File size: 14,561 Bytes
ff495b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import numpy as np
import torch
import logging

logger = logging.getLogger(__name__)

# --------------------------------------------------------
# 3D sine-cosine position embedding
# References:
# MVD: https://github.com/ruiwang2021/mvd/blob/main/modeling_finetune.py
# --------------------------------------------------------
def get_3d_sincos_pos_embed(embed_dim, grid_size, t_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    t_size: int of the temporal size
    return:
    pos_embed: [t_size*grid_size*grid_size, embed_dim] or [1+t_size*grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    assert embed_dim % 4 == 0
    embed_dim_spatial = embed_dim // 4 * 3
    embed_dim_temporal = embed_dim // 4

    # spatial
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed_spatial = get_2d_sincos_pos_embed_from_grid(
        embed_dim_spatial, grid
    )

    # temporal
    grid_t = np.arange(t_size, dtype=np.float32)
    pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(
        embed_dim_temporal, grid_t
    )

    # concate: [T, H, W] order
    pos_embed_temporal = pos_embed_temporal[:, np.newaxis, :]
    pos_embed_temporal = np.repeat(
        pos_embed_temporal, grid_size**2, axis=1
    )  # [T, H*W, D // 4]
    pos_embed_spatial = pos_embed_spatial[np.newaxis, :, :]
    pos_embed_spatial = np.repeat(
        pos_embed_spatial, t_size, axis=0
    )  # [T, H*W, D // 4 * 3]

    pos_embed = np.concatenate([pos_embed_temporal, pos_embed_spatial], axis=-1)
    pos_embed = pos_embed.reshape([-1, embed_dim])  # [T*H*W, D]

    if cls_token:
        pos_embed = np.concatenate(
            [np.zeros([1, embed_dim]), pos_embed], axis=0
        )
    return pos_embed


# --------------------------------------------------------
# 2D sine-cosine position embedding
# References:
# Transformer: https://github.com/tensorflow/models/blob/master/official/nlp/transformer/model_utils.py
# MoCo v3: https://github.com/facebookresearch/moco-v3
# --------------------------------------------------------
def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
    """
    grid_size: int of the grid height and width
    return:
    pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_h = np.arange(grid_size, dtype=np.float32)
    grid_w = np.arange(grid_size, dtype=np.float32)
    grid = np.meshgrid(grid_w, grid_h)  # here w goes first
    grid = np.stack(grid, axis=0)

    grid = grid.reshape([2, 1, grid_size, grid_size])
    pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
    if cls_token:
        pos_embed = np.concatenate(
            [np.zeros([1, embed_dim]), pos_embed], axis=0
        )
    return pos_embed


def get_1d_sincos_pos_embed(embed_dim, t_size, cls_token=False):
    """
    t_size: int of the temporal size
    return:
    pos_embed: [t_size, embed_dim] or [1+t_size, embed_dim] (w/ or w/o cls_token)
    """
    grid_t = np.arange(t_size, dtype=np.float32)
    pos_embed = get_1d_sincos_pos_embed_from_grid(embed_dim, grid_t)
    if cls_token:
        pos_embed = np.concatenate(
            [np.zeros([1, embed_dim]), pos_embed], axis=0
        )
    return pos_embed


def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
    assert embed_dim % 2 == 0

    # use half of dimensions to encode grid_h
    emb_h = get_1d_sincos_pos_embed_from_grid(
        embed_dim // 2, grid[0]
    )  # (H*W, D/2)
    emb_w = get_1d_sincos_pos_embed_from_grid(
        embed_dim // 2, grid[1]
    )  # (H*W, D/2)

    emb = np.concatenate([emb_h, emb_w], axis=1)  # (H*W, D)
    return emb


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """
    embed_dim: output dimension for each position
    pos: a list of positions to be encoded: size (M,)
    out: (M, D)
    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.0
    omega = 1.0 / 10000**omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out)  # (M, D/2)
    emb_cos = np.cos(out)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb


def interpolate_pos_embed(checkpoint_model, model, orig_t_size=4, pos_name='vision_encoder.pos_embed'):
    if pos_name in checkpoint_model:
        pos_embed_checkpoint = checkpoint_model[pos_name]
        embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
        num_patches = model.patch_embed.num_patches # 
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1

        # we use 4 frames for pretraining
        new_t_size = model.T
        # height (== width) for the checkpoint position embedding
        orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
        # height (== width) for the new position embedding
        new_size = int((num_patches // (new_t_size))** 0.5)
        
        # class_token and dist_token are kept unchanged
        if orig_t_size != new_t_size:
            logger.info(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            # B, L, C -> B, T, HW, C -> BHW, C, T  (B = 1)
            pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
            pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
            pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
            pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model[pos_name] = new_pos_embed
            pos_embed_checkpoint = new_pos_embed

        # class_token and dist_token are kept unchanged
        if orig_size != new_size:
            logger.info(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            # B, L, C -> BT, H, W, C -> BT, C, H, W
            pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
            # BT, C, H, W -> BT, H, W, C ->  B, T, H, W, C
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) 
            pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model[pos_name] = new_pos_embed


def interpolate_pos_embed_internvideo2(checkpoint_model, model, orig_t_size = 8):
    # interpolate position embedding
    for pos_name in ['pos_embed', 'clip_pos_embed']:
        if pos_name in checkpoint_model:
            pos_embed_checkpoint = checkpoint_model[pos_name]
            embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
            num_patches = model.patch_embed.num_patches # 
            num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1

            # we use 8 frames for pretraining
            # new_t_size = args.num_frames * args.num_segments // model.patch_embed.tubelet_size
            new_t_size = model.num_frames // model.tubelet_size
            # height (== width) for the checkpoint position embedding
            orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
            # height (== width) for the new position embedding
            new_size = int((num_patches // (new_t_size))** 0.5)
            
            # class_token and dist_token are kept unchanged
            if orig_t_size != new_t_size:
                logger.info(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
                extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
                # only the position tokens are interpolated
                pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
                # B, L, C -> B, T, HW, C -> BHW, C, T  (B = 1)
                pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
                pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
                pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
                pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
                pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
                new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
                checkpoint_model[pos_name] = new_pos_embed
                pos_embed_checkpoint = new_pos_embed

            # class_token and dist_token are kept unchanged
            if orig_size != new_size:
                logger.info(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
                extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
                # only the position tokens are interpolated
                pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
                # B, L, C -> BT, H, W, C -> BT, C, H, W
                pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
                pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
                pos_tokens = torch.nn.functional.interpolate(
                    pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
                # BT, C, H, W -> BT, H, W, C ->  B, T, H, W, C
                pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) 
                pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
                new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
                checkpoint_model[pos_name] = new_pos_embed
    
    if 'pos_embed_spatial' in checkpoint_model or 'pos_embed_temporal' in checkpoint_model:
        raise NotImplementedError


def interpolate_pos_embed_internvideo2_new(checkpoint_model, model, orig_t_size = 8):
    pos_names = []
    for k in checkpoint_model.keys():
        if ('pos_embed' in k or 'clip_pos_embed' in k) and 'img_pos_embed' not in k:
            pos_names.append(k)
    
    logger.info(f"pos names list for interpolating: {pos_names}")

    assert len(pos_names) > 0, checkpoint_model.keys()

    if 'pos_embed_spatial' in checkpoint_model.keys() or 'pos_embed_temporal' in checkpoint_model.keys():
        raise NotImplementedError
    
    # interpolate position embedding
    for pos_name in pos_names:

        pos_embed_checkpoint = checkpoint_model[pos_name]
        embedding_size = pos_embed_checkpoint.shape[-1] # channel dim
        num_patches = model.patch_embed.num_patches # 
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches # 0/1

        # we use 8 frames for pretraining
        # new_t_size = args.num_frames * args.num_segments // model.patch_embed.tubelet_size
        new_t_size = model.num_frames // model.tubelet_size
        # height (== width) for the checkpoint position embedding
        orig_size = int(((pos_embed_checkpoint.shape[-2] - num_extra_tokens)//(orig_t_size)) ** 0.5)
        # height (== width) for the new position embedding
        new_size = int((num_patches // (new_t_size))** 0.5)
        
        # class_token and dist_token are kept unchanged
        if orig_t_size != new_t_size:
            logger.info(f"Temporal interpolate from {orig_t_size} to {new_t_size} ({pos_name})")
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            # B, L, C -> B, T, HW, C -> BHW, C, T  (B = 1)
            pos_tokens = pos_tokens.view(1, orig_t_size, -1, embedding_size)
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, embedding_size, orig_t_size)
            pos_tokens = torch.nn.functional.interpolate(pos_tokens, size=new_t_size, mode='linear')
            pos_tokens = pos_tokens.view(1, -1, embedding_size, new_t_size)
            pos_tokens = pos_tokens.permute(0, 3, 1, 2).reshape(1, -1, embedding_size)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model[pos_name] = new_pos_embed
            pos_embed_checkpoint = new_pos_embed

        # class_token and dist_token are kept unchanged
        if orig_size != new_size:
            logger.info(f"Position interpolate from {orig_size}x{orig_size} to {new_size}x{new_size} ({pos_name})")
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            # B, L, C -> BT, H, W, C -> BT, C, H, W
            pos_tokens = pos_tokens.reshape(-1, new_t_size, orig_size, orig_size, embedding_size)
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
            # BT, C, H, W -> BT, H, W, C ->  B, T, H, W, C
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).reshape(-1, new_t_size, new_size, new_size, embedding_size) 
            pos_tokens = pos_tokens.flatten(1, 3) # B, L, C
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model[pos_name] = new_pos_embed