|
| 61 |
+
"ủa ": "uổ ",
|
| 62 |
+
"ũa ": "uỗ ",
|
| 63 |
+
"ụa ": "uộ ",
|
| 64 |
+
"ưa ": "ươ ",
|
| 65 |
+
"ừa ": "ườ ",
|
| 66 |
+
"ứa ": "ướ ",
|
| 67 |
+
"ửa ": "ưở ",
|
| 68 |
+
"ữa ": "ưỡ ",
|
| 69 |
+
"ựa ": "ượ ",
|
| 70 |
+
"ke": "ce",
|
| 71 |
+
"kè": "cè",
|
| 72 |
+
"ké": "cé",
|
| 73 |
+
"kẻ": "cẻ",
|
| 74 |
+
"kẽ": "cẽ",
|
| 75 |
+
"kẹ": "cẹ",
|
| 76 |
+
"kê": "cê",
|
| 77 |
+
"kề": "cề",
|
| 78 |
+
"kế": "cế",
|
| 79 |
+
"kể": "cể",
|
| 80 |
+
"kễ": "cễ",
|
| 81 |
+
"kệ": "cệ",
|
| 82 |
+
"ki": "ci",
|
| 83 |
+
"kì": "cì",
|
| 84 |
+
"kí": "cí",
|
| 85 |
+
"kỉ": "cỉ",
|
| 86 |
+
"kĩ": "cĩ",
|
| 87 |
+
"kị": "cị",
|
| 88 |
+
"ky": "cy",
|
| 89 |
+
"kỳ": "cỳ",
|
| 90 |
+
"ký": "cý",
|
| 91 |
+
"kỷ": "cỷ",
|
| 92 |
+
"kỹ": "cỹ",
|
| 93 |
+
"kỵ": "cỵ",
|
| 94 |
+
"ghe": "ge",
|
| 95 |
+
"ghè": "gè",
|
| 96 |
+
"ghé": "gé",
|
| 97 |
+
"ghẻ": "gẻ",
|
| 98 |
+
"ghẽ": "gẽ",
|
| 99 |
+
"ghẹ": "gẹ",
|
| 100 |
+
"ghê": "gê",
|
| 101 |
+
"ghề": "gề",
|
| 102 |
+
"ghế": "gế",
|
| 103 |
+
"ghể": "gể",
|
| 104 |
+
"ghễ": "gễ",
|
| 105 |
+
"ghệ": "gệ",
|
| 106 |
+
"ngh": "\x80",
|
| 107 |
+
"uyê": "\x96",
|
| 108 |
+
"uyề": "\x97",
|
| 109 |
+
"uyế": "\x98",
|
| 110 |
+
"uyể": "\x99",
|
| 111 |
+
"uyễ": "\x9a",
|
| 112 |
+
"uyệ": "\x9b",
|
| 113 |
+
"ng": "\x81",
|
| 114 |
+
"ch": "\x82",
|
| 115 |
+
"gh": "\x83",
|
| 116 |
+
"nh": "\x84",
|
| 117 |
+
"gi": "\x85",
|
| 118 |
+
"ph": "\x86",
|
| 119 |
+
"kh": "\x87",
|
| 120 |
+
"th": "\x88",
|
| 121 |
+
"tr": "\x89",
|
| 122 |
+
"uy": "\x8a",
|
| 123 |
+
"uỳ": "\x8b",
|
| 124 |
+
"uý": "\x8c",
|
| 125 |
+
"uỷ": "\x8d",
|
| 126 |
+
"uỹ": "\x8e",
|
| 127 |
+
"uỵ": "\x8f",
|
| 128 |
+
"iê": "\x90",
|
| 129 |
+
"iề": "\x91",
|
| 130 |
+
"iế": "\x92",
|
| 131 |
+
"iể": "\x93",
|
| 132 |
+
"iễ": "\x94",
|
| 133 |
+
"iệ": "\x95",
|
| 134 |
+
"uô": "\x9c",
|
| 135 |
+
"uồ": "\x9d",
|
| 136 |
+
"uố": "\x9e",
|
| 137 |
+
"uổ": "\x9f",
|
| 138 |
+
"uỗ": "\xa0",
|
| 139 |
+
"uộ": "\xa1",
|
| 140 |
+
"ươ": "\xa2",
|
| 141 |
+
"ườ": "\xa3",
|
| 142 |
+
"ướ": "\xa4",
|
| 143 |
+
"ưở": "\xa5",
|
| 144 |
+
"ưỡ": "\xa6",
|
| 145 |
+
"ượ": "\xa7",
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
def decode_string(x):
|
| 149 |
+
for k, v in list(reversed(list(ENCODER.items()))):
|
| 150 |
+
x = x.replace(v, k)
|
| 151 |
+
return x
|
| 152 |
+
|
| 153 |
+
|
| 154 |
test_dataset = load_dataset("common_voice", "vi", split="test[:2%]")
|
| 155 |
|
| 156 |
processor = Wav2Vec2Processor.from_pretrained("Nhut/wav2vec2-large-xlsr-vietnamese")
|
|
|
|
| 172 |
|
| 173 |
predicted_ids = torch.argmax(logits, dim=-1)
|
| 174 |
|
| 175 |
+
print("Prediction:", decode_string(processor.batch_decode(predicted_ids)))
|
| 176 |
print("Reference:", test_dataset["sentence"][:2])
|
| 177 |
```
|
| 178 |
|
|
|
|
| 189 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 190 |
import re
|
| 191 |
|
| 192 |
+
ENCODER = {
|
| 193 |
+
"ia ": "iê ",
|
| 194 |
+
"ìa ": "iề ",
|
| 195 |
+
"ía ": "iế ",
|
| 196 |
+
"ỉa ": "iể ",
|
| 197 |
+
"ĩa ": "iễ ",
|
| 198 |
+
"ịa ": "iệ ",
|
| 199 |
+
"ya ": "yê ",
|
| 200 |
+
"ỳa ": "yề ",
|
| 201 |
+
"ýa ": "yế ",
|
| 202 |
+
"ỷa ": "yể ",
|
| 203 |
+
"ỹa ": "yễ ",
|
| 204 |
+
"ỵa ": "yệ ",
|
| 205 |
+
"ua ": "uô ",
|
| 206 |
+
"ùa ": "uồ ",
|
| 207 |
+
"úa ": "uố ",
|
| 208 |
+
"ủa ": "uổ ",
|
| 209 |
+
"ũa ": "uỗ ",
|
| 210 |
+
"ụa ": "uộ ",
|
| 211 |
+
"ưa ": "ươ ",
|
| 212 |
+
"ừa ": "ườ ",
|
| 213 |
+
"ứa ": "ướ ",
|
| 214 |
+
"ửa ": "ưở ",
|
| 215 |
+
"ữa ": "ưỡ ",
|
| 216 |
+
"ựa ": "ượ ",
|
| 217 |
+
"ke": "ce",
|
| 218 |
+
"kè": "cè",
|
| 219 |
+
"ké": "cé",
|
| 220 |
+
"kẻ": "cẻ",
|
| 221 |
+
"kẽ": "cẽ",
|
| 222 |
+
"kẹ": "cẹ",
|
| 223 |
+
"kê": "cê",
|
| 224 |
+
"kề": "cề",
|
| 225 |
+
"kế": "cế",
|
| 226 |
+
"kể": "cể",
|
| 227 |
+
"kễ": "cễ",
|
| 228 |
+
"kệ": "cệ",
|
| 229 |
+
"ki": "ci",
|
| 230 |
+
"kì": "cì",
|
| 231 |
+
"kí": "cí",
|
| 232 |
+
"kỉ": "cỉ",
|
| 233 |
+
"kĩ": "cĩ",
|
| 234 |
+
"kị": "cị",
|
| 235 |
+
"ky": "cy",
|
| 236 |
+
"kỳ": "cỳ",
|
| 237 |
+
"ký": "cý",
|
| 238 |
+
"kỷ": "cỷ",
|
| 239 |
+
"kỹ": "cỹ",
|
| 240 |
+
"kỵ": "cỵ",
|
| 241 |
+
"ghe": "ge",
|
| 242 |
+
"ghè": "gè",
|
| 243 |
+
"ghé": "gé",
|
| 244 |
+
"ghẻ": "gẻ",
|
| 245 |
+
"ghẽ": "gẽ",
|
| 246 |
+
"ghẹ": "gẹ",
|
| 247 |
+
"ghê": "gê",
|
| 248 |
+
"ghề": "gề",
|
| 249 |
+
"ghế": "gế",
|
| 250 |
+
"ghể": "gể",
|
| 251 |
+
"ghễ": "gễ",
|
| 252 |
+
"ghệ": "gệ",
|
| 253 |
+
"ngh": "\x80",
|
| 254 |
+
"uyê": "\x96",
|
| 255 |
+
"uyề": "\x97",
|
| 256 |
+
"uyế": "\x98",
|
| 257 |
+
"uyể": "\x99",
|
| 258 |
+
"uyễ": "\x9a",
|
| 259 |
+
"uyệ": "\x9b",
|
| 260 |
+
"ng": "\x81",
|
| 261 |
+
"ch": "\x82",
|
| 262 |
+
"gh": "\x83",
|
| 263 |
+
"nh": "\x84",
|
| 264 |
+
"gi": "\x85",
|
| 265 |
+
"ph": "\x86",
|
| 266 |
+
"kh": "\x87",
|
| 267 |
+
"th": "\x88",
|
| 268 |
+
"tr": "\x89",
|
| 269 |
+
"uy": "\x8a",
|
| 270 |
+
"uỳ": "\x8b",
|
| 271 |
+
"uý": "\x8c",
|
| 272 |
+
"uỷ": "\x8d",
|
| 273 |
+
"uỹ": "\x8e",
|
| 274 |
+
"uỵ": "\x8f",
|
| 275 |
+
"iê": "\x90",
|
| 276 |
+
"iề": "\x91",
|
| 277 |
+
"iế": "\x92",
|
| 278 |
+
"iể": "\x93",
|
| 279 |
+
"iễ": "\x94",
|
| 280 |
+
"iệ": "\x95",
|
| 281 |
+
"uô": "\x9c",
|
| 282 |
+
"uồ": "\x9d",
|
| 283 |
+
"uố": "\x9e",
|
| 284 |
+
"uổ": "\x9f",
|
| 285 |
+
"uỗ": "\xa0",
|
| 286 |
+
"uộ": "\xa1",
|
| 287 |
+
"ươ": "\xa2",
|
| 288 |
+
"ườ": "\xa3",
|
| 289 |
+
"ướ": "\xa4",
|
| 290 |
+
"ưở": "\xa5",
|
| 291 |
+
"ưỡ": "\xa6",
|
| 292 |
+
"ượ": "\xa7",
|
| 293 |
+
}
|
| 294 |
+
|
| 295 |
+
def decode_string(x):
|
| 296 |
+
for k, v in list(reversed(list(ENCODER.items()))):
|
| 297 |
+
x = x.replace(v, k)
|
| 298 |
+
return x
|
| 299 |
+
|
| 300 |
+
|
| 301 |
test_dataset = load_dataset("common_voice", "vi", split="test")
|
| 302 |
wer = load_metric("wer")
|
| 303 |
|
| 304 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL)
|
| 305 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL)
|
| 306 |
model.to("cuda")
|
| 307 |
|
| 308 |
chars_to_ignore_regex = '[\\\+\@\ǀ\,\?\.\!\-\;\:\"\“\%\‘\”\�]'
|
| 309 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
| 310 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
# Preprocessing the datasets.
|
| 312 |
# We need to read the aduio files as arrays
|
| 313 |
def evaluate(batch):
|
|
|
|
| 318 |
|
| 319 |
pred_ids = torch.argmax(logits, dim=-1)
|
| 320 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
| 321 |
+
# decode_string: We replace the encoded letter with the initial letters
|
| 322 |
+
batch["pred_strings"] = [decode_string(x) for x in batch["pred_strings"]]
|
| 323 |
return batch
|
| 324 |
|
| 325 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
|
|
|
| 326 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
| 327 |
```
|
| 328 |
|
added_tokens.json
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
{"<s>": 91, "</s>": 92}
|
|
|
|
|
|
config.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "/content/gdrive/MyDrive/Colab\\ Notebooks/
|
| 3 |
"activation_dropout": 0.0,
|
| 4 |
"apply_spec_augment": true,
|
| 5 |
"architectures": [
|
|
@@ -51,7 +51,7 @@
|
|
| 51 |
"initializer_range": 0.02,
|
| 52 |
"intermediate_size": 4096,
|
| 53 |
"layer_norm_eps": 1e-05,
|
| 54 |
-
"layerdrop": 0.
|
| 55 |
"mask_channel_length": 10,
|
| 56 |
"mask_channel_min_space": 1,
|
| 57 |
"mask_channel_other": 0.0,
|
|
@@ -62,7 +62,7 @@
|
|
| 62 |
"mask_time_length": 10,
|
| 63 |
"mask_time_min_space": 1,
|
| 64 |
"mask_time_other": 0.0,
|
| 65 |
-
"mask_time_prob": 0.
|
| 66 |
"mask_time_selection": "static",
|
| 67 |
"model_type": "wav2vec2",
|
| 68 |
"num_attention_heads": 16,
|
|
@@ -70,7 +70,7 @@
|
|
| 70 |
"num_conv_pos_embeddings": 128,
|
| 71 |
"num_feat_extract_layers": 7,
|
| 72 |
"num_hidden_layers": 24,
|
| 73 |
-
"pad_token_id":
|
| 74 |
"transformers_version": "4.4.0",
|
| 75 |
-
"vocab_size":
|
| 76 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "/content/gdrive/MyDrive/Colab\\ Notebooks/XLSR_V2_26/wav2vec-large-xlsr-vietnamese-demo",
|
| 3 |
"activation_dropout": 0.0,
|
| 4 |
"apply_spec_augment": true,
|
| 5 |
"architectures": [
|
|
|
|
| 51 |
"initializer_range": 0.02,
|
| 52 |
"intermediate_size": 4096,
|
| 53 |
"layer_norm_eps": 1e-05,
|
| 54 |
+
"layerdrop": 0.1,
|
| 55 |
"mask_channel_length": 10,
|
| 56 |
"mask_channel_min_space": 1,
|
| 57 |
"mask_channel_other": 0.0,
|
|
|
|
| 62 |
"mask_time_length": 10,
|
| 63 |
"mask_time_min_space": 1,
|
| 64 |
"mask_time_other": 0.0,
|
| 65 |
+
"mask_time_prob": 0.05,
|
| 66 |
"mask_time_selection": "static",
|
| 67 |
"model_type": "wav2vec2",
|
| 68 |
"num_attention_heads": 16,
|
|
|
|
| 70 |
"num_conv_pos_embeddings": 128,
|
| 71 |
"num_feat_extract_layers": 7,
|
| 72 |
"num_hidden_layers": 24,
|
| 73 |
+
"pad_token_id": 135,
|
| 74 |
"transformers_version": "4.4.0",
|
| 75 |
+
"vocab_size": 136
|
| 76 |
}
|
pytorch_model.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:27f8edf2f10fc71c73bf8fb234cd46e66a7ddb59dd0778094aa6c70b750c3e4b
|
| 3 |
+
size 1262491415
|
tokenizer_config.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"
|
|
|
|
| 1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
|
vocab.json
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"
|
|
|
|
| 1 |
+
{"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6, "g": 7, "h": 8, "i": 9, "j": 10, "k": 11, "l": 12, "m": 13, "n": 14, "o": 15, "p": 16, "q": 17, "r": 18, "s": 19, "t": 20, "u": 21, "v": 22, "w": 23, "x": 24, "y": 25, "z": 26, "": 27, "": 28, "": 29, "": 30, "": 31, "
": 32, "": 33, "": 34, "": 35, "": 36, "": 37, "": 38, "": 39, "": 40, "": 41, "": 42, "": 43, "": 44, "": 45, "": 46, "": 47, "": 48, "": 49, "": 50, "": 51, "": 52, "": 53, "": 54, "": 55, "": 56, "": 57, "": 58, " ": 59, "¡": 60, "¢": 61, "£": 62, "¤": 63, "¥": 64, "¦": 65, "§": 66, "à": 67, "á": 68, "â": 69, "ã": 70, "è": 71, "é": 72, "ê": 73, "ì": 74, "í": 75, "ò": 76, "ó": 77, "ô": 78, "õ": 79, "ù": 80, "ú": 81, "ý": 82, "ă": 83, "đ": 84, "ĩ": 85, "ũ": 86, "ơ": 87, "ư": 88, "ạ": 89, "ả": 90, "ấ": 91, "ầ": 92, "ẩ": 93, "ẫ": 94, "ậ": 95, "ắ": 96, "ằ": 97, "ẳ": 98, "ẵ": 99, "ặ": 100, "ẹ": 101, "ẻ": 102, "ẽ": 103, "ế": 104, "ề": 105, "ể": 106, "ễ": 107, "ệ": 108, "ỉ": 109, "ị": 110, "ọ": 111, "ỏ": 112, "ố": 113, "ồ": 114, "ổ": 115, "ỗ": 116, "ộ": 117, "ớ": 118, "ờ": 119, "ở": 120, "ỡ": 121, "ợ": 122, "ụ": 123, "ủ": 124, "ứ": 125, "ừ": 126, "ử": 127, "ữ": 128, "ự": 129, "ỳ": 130, "ỵ": 131, "ỷ": 132, "ỹ": 133, "|": 0, "[UNK]": 134, "[PAD]": 135}
|