File size: 15,251 Bytes
ff495b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
#
"""
Implementation of the following modules is borrowed from ml-cvnets repo:
https://github.com/apple/ml-cvnets/blob/main/cvnets/layers/multi_head_attention.py
https://github.com/apple/ml-cvnets/blob/main/cvnets/text_encoders/transformer.py

Please see ACKNOWLEDGEMENTS for license details.
"""

from typing import List, Optional, Union

import torch
from torch import Size, Tensor, nn
from torch.nn import functional as F
from torchvision.ops import StochasticDepth


class LayerNormFP32(nn.LayerNorm):
    """
    Applies `Layer Normalization <https://arxiv.org/abs/1607.06450>`_ over a input tensor with FP32 precision
    """

    def __init__(
        self,
        normalized_shape: Union[int, List[int], Size],
        eps: Optional[float] = 1e-5,
        elementwise_affine: Optional[bool] = True,
        *args,
        **kwargs,
    ):
        super().__init__(
            normalized_shape=normalized_shape,
            eps=eps,
            elementwise_affine=elementwise_affine,
            *args,
            **kwargs,
        )

    def forward(self, x: Tensor) -> Tensor:
        # Convert input from dtype X to FP32 and perform normalization operation.
        # This may help with underflow/overflow issues that we typically see with normalization layers
        inp_dtype = x.dtype
        return super().forward(x.to(torch.float32)).to(inp_dtype)


def get_normalization_layer(norm_type, num_features):
    if norm_type == "layer_norm":
        return nn.LayerNorm(num_features)
    elif norm_type == "layer_norm_fp32":
        return LayerNormFP32(num_features)
    else:
        raise NotImplementedError(f"Option: {norm_type} not supported.")


class PositionalEmbedding(nn.Module):
    def __init__(
        self,
        num_embeddings: int,
        embedding_dim: int,
        padding_idx: Optional[int] = None,
        is_learnable: Optional[bool] = False,
        interpolation_mode: Optional[str] = "bilinear",
        *args,
        **kwargs,
    ):
        super().__init__()
        # Add other pos embedding here and logic to choose between them
        module = LearnablePositionalEmbedding

        self.pos_embed = module(
            num_embeddings=num_embeddings,
            embedding_dim=embedding_dim,
            padding_idx=padding_idx,
            interpolation_mode=interpolation_mode,
            *args,
            **kwargs,
        )

    def forward(self, seq_len: int, *args, **kwargs) -> Tensor:
        return self.pos_embed(seq_len, *args, **kwargs)

    def __repr__(self):
        return self.pos_embed.__repr__()


class LearnablePositionalEmbedding(nn.Module):
    """Learnable Positional embedding"""

    def __init__(
        self,
        num_embeddings: int,
        embedding_dim: int,
        padding_idx: Optional[int] = None,
        interpolation_mode: Optional[str] = "bilinear",
        *args,
        **kwargs,
    ):
        super().__init__()
        self.pos_embed = nn.Parameter(torch.empty(1, 1, num_embeddings, embedding_dim))
        self.embedding_dim = embedding_dim
        self.num_embeddings = num_embeddings
        self.padding_idx = padding_idx
        self.interpolation_mode = interpolation_mode

        self.reset_parameters()

    def reset_parameters(self) -> None:
        nn.init.trunc_normal_(self.pos_embed, mean=0, std=self.embedding_dim**-0.5)
        if self.padding_idx is not None:
            with torch.no_grad():
                self.pos_embed[:, :, self.padding_idx, ...] = 0.0

    def forward(self, seq_len: int, *args, **kwargs) -> Tensor:
        # scale pos embedding
        pos_embed = self.pos_embed
        if self.padding_idx is not None:
            with torch.no_grad():
                pos_embed[:, :, self.padding_idx, ...] = 0.0

        if seq_len != self.num_embeddings:
            pos_embed = F.interpolate(
                pos_embed,
                size=(seq_len, self.embedding_dim),
                mode=self.interpolation_mode,
            )

        # Input is of the form [Batch, Seq_len, Embedding_dim]
        return pos_embed.reshape(1, seq_len, self.embedding_dim)

    def __repr__(self):
        return "{}(num_embeddings={}, embedding_dim={}, padding_idx={})".format(
            self.__class__.__name__,
            self.num_embeddings,
            self.embedding_dim,
            self.padding_idx,
        )


class MultiHeadAttention(nn.Module):
    """
    This layer applies a multi-head self- or cross-attention as described in
    `Attention is all you need <https://arxiv.org/abs/1706.03762>`_ paper

    Args:
        embed_dim (int): :math:`C_{in}` from an expected input of size :math:`(N, S, C_{in})`
        num_heads (int): Number of heads in multi-head attention
        attn_dropout (Optional[float]): Attention dropout. Default: 0.0
        bias (Optional[bool]): Use bias or not. Default: ``True``

    Shape:
        - Input:
           - Query tensor (x_q) :math:`(N, S, C_{in})` where :math:`N` is batch size, :math:`S` is number of source tokens,
        and :math:`C_{in}` is input embedding dim
           - Optional Key-Value tensor (x_kv) :math:`(N, T, C_{in})` where :math:`T` is number of target tokens
        - Output: same shape as the input

    """

    def __init__(
        self,
        embed_dim: int,
        num_heads: int,
        attn_dropout: Optional[float] = 0.0,
        bias: Optional[bool] = True,
        output_dim: Optional[int] = None,
        *args,
        **kwargs,
    ) -> None:
        if output_dim is None:
            output_dim = embed_dim
        super().__init__()
        if embed_dim % num_heads != 0:
            Warning(
                "Embedding dim must be divisible by number of heads in {}. Got: embed_dim={} and num_heads={}".format(
                    self.__class__.__name__, embed_dim, num_heads
                )
            )

        self.qkv_proj = nn.Linear(
            in_features=embed_dim, out_features=3 * embed_dim, bias=bias
        )

        self.attn_dropout = nn.Dropout(p=attn_dropout)
        self.out_proj = nn.Linear(
            in_features=embed_dim, out_features=output_dim, bias=bias
        )

        self.head_dim = embed_dim // num_heads
        self.scaling = self.head_dim**-0.5
        self.softmax = nn.Softmax(dim=-1)
        self.num_heads = num_heads
        self.embed_dim = embed_dim
        self.use_separate_proj_weight = embed_dim != output_dim

    def __repr__(self):
        return "{}(head_dim={}, num_heads={}, attn_dropout={})".format(
            self.__class__.__name__, self.head_dim, self.num_heads, self.attn_dropout.p
        )

    def _forward_impl(
        self,
        x_q: Tensor,
        x_kv: Optional[Tensor] = None,
        key_padding_mask: Optional[Tensor] = None,
        attn_mask: Optional[Tensor] = None,
    ) -> Tensor:
        # [N, S, C]
        b_sz, S_len, in_channels = x_q.shape

        if x_kv is None:
            # self-attention
            # [N, S, C] --> [N, S, 3C] --> [N, S, 3, h, c] where C = hc
            qkv = self.qkv_proj(x_q).reshape(b_sz, S_len, 3, self.num_heads, -1)
            # [N, S, 3, h, c] --> [N, h, 3, S, C]
            qkv = qkv.transpose(1, 3).contiguous()

            # [N, h, 3, S, C] --> [N, h, S, C] x 3
            query, key, value = qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2]
        else:
            T_len = x_kv.shape[1]

            # cross-attention
            # [N, S, C]
            query = F.linear(
                x_q,
                weight=self.qkv_proj.weight[: self.embed_dim, ...],
                bias=self.qkv_proj.bias[: self.embed_dim]
                if self.qkv_proj.bias is not None
                else None,
            )
            # [N, S, C] --> [N, S, h, c] --> [N, h, S, c]
            query = (
                query.reshape(b_sz, S_len, self.num_heads, self.head_dim)
                .transpose(1, 2)
                .contiguous()
            )

            # [N, T, C] --> [N, T, 2C]
            kv = F.linear(
                x_kv,
                weight=self.qkv_proj.weight[self.embed_dim :, ...],
                bias=self.qkv_proj.bias[self.embed_dim :]
                if self.qkv_proj.bias is not None
                else None,
            )
            # [N, T, 2C] --> [N, T, 2, h, c]
            kv = kv.reshape(b_sz, T_len, 2, self.num_heads, self.head_dim)
            # [N, T, 2, h, c] --> [N, h, 2, T, c]
            kv = kv.transpose(1, 3).contiguous()
            key, value = kv[:, :, 0], kv[:, :, 1]

        query = query * self.scaling

        # [N h, T, c] --> [N, h, c, T]
        key = key.transpose(-1, -2)

        # QK^T
        # [N, h, S, c] x [N, h, c, T] --> [N, h, S, T]
        attn = torch.matmul(query, key)

        batch_size, num_heads, num_src_tokens, num_tgt_tokens = attn.shape
        if attn_mask is not None:
            # attn_mask shape should be the same as attn
            assert list(attn_mask.shape) == [
                batch_size,
                num_src_tokens,
                num_tgt_tokens,
            ], "Shape of attention mask should be [{}, {}, {}]. Got: {}".format(
                batch_size, num_src_tokens, num_tgt_tokens, attn_mask.shape
            )
            # [N, S, T] --> [N, 1, S, T]
            attn_mask = attn_mask.unsqueeze(1)
            attn = attn + attn_mask

        if key_padding_mask is not None:
            # Do not attend to padding positions
            # key padding mask size is [N, T]
            assert key_padding_mask.dim() == 2 and list(key_padding_mask.shape) == [
                batch_size,
                num_tgt_tokens,
            ], "Key_padding_mask should be 2-dimension with shape [{}, {}]. Got: {}".format(
                batch_size, num_tgt_tokens, key_padding_mask.shape
            )
            attn = attn.masked_fill(
                key_padding_mask.unsqueeze(1)
                .unsqueeze(2)
                .to(torch.bool),  # [N, T] --> [N, 1, 1, T]
                float("-inf"),
            )

        attn_dtype = attn.dtype
        attn_as_float = self.softmax(attn.float())
        attn = attn_as_float.to(attn_dtype)
        attn = self.attn_dropout(attn)

        # weighted sum
        # [N, h, S, T] x [N, h, T, c] --> [N, h, S, c]
        out = torch.matmul(attn, value)

        # [N, h, S, c] --> [N, S, h, c] --> [N, S, C]
        out = out.transpose(1, 2).reshape(b_sz, S_len, -1)
        out = self.out_proj(out)

        return out

    def forward(
        self,
        x_q: Tensor,
        x_kv: Optional[Tensor] = None,
        key_padding_mask: Optional[Tensor] = None,
        attn_mask: Optional[Tensor] = None,
        *args,
        **kwargs,
    ) -> Tensor:
        # [Batch , Sequence, Hidden_dim]
        return self._forward_impl(
            x_q=x_q,
            x_kv=x_kv,
            key_padding_mask=key_padding_mask,
            attn_mask=attn_mask,
        )


class TransformerEncoder(nn.Module):
    """
    This class defines the pre-norm `Transformer encoder <https://arxiv.org/abs/1706.03762>`_
    Args:
        embed_dim: :math:`C_{in}` from an expected input of size :math:`(N, P, C_{in})`.
        ffn_latent_dim: Inner dimension of the FFN.
        num_heads: Number of heads in multi-head attention. Default: 8.
        attn_dropout: Dropout rate for attention in multi-head attention. Default: 0.0
        dropout: Dropout rate. Default: 0.0.
        ffn_dropout: Dropout between FFN layers. Default: 0.0.
        transformer_norm_layer: Normalization layer. Default: layer_norm.
        stochastic_dropout: Stochastic dropout setting. Default: 0.0.

    Shape:
        - Input: :math:`(N, P, C_{in})` where :math:`N` is batch size, :math:`P` is number of patches,
        and :math:`C_{in}` is input embedding dim
        - Output: same shape as the input
    """

    def __init__(
        self,
        embed_dim: int,
        ffn_latent_dim: int,
        num_heads: Optional[int] = 8,
        attn_dropout: Optional[float] = 0.0,
        dropout: Optional[float] = 0.0,
        ffn_dropout: Optional[float] = 0.0,
        transformer_norm_layer: Optional[str] = "layer_norm",
        stochastic_dropout: Optional[float] = 0.0,
        *args,
        **kwargs,
    ) -> None:

        super().__init__()

        # Build attention layer
        attn_unit = MultiHeadAttention(
            embed_dim,
            num_heads,
            attn_dropout=attn_dropout,
            bias=True,
        )

        self.pre_norm_mha = nn.Sequential(
            get_normalization_layer(
                norm_type=transformer_norm_layer, num_features=embed_dim
            ),
            attn_unit,
            nn.Dropout(p=dropout),
        )

        act_name = nn.GELU()
        self.pre_norm_ffn = nn.Sequential(
            get_normalization_layer(
                norm_type=transformer_norm_layer, num_features=embed_dim
            ),
            nn.Linear(in_features=embed_dim, out_features=ffn_latent_dim, bias=True),
            act_name,
            nn.Dropout(p=ffn_dropout),
            nn.Linear(in_features=ffn_latent_dim, out_features=embed_dim, bias=True),
            nn.Dropout(p=dropout),
        )

        self.drop_path = nn.Identity()
        if stochastic_dropout > 0.0:
            if dropout > 0.0:
                Warning(
                    "Stochastic dropout and dropout are mutually exclusive. "
                    "Use either of them, but not both."
                    "Got: {} and {}".format(stochastic_dropout, dropout)
                )
            self.drop_path = StochasticDepth(p=stochastic_dropout, mode="row")

        self.embed_dim = embed_dim
        self.ffn_dim = ffn_latent_dim
        self.ffn_dropout = ffn_dropout
        self.stochastic_dropout = stochastic_dropout
        self.std_dropout = dropout
        self.attn_fn_name = attn_unit.__class__.__name__
        self.act_fn_name = act_name.__class__.__name__
        self.norm_type = transformer_norm_layer

    def __repr__(self) -> str:
        return "{}(embed_dim={}, ffn_dim={}, dropout={}, ffn_dropout={}, stochastic_dropout={}, attn_fn={}, act_fn={}, norm_fn={})".format(
            self.__class__.__name__,
            self.embed_dim,
            self.ffn_dim,
            self.std_dropout,
            self.ffn_dropout,
            self.stochastic_dropout,
            self.attn_fn_name,
            self.act_fn_name,
            self.norm_type,
        )

    def forward(
        self,
        x: Tensor,
        x_prev: Optional[Tensor] = None,
        key_padding_mask: Optional[Tensor] = None,
        attn_mask: Optional[Tensor] = None,
        *args,
        **kwargs,
    ) -> Tensor:

        # Multi-head attention
        res = x
        x = self.pre_norm_mha[0](x)  # norm
        x = self.pre_norm_mha[1](
            x_q=x,
            x_kv=x_prev,
            key_padding_mask=key_padding_mask,
            attn_mask=attn_mask,
            *args,
            **kwargs,
        )  # mha

        x = self.drop_path(self.pre_norm_mha[2](x))  # applying stochastic depth
        x = x + res

        # Feed forward network
        x = x + self.drop_path(self.pre_norm_ffn(x))
        return x