pablo-rf commited on
Commit
c1cb1f7
verified
1 Parent(s): 90e8149

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +102 -161
README.md CHANGED
@@ -1,199 +1,140 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 馃 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
 
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
 
 
 
 
 
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
 
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ language:
3
+ - gl
4
+ - es
5
+ - en
6
+ - pt
7
+ licence:
8
+ - MIT
9
+ tags:
10
+ - Llama
11
+ license: llama3.1
12
+ base_model:
13
+ - meta-llama/Llama-3.1-8B
14
+ pipeline_tag: text-generation
15
  library_name: transformers
 
16
  ---
17
 
18
+ # Llama-Carvalho-HQ_75
19
 
20
+ ## Table of Contents
21
+ <details>
22
+ <summary>Click to expand</summary>
23
 
24
+ - [Llama-Carvalho-HQ\_75](#llama-carvalho-hq_75)
25
+ - [Table of Contents](#table-of-contents)
26
+ - [Model description](#model-description)
27
+ - [Intended uses and limitations](#intended-uses-and-limitations)
28
+ - [How to use](#how-to-use)
29
+ - [Training](#training)
30
+ - [Tools](#tools)
31
+ - [Training data](#training-data)
32
+ - [Training hyperparameters](#training-hyperparameters)
33
+ - [Framework](#framework)
34
+ - [Evaluation](#evaluation)
35
+ - [Additional information](#additional-information)
36
+ - [Contact](#contact)
37
+ - [License](#license)
38
+ - [Funding](#funding)
39
 
40
+ </details>
41
 
42
+ ## Model description
43
 
44
+ **Llama-Carvalho-HQ** is a 8B-parameter transformer-based causal language model for Galician, Portuguese, Spanish and English.
45
+ It is the result of a continual pretraining of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) with a multilingual corpus consisting of 540M tokens of plain text and 72M tokens of instructions (formated as plain text)
46
 
47
+ This model is part of the **Carvalho familily**, a family of LLMs specialized in Portuguese and Galician. Smaller models can be found [here](https://huggingface.co/Nos-PT/Carvalho_pt-gl-1.3B)
48
+ ## Intended uses and limitations
49
 
50
+ The **Llama-Carvalho-HQ** model is ready-to-use only for causal language modeling.
51
+ It can perform text-generation tasks and be fine-tuned for specific scenarios.
52
 
53
+ ## How to use
54
+ ```python
55
+ import torch
56
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
 
 
 
57
 
58
+ input_text = "Hoxe fai un bo d铆a. O sol "
59
 
60
+ model_id = "Nos-PT/Llama-Carvalho-HQ_75"
61
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
62
+ model = AutoModelForCausalLM.from_pretrained(model_id)
63
+ generator = pipeline(
64
+ "text-generation",
65
+ model=model,
66
+ tokenizer=tokenizer,
67
+ torch_dtype=torch.bfloat16,
68
+ trust_remote_code=True,
69
+ device_map="auto",
70
+ )
71
+ generation = generator(
72
+ input_text,
73
+ do_sample=True,
74
+ top_k=10,
75
+ eos_token_id=tokenizer.eos_token_id
76
+ )
77
 
78
+ print(f"Result: {generation[0]['generated_text']}")
79
+ ```
 
80
 
81
+ ## Training
82
 
83
+ ### Tools
84
 
85
+ It was trained using HuggingFace Transformers and Pytorch, using the [Causal Modeling Language script](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py). We also use [DeepSpeed](https://github.com/microsoft/DeepSpeed) to deal with the huge size of the model.
86
 
 
87
 
88
+ ### Training data
89
 
 
90
 
91
+ The training corpus consists of texts in 4 languages, with an emphasis on Portuguese and Galician. The main aim of this is to ensure that the model learns to work with this language perfectly, while maintaining knowledge of languages already known (Spanish, English), learning others (Galician) or adapting existing language varieties (Portuguese-PT instead of Portuguese-BR).
92
 
93
+ The corpus is composed as follows:
94
 
95
+ | **Corpus** | | **gl** | **pt** | **es** | **en** |
96
+ |----------------------------|-----------------------------------------------|--------|--------|--------|--------|
97
+ | **Base plain text corpus** | Tokens | 232M | 250M | 29M | 29M |
98
+ | | Percentage (of the total base corpus) | 42,96% | 46,29% | 5,37% | 5,37% |
99
+ | **Instructions** | Tokens | 26,7M | 44M | 804K | 623K |
100
+ | | Percentage (of the total instructions corpus) | 37,01% | 61,00% | 1,11% | 0,86% |
101
 
 
102
 
103
+ ### Training hyperparameters
104
 
105
+ - seed: 42
106
+ - num_devices: 5
107
+ - train_batch_size: 4
108
+ - eval_batch_size: 4
109
+ - gradient_acummulation: 8
110
+ - optimizer: AdamW
111
+ - betas: (0.9,0.999)
112
+ - epsilon: 1e-08
113
+ - weight_decay_rate: 0.1
114
+ - scheduler: "Linear"
115
+ - learning_rate: 1e-04
116
+ - num_epochs: 1.0
117
 
118
+ ### Framework
119
+ The training was conducted on the MareNostrum V in the Barcelona Supercomputing Center ([BSC](https://www.bsc.es/ca/marenostrum/marenostrum-5)), using 10 nodes with 4 GPUs NVIDIA H100 64GB each one.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
 
121
  ## Evaluation
122
+ In process...
123
 
124
+ ## Additional information
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
+ ### Contact
127
 
128
+ For further information, please send an email to
129
+ ### License
130
+ MIT License
131
 
132
+ Copyright (c) 2024
133
 
134
+ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
135
 
136
+ The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
137
 
138
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
139
 
140
+ ### Funding