Spestly commited on
Commit
f9a49b4
·
verified ·
1 Parent(s): f0c9b60

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -8
README.md CHANGED
@@ -1,21 +1,103 @@
1
  ---
2
- base_model: unsloth/qwen3-1.7b-unsloth-bnb-4bit
 
3
  tags:
4
  - text-generation-inference
5
  - transformers
6
  - unsloth
7
  - qwen3
8
- license: apache-2.0
9
  language:
10
  - en
11
  ---
 
 
12
 
13
- # Uploaded finetuned model
14
 
15
- - **Developed by:** apexion-ai
16
- - **License:** apache-2.0
17
- - **Finetuned from model :** unsloth/qwen3-1.7b-unsloth-bnb-4bit
18
 
19
- This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
20
 
21
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ base_model:
3
+ - Qwen/Qwen3-1.7B
4
  tags:
5
  - text-generation-inference
6
  - transformers
7
  - unsloth
8
  - qwen3
9
+ license: cc-by-nc-sa-4.0
10
  language:
11
  - en
12
  ---
13
+ ![Header](./Nous-V1-Banner.png)
14
+ # Nous-V1 8B
15
 
16
+ ## Overview
17
 
18
+ **Nous-V1 2B** is a cutting-edge 8 billion parameter language model developed by Apexion AI, based on the architecture of [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B). Designed for versatility across diverse NLP tasks, Nous-V1 4B delivers strong performance in conversational AI, knowledge reasoning, code generation, and content creation.
 
 
19
 
20
+ **Key Features:**
21
 
22
+ - **⚡ Efficient 2B Parameter Scale:** Balances model capability with practical deployment on modern hardware
23
+ - **🧠 Enhanced Contextual Understanding:** Supports an 128k token context window, enabling complex multi-turn conversations and document analysis
24
+ - **🌐 Multilingual & Multi-domain:** Trained on a diverse dataset for broad language and domain coverage
25
+ - **🤖 Instruction-Following & Adaptability:** Fine-tuned to respond accurately and adaptively across tasks
26
+ - **🚀 Optimized Inference:** Suitable for GPU environments such as NVIDIA A100, T4, and P100 for low-latency applications
27
+
28
+ ---
29
+
30
+ ## Why Choose Nous-V1 2B?
31
+
32
+ While larger models can offer more raw power, Nous-V1 2B strikes a practical balance — optimized for deployment efficiency without significant compromise on language understanding or generation quality. It’s ideal for applications requiring:
33
+
34
+ - Real-time conversational agents
35
+ - Code completion and programming assistance
36
+ - Content generation and summarization
37
+ - Multilingual natural language understanding
38
+
39
+ ---
40
+
41
+ ## 🖥️ How to Run Locally
42
+
43
+ You can easily integrate Nous-V1 2B via the Hugging Face Transformers library or deploy it on popular serving platforms.
44
+
45
+ ### Using Hugging Face Transformers
46
+
47
+ ```python
48
+ # Use a pipeline as a high-level helper
49
+ from transformers import pipeline
50
+
51
+ pipe = pipeline("text-generation", model="apexion-ai/Nous-V1-2B")
52
+ messages = [
53
+ {"role": "user", "content": "Who are you?"},
54
+ ]
55
+ pipe(messages)
56
+ ```
57
+
58
+ ### Deployment Options
59
+
60
+ - Compatible with [vLLM](https://github.com/vllm-project/vllm) for efficient serving
61
+ - Works with [llama.cpp](https://github.com/ggerganov/llama.cpp) for lightweight inference
62
+
63
+ ---
64
+
65
+ ## Recommended Sampling Parameters
66
+
67
+ ```yaml
68
+ Temperature: 0.7
69
+ Top-p: 0.9
70
+ Top-k: 40
71
+ Min-p: 0.0
72
+ ```
73
+
74
+ ---
75
+
76
+ ## FAQ
77
+
78
+ - **Q:** Can I fine-tune Nous-V1 2B on my custom data?
79
+ **A:** Yes, the model supports fine-tuning workflows via Hugging Face Trainer or custom scripts.
80
+
81
+ - **Q:** What hardware is recommended?
82
+ **A:** NVIDIA GPUs with at least 16GB VRAM (e.g., A100, 3090) are optimal for inference and fine-tuning.
83
+
84
+ - **Q:** Is the model safe to use for production?
85
+ **A:** Nous-V1 2B includes safety mitigations but should be used with human oversight and proper filtering for sensitive content.
86
+
87
+
88
+ ---
89
+
90
+ ## 📄 Citation
91
+
92
+ ```bibtex
93
+ @misc{apexion2025nousv14b,
94
+ title={Nous-V1 2B: Efficient Large Language Model for Versatile NLP Applications},
95
+ author={Apexion AI Team},
96
+ year={2025},
97
+ url={https://huggingface.co/apexion-ai/Nous-V1-2B}
98
+ }
99
+ ```
100
+
101
+ ---
102
+
103
+ *Nous-V1 2B — Powering practical AI applications with intelligent language understanding.*