--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.84 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.2032 - Accuracy: 0.84 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3949 | 1.0 | 899 | 1.4476 | 0.61 | | 1.1682 | 2.0 | 1798 | 1.4548 | 0.66 | | 0.2096 | 3.0 | 2697 | 1.0660 | 0.72 | | 3.073 | 4.0 | 3596 | 1.0223 | 0.78 | | 0.0012 | 5.0 | 4495 | 0.9689 | 0.83 | | 0.0088 | 6.0 | 5394 | 1.5253 | 0.77 | | 0.0003 | 7.0 | 6293 | 0.9924 | 0.86 | | 0.0002 | 8.0 | 7192 | 1.2847 | 0.85 | | 0.0002 | 9.0 | 8091 | 1.2553 | 0.84 | | 0.0002 | 10.0 | 8990 | 1.2032 | 0.84 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0